Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Astrocyte pathology in the prefrontal cortex impairs the cognitive function of rats

Abstract

Interest in astroglial cells is rising due to recent findings supporting dynamic neuron–astrocyte interactions. There is increasing evidence of astrocytic dysfunction in several brain disorders such as depression, schizophrenia or bipolar disorder; importantly these pathologies are characterized by the involvement of the prefrontal cortex and by significant cognitive impairments. Here, to model astrocyte pathology, we injected animals with the astrocyte specific toxin L-α-aminoadipate (L-AA) in the medial prefrontal cortex (mPFC); a behavioral and structural characterization two and six days after the injection was performed. Behavioral data shows that the astrocyte pathology in the mPFC affects the attentional set-shifting, the working memory and the reversal learning functions. Histological analysis of brain sections of the L-AA-injected animals revealed a pronounced loss of astrocytes in the targeted region. Interestingly, analysis of neurons in the lesion sites showed a progressive neuronal loss that was accompanied with dendritic atrophy in the surviving neurons. These results suggest that the L-AA-induced astrocytic loss in the mPFC triggers subsequent neuronal damage leading to cognitive impairment in tasks depending on the integrity of this brain region. These findings are of relevance to better understand the pathophysiological mechanisms underlying disorders that involve astrocytic loss/dysfunction in the PFC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Wang D, Bordey A . The astrocyte odyssey. Prog Neurobiol 2008; 86: 342–367.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Parpura V, Heneka MT, Montana V, Oliet SHR, Schousboe A, Haydon PG et al. Glial cells in (patho)physiology. J Neurochem 2012; 121: 4–27.

    Article  CAS  Google Scholar 

  3. Kimelberg HK . Supportive or information-processing functions of the mature protoplasmic astrocyte in the mammalian CNS? A critical appraisal. Neuron Glia Biol 2007; 3: 181–189.

    Article  Google Scholar 

  4. Parpura V, Verkhratsky A . Homeostatic function of astrocytes: Ca2+ and Na+ signalling. Transl Neurosci 2012; 3: 334–344.

    Article  Google Scholar 

  5. Araque A, Parpura V, Sanzgiri RP, Haydon PG . Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 1999; 22: 208–215.

    Article  CAS  Google Scholar 

  6. Newman EA . New roles for astrocytes: Regulation of synaptic transmission. Trends Neurosci 2003; 26: 536–542.

    Article  CAS  Google Scholar 

  7. Perea G, Navarrete M, Araque A . Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci 2009; 32: 421–431.

    Article  CAS  Google Scholar 

  8. Yang Y, Ge W, Chen Y, Zhang Z, Shen W, Wu C et al. Contribution of astrocytes to hippocampal long-term potentiation through release of D-serine. Proc Natl Acad Sci USA 2003; 100: 15194–15199.

    Article  CAS  Google Scholar 

  9. Perea G, Araque A . Astrocytes potentiate transmitter release at single hippocampal synapses. Science 2007; 317: 1083–1086.

    Article  CAS  Google Scholar 

  10. Henneberger C, Papouin T, Oliet SHR, Rusakov DA . Long-term potentiation depends on release of D-serine from astrocytes. Nature 2010; 463: 232–236.

    Article  CAS  Google Scholar 

  11. Florian C, Vecsey CG, Halassa MM, Haydon PG, Abel T . Astrocyte-derived adenosine and A1 receptor activity contribute to sleep loss-induced deficits in hippocampal synaptic plasticity and memory in mice. J Neurosci 2011; 31: 6956–6962.

    Article  CAS  Google Scholar 

  12. Panatier A, Vallée J, Haber M, Murai KK, Lacaille J-C, Robitaille R . Astrocytes are endogenous regulators of basal transmission at central synapses. Cell 2011; 146: 785–798.

    Article  CAS  Google Scholar 

  13. Roux L, Benchenane K, Rothstein JD, Bonvento G, Giaume C . Plasticity of astroglial networks in olfactory glomeruli. Proc Natl Acad Sci 2011; 108: 18442–18446.

    Article  CAS  Google Scholar 

  14. Shigetomi E, Tong X, Kwan KY, Corey DP, Khakh BS . TRPA1 channels regulate astrocyte resting calcium and inhibitory synapse efficacy through GAT-3. Nat Neurosci 2011; 15: 70–80.

    Article  Google Scholar 

  15. Woo DH, Han K-S, Shim JW, Yoon B-E, Kim E, Bae JY et al. TREK-1 and Best1 channels mediate fast and slow glutamate release in astrocytes upon GPCR activation. Cell 2012; 151: 25–40.

    Article  CAS  Google Scholar 

  16. Martineau M, Shi T, Puyal J, Knolhoff AM, Dulong J, Gasnier B et al. Storage and uptake of D-serine into astrocytic synaptic-like vesicles specify gliotransmission. J Neurosci 2013; 33: 3413–3423.

    Article  CAS  Google Scholar 

  17. Halassa MM, Florian C, Fellin T, Munoz JR, Lee S-Y, Abel T et al. Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss. Neuron 2009; 61: 213–219.

    Article  CAS  Google Scholar 

  18. Di Castro MA, Chuquet J, Liaudet N, Bhaukaurally K, Santello M, Bouvier D et al. Local Ca2+ detection and modulation of synaptic release by astrocytes. Nat Neurosci 2011; 14: 1276–1284.

    Article  CAS  Google Scholar 

  19. Takata N, Mishima T, Hisatsune C, Nagai T, Ebisui E, Mikoshiba K et al. Astrocyte calcium signaling transforms cholinergic modulation to cortical plasticity in vivo. J Neurosci 2011; 31: 18155–18165.

    Article  CAS  Google Scholar 

  20. Chen N, Sugihara H, Sharma J, Perea G, Petravicz J, Le C et al. Nucleus basalis-enabled stimulus-specific plasticity in the visual cortex is mediated by astrocytes. Proc Natl Acad Sci 2012; 109: E2832–E2841.

    Article  CAS  Google Scholar 

  21. Chen J, Tan Z, Zeng L, Zhang X, He Y, Gao W et al. Heterosynaptic long-term depression mediated by ATP released from astrocytes. Glia 2013; 61: 178–191.

    Article  Google Scholar 

  22. Han J, Kesner P, Metna-Laurent M, Duan T, Xu L, Georges F et al. Acute cannabinoids impair working memory through astroglial CB1 receptor modulation of hippocampal LTD. Cell 2012; 148: 1039–1050.

    Article  CAS  Google Scholar 

  23. Navarrete M, Perea G, de Sevilla DF, Gómez-Gonzalo M, Núñez A, Martín ED et al. Astrocytes mediate in vivo cholinergic-induced synaptic plasticity. PLoS Biol 2012; 10: e1001259.

    Article  CAS  Google Scholar 

  24. Sun W, McConnell E, Pare J-F, Xu Q, Chen M, Peng W et al. Glutamate-dependent neuroglial calcium signaling differs between young and adult brain. Science 2013; 339: 197–200.

    Article  CAS  Google Scholar 

  25. Navarrete M, Perea G, Maglio L, Pastor J, de Sola RG, Araque A . Astrocyte calcium signal and gliotransmission in human brain tissue. Cereb Cortex 2013; 23: 1240–1246.

    Article  Google Scholar 

  26. Cotter DR, Pariante CM, Everall IP . Glial cell abnormalities in major psychiatric disorders: the evidence and implications. Brain Res Bull 2001; 55: 585–595.

    Article  CAS  Google Scholar 

  27. Seifert G, Schilling K, Steinhäuser C . Astrocyte dysfunction in neurological disorders: a molecular perspective. Nat Rev Neurosci 2006; 7: 194–206.

    Article  CAS  Google Scholar 

  28. Halassa MM, Fellin T, Haydon PG . The tripartite synapse: roles for gliotransmission in health and disease. Trends Mol Med 2007; 13: 54–63.

    Article  CAS  Google Scholar 

  29. Johnston-Wilson NL, Sims CD, Hofmann JP, Anderson L, Shore AD, Torrey EF et al. Disease-specific alterations in frontal cortex brain proteins in schizophrenia, bipolar disorder, and major depressive disorder. The Stanley Neuropathology Consortium. Mol Psychiatry 2000; 5: 142–149.

    Article  CAS  Google Scholar 

  30. Miguel-Hidalgo JJ, Baucom C, Dilley G, Overholser JC, Meltzer HY, Stockmeier CA et al. Glial fibrillary acidic protein immunoreactivity in the prefrontal cortex distinguishes younger from older adults in major depressive disorder. Biol Psychiatry 2000; 48: 861–873.

    Article  CAS  Google Scholar 

  31. Miguel-Hidalgo JJ, Waltzer R, Whittom AA, Austin MC, Rajkowska G, Stockmeier CA . Glial and glutamatergic markers in depression, alcoholism, and their comorbidity. J Affect Disord 2010; 127: 230–240.

    Article  CAS  Google Scholar 

  32. Cotter D, Mackay D, Chana G, Beasley C, Landau S, Everall IP . Reduced neuronal size and glial cell density in area 9 of the dorsolateral prefrontal cortex in subjects with major depressive disorder. Cereb Cortex 2002; 12: 386–394.

    Article  Google Scholar 

  33. Rajkowska G, Miguel-Hidalgo JJ, Makkos Z, Meltzer H, Overholser J, Stockmeier C . Layer-specific reductions in GFAP-reactive astroglia in the dorsolateral prefrontal cortex in schizophrenia. Schizophr Res 2002; 57: 127–138.

    Article  Google Scholar 

  34. Choudary PV, Molnar M, Evans SJ, Tomita H, Li JZ, Vawter MP et al. Altered cortical glutamatergic and GABAergic signal transmission with glial involvement in depression. Proc Natl Acad Sci USA 2005; 102: 15653–15658.

    Article  CAS  Google Scholar 

  35. Webster MJ, O’Grady J, Kleinman JE, Weickert CS . Glial fibrillary acidic protein mRNA levels in the cingulate cortex of individuals with depression, bipolar disorder and schizophrenia. Neuroscience 2005; 133: 453–461.

    Article  CAS  Google Scholar 

  36. Rajkowska G, Miguel-Hidalgo JJ . Gliogenesis and glial pathology in depression. CNS Neurol Disord Drug Targets 2007; 6: 219–233.

    Article  CAS  Google Scholar 

  37. Gosselin R-D, Gibney S, O’Malley D, Dinan TG, Cryan JF . Region specific decrease in glial fibrillary acidic protein immunoreactivity in the brain of a rat model of depression. Neuroscience 2009; 159: 915–925.

    Article  CAS  Google Scholar 

  38. Oh DH, Son H, Hwang S, Kim SH . Neuropathological abnormalities of astrocytes, GABAergic neurons, and pyramidal neurons in the dorsolateral prefrontal cortices of patients with major depressive disorder. Eur Neuropsychopharmacol J Eur Coll Neuropsychopharmacol 2012; 22: 330–338.

    Article  CAS  Google Scholar 

  39. Cotter DR, Pariante CM, Rajkowska G . Glial Pathology in Major Psychiatric Disorders. In: Agam G, Everall IP, Belmaker RH (eds). The Postmortem Brain in Psychiatric Research. Springer: New York, NY, USA, 2002 pp 49–73.

    Chapter  Google Scholar 

  40. Rajkowska G, Stockmeier CA . Astrocyte pathology in major depressive disorder: insights from human postmortem brain tissue. Curr Drug Targets 2013; 14: 1225–1236.

    Article  CAS  Google Scholar 

  41. Müller N, Schwarz MJ . The immune-mediated alteration of serotonin and glutamate: towards an integrated view of depression. Mol Psychiatry 2007; 12: 988–1000.

    Article  Google Scholar 

  42. Klempan TA, Sequeira A, Canetti L, Lalovic A, Ernst C, ffrench-Mullen J et al. Altered expression of genes involved in ATP biosynthesis and GABAergic neurotransmission in the ventral prefrontal cortex of suicides with and without major depression. Mol Psychiatry 2009; 14: 175–189.

    Article  CAS  Google Scholar 

  43. Gómez-Galán M, De Bundel D, Van Eeckhaut A, Smolders I, Lindskog M . Dysfunctional astrocytic regulation of glutamate transmission in a rat model of depression. Mol Psychiatry 2013; 18: 582–594.

    Article  Google Scholar 

  44. Hines DJ, Schmitt LI, Hines RM, Moss SJ, Haydon PG . Antidepressant effects of sleep deprivation require astrocyte-dependent adenosine mediated signaling. Transl Psychiatry 2013; 3: e212.

    Article  CAS  Google Scholar 

  45. Goldman-Rakic PS . Architecture of the prefrontal cortex and the central executive. Ann N Y Acad Sci 1995; 769: 71–83.

    Article  CAS  Google Scholar 

  46. Davidson RJ . Anxiety and affective style: role of prefrontal cortex and amygdala. Biol Psychiatry 2002; 51: 68–80.

    Article  Google Scholar 

  47. Clark L, Cools R, Robbins TW . The neuropsychology of ventral prefrontal cortex: decision-making and reversal learning. Brain Cogn 2004; 55: 41–53.

    Article  CAS  Google Scholar 

  48. Vertes RP . Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse 2004; 51: 32–58.

    Article  CAS  Google Scholar 

  49. Heidbreder CA, Groenewegen HJ . The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neurosci Biobehav Rev 2003; 27: 555–579.

    Article  Google Scholar 

  50. Hoover WB, Vertes RP . Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Struct Funct 2007; 212: 149–179.

    Article  Google Scholar 

  51. Banasr M, Duman RS . Glial loss in the prefrontal cortex is sufficient to induce depressive-like behaviors. Biol Psychiatry 2008; 64: 863–870.

    Article  Google Scholar 

  52. Banasr M, Chowdhury GMI, Terwilliger R, Newton SS, Duman RS, Behar KL et al. Glial pathology in an animal model of depression: reversal of stress-induced cellular, metabolic and behavioral deficits by the glutamate-modulating drug riluzole. Mol Psychiatry 2010; 15: 501–511.

    Article  CAS  Google Scholar 

  53. Lee Y, Son H, Kim G, Kim S, Lee DH, Roh GS et al. Glutamine deficiency in the prefrontal cortex increases depressive-like behaviours in male mice. J Psychiatry Neurosci 2013; 38: 183–191.

    Article  Google Scholar 

  54. John CS, Smith KL, Veer AV, Gompf HS, Carlezon WA, Cohen BM et al. Blockade of astrocytic glutamate uptake in the prefrontal cortex induces anhedonia. Neuropsychopharmacology 2012; 37: 2467–2475.

    Article  CAS  Google Scholar 

  55. Khurgel M, Koo AC, Ivy GO . Selective ablation of astrocytes by intracerebral injections of alpha-aminoadipate. Glia 1996; 16: 351–358.

    Article  CAS  Google Scholar 

  56. Birrell JM, Brown VJ . Medial frontal cortex mediates perceptual attentional set shifting in the rat. J Neurosci 2000; 20: 4320–4324.

    Article  CAS  Google Scholar 

  57. Morris R . Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 1984; 11: 47–60.

    Article  CAS  Google Scholar 

  58. Cerqueira JJ, Mailliet F, Almeida OFX, Jay TM, Sousa N . The prefrontal cortex as a key target of the maladaptive response to stress. J Neurosci 2007; 27: 2781–2787.

    Article  CAS  Google Scholar 

  59. Cerqueira JJ, Taipa R, Uylings HBM, Almeida OFX, Sousa N . Specific configuration of dendritic degeneration in pyramidal neurons of the medial prefrontal cortex induced by differing corticosteroid regimens. Cereb Cortex 2007; 17: 1998–2006.

    Article  Google Scholar 

  60. Sholl DA . The measurable parameters of the cerebral cortex and their significance in its organization. Prog Neurobiol 1956; 2: 324–333.

    Google Scholar 

  61. Uylings HBM, van Pelt J . Measures for quantifying dendritic arborizations. Network 2002; 13: 397–414.

    Article  Google Scholar 

  62. Kettenmann H, Hanisch U-K, Noda M, Verkhratsky A . Physiology of Microglia. Physiol Rev 2011; 91: 461–553.

    Article  CAS  Google Scholar 

  63. Frick LR, Williams K, Pittenger C . Microglial dysregulation in psychiatric disease. Clin Dev Immunol 2013; 2013: 608654.

    Article  Google Scholar 

  64. Martin KP, Wellman CL . NMDA receptor blockade alters stress-induced dendritic remodeling in medial prefrontal cortex. Cereb Cortex 2011; 21: 2366–2373.

    Article  Google Scholar 

  65. Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW et al. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 1996; 16: 675–686.

    Article  CAS  Google Scholar 

  66. Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Takahashi K et al. Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 1997; 276: 1699–1702.

    Article  CAS  Google Scholar 

  67. Selkirk JV, Nottebaum LM, Vana AM, Verge GM, Mackay KB, Stiefel TH et al. Role of the GLT-1 subtype of glutamate transporter in glutamate homeostasis: the GLT-1-preferring inhibitor WAY-855 produces marginal neurotoxicity in the rat hippocampus. Eur J Neurosci 2005; 21: 3217–3228.

    Article  Google Scholar 

  68. Owen AM, Roberts AC, Polkey CE, Sahakian BJ, Robbins TW . Extra-dimensional versus intra-dimensional set shifting performance following frontal lobe excisions, temporal lobe excisions or amygdalo-hippocampectomy in man. Neuropsychologia 1991; 29: 993–1006.

    Article  CAS  Google Scholar 

  69. Dias R, Robbins TW, Roberts AC . Primate analogue of the Wisconsin Card Sorting Test: effects of excitotoxic lesions of the prefrontal cortex in the marmoset. Behav Neurosci 1996; 110: 872–886.

    Article  CAS  Google Scholar 

  70. Ragozzino ME, Detrick S, Kesner RP . Involvement of the prelimbic–infralimbic areas of the rodent prefrontal cortex in behavioral flexibility for place and response learning. J Neurosci 1999; 19: 4585–4594.

    Article  CAS  Google Scholar 

  71. Kolb B . The Cerebral Cortex of the Rat. The MIT Press: Cambridge, MA, US, 1990; 645, p.

    Google Scholar 

  72. Bussey TJ, Muir JL, Everitt BJ, Robbins TW . Triple dissociation of anterior cingulate, posterior cingulate, and medial frontal cortices on visual discrimination tasks using a touchscreen testing procedure for the rat. Behav Neurosci 1997; 111: 920–936.

    Article  CAS  Google Scholar 

  73. De Bruin JP, Sànchez-Santed F, Heinsbroek RP, Donker A, Postmes P . A behavioural analysis of rats with damage to the medial prefrontal cortex using the Morris water maze: evidence for behavioural flexibility, but not for impaired spatial navigation. Brain Res 1994; 652: 323–333.

    Article  CAS  Google Scholar 

  74. Joel D, Weiner I, Feldon J . Electrolytic lesions of the medial prefrontal cortex in rats disrupt performance on an analog of the Wisconsin Card Sorting Test, but do not disrupt latent inhibition: implications for animal models of schizophrenia. Behav Brain Res 1997; 85: 187–201.

    Article  CAS  Google Scholar 

  75. Ragozzino ME, Wilcox C, Raso M, Kesner RP . Involvement of rodent prefrontal cortex subregions in strategy switching. Behav Neurosci 1999; 113: 32–41.

    Article  CAS  Google Scholar 

  76. Kesner RP . Subregional analysis of mnemonic functions of the prefrontal cortex in the rat. Psychobiology 2000; 28: 219–228.

    Google Scholar 

  77. Ragozzino ME, Kesner RP . The effects of muscarinic cholinergic receptor blockade in the rat anterior cingulate and prelimbic/infralimbic cortices on spatial working memory. Neurobiol Learn Mem 1998; 69: 241–257.

    Article  CAS  Google Scholar 

  78. Abbott NJ, Ronnback L, Hansson E . Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 2006; 7: 41–53.

    Article  CAS  Google Scholar 

  79. Waagepetersen HS, Sonnewald U, Schousboe A . Energy and Amino Acid Neurotransmitter Metabolism in Astrocytes In: Haydon PG, Parpura V (eds). Astrocytes in (Patho)Physiology of the Nervous System. Springer: New York, NY, USA, 2009 pp 177–200.

    Chapter  Google Scholar 

  80. Nedergaard M, Ransom B, Goldman SA . New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci 2003; 26: 523–530.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Marie Curie Fellowship FP7-PEOPLE-2010-IEF 273936, BIAL Foundation Grants 138/2008 and 61/2010, FEDER funds through Operational program for competitiveness factors—COMPETE –, ON2 Programa Operacional Regional do Norte (ON.2—O Novo Norte), QREN/FEDER, and by national funds through FCT—Foundation for Science and Technology—project (PTDC/SAU-NSC/118194/2010) and fellowships (SFRH/BPD/66151/2009 and SFRH/BD/89714/2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J F Oliveira.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lima, A., Sardinha, V., Oliveira, A. et al. Astrocyte pathology in the prefrontal cortex impairs the cognitive function of rats. Mol Psychiatry 19, 834–841 (2014). https://doi.org/10.1038/mp.2013.182

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2013.182

Keywords

This article is cited by

Search

Quick links