Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Evidence from mouse and man for a role of neuregulin 3 in nicotine dependence

Abstract

Addiction to nicotine and the ability to quit smoking are influenced by genetic factors. We used functional genomic approaches (chromatin immunoprecipitation (ChIP) and whole-genome sequencing) to identify cAMP response element-binding protein (CREB) targets following chronic nicotine administration and withdrawal (WD) in rodents. We found that chronic nicotine and WD differentially modulate CREB binding to the gene for neuregulin 3 (NRG3). Quantitative analysis of saline, nicotine and nicotine WD in two biological replicates corroborate this finding, with NRG3 increases in both mRNA and protein following WD from chronic nicotine treatment. To translate these data for human relevance, single-nucleotide polymorphisms (SNPs) across NRG3 were examined for association with prospective smoking cessation among smokers of European ancestry treated with transdermal nicotine in two independent cohorts. Individual SNP and haplotype analysis support the association of NRG3 SNPs and smoking cessation success. NRG3 is a neural-enriched member of the epidermal growth factor family, and a specific ligand for the receptor tyrosine kinase ErbB4, which is also upregulated following nicotine treatment and WD. Mice with significantly reduced levels of NRG3 or pharmacological inhibition of ErbB4 show similar reductions in anxiety following nicotine WD compared with control animals, suggesting a role for NRG3 in nicotine dependence. Although the function of the SNP in NRG3 in humans is not known, these data suggest that Nrg3/ErbB4 signaling may be an important factor in nicotine dependence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Koob G, Kreek MJ . Stress, dysregulation of drug reward pathways, and the transition to drug dependence. Am J Psychiatry 2007; 164: 1149–1159.

    Article  PubMed Central  Google Scholar 

  2. Walters CL, Cleck JN, Kuo YC, Blendy JA . Mu-opioid receptor and CREB activation are required for nicotine reward. Neuron 2005; 46: 933–943.

    Article  CAS  Google Scholar 

  3. Brunzell DH, Mineur YS, Neve RL, Picciotto MR . Nucleus accumbens CREB activity is necessary for nicotine conditioned place preference. Neuropsychopharmacology 2009; 34: 1993–2001.

    Article  CAS  PubMed Central  Google Scholar 

  4. Brunzell DH, Russell DS, Picciotto MR . In vivo nicotine treatment regulates mesocorticolimbic CREB and ERK signaling in C57Bl/6J mice. J Neurochemistry 2003; 84: 1431–1441.

    Article  CAS  Google Scholar 

  5. Pandey SC, Roy A, Xu T, Mittal N . Effects of protracted nicotine exposure and withdrawal on the expression and phosphorylation of the CREB gene transcription factor in rat brain. J Neurochemistry 2001; 77: 943–952.

    Article  CAS  Google Scholar 

  6. McClernon FJ, Kozink RV, Rose JE . Individual differences in nicotine dependence, withdrawal symptoms, and sex predict transient fMRI-BOLD responses to smoking cues. Neuropsychopharmacology 2008; 33: 2148–2157.

    Article  CAS  Google Scholar 

  7. Franklin TR, Wang Z, Wang J, Sciortino N, Harper D, Li Y et al. Limbic activation to cigarette smoking cues independent of nicotine withdrawal: a perfusion fMRI study. Neuropsychopharmacology 2007; 32: 2301–2309.

    Article  CAS  Google Scholar 

  8. Janes AC, Pizzagalli DA, Richardt S, Frederick Bde B, Holmes AJ, Sousa J et al. Neural substrates of attentional bias for smoking-related cues: an FMRI study. Neuropsychopharmacology 2010; 35: 2339–2345.

    Article  PubMed Central  Google Scholar 

  9. Froeliger B, Kozink RV, Rose JE, Behm FM, Salley AN, McClernon FJ . Hippocampal and striatal gray matter volume are associated with a smoking cessation treatment outcome: results of an exploratory voxel-based morphometric analysis. Psychopharmacology (Berl) 2010; 210: 577–583.

    Article  CAS  Google Scholar 

  10. Wang Z, Faith M, Patterson F, Tang K, Kerrin K, Wileyto EP et al. Neural substrates of abstinence-induced cigarette cravings in chronic smokers. J Neurosci 2007; 27: 14035–14040.

    Article  CAS  PubMed Central  Google Scholar 

  11. Benowitz NL, Jacob P 3rd . Daily intake of nicotine during cigarette smoking. Clin Pharmacol Ther 1984; 35: 499–504.

    Article  CAS  Google Scholar 

  12. Li D, Ambrogio L, Shimamura T, Kubo S, Takahashi M, Chirieac LR et al. BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene 2008; 27: 4702–4711.

    Article  CAS  PubMed Central  Google Scholar 

  13. Solca F, Dahl G, Zoephel A, Bader G, Sanderson M, Klein C et al. Target binding properties and cellular activity of afatinib (BIBW 2992), an irreversible ErbB family blocker. J PharmacolExp Ther 2012; 343: 342–350.

    Article  CAS  Google Scholar 

  14. Stella VJ, He Q . Cyclodextrins. Toxicol Pathol 2008; 36: 30–42.

    Article  CAS  Google Scholar 

  15. Castro CA, Hogan JB, Benson KA, Shehata CW, Landauer MR . Behavioral effects of vehicles: DMSO, ethanol, Tween-20, Tween-80, and emulphor-620. Pharmacol Biochem Behav 1995; 50: 521–526.

    Article  CAS  Google Scholar 

  16. Merali Z, Levac C, Anisman H . Validation of a simple, ethologically relevant paradigm for assessing anxiety in mice. Biol Psychiatry 2003; 54: 552–565.

    Article  Google Scholar 

  17. Bechtholt AJ, Hill TE, Lucki I . Anxiolytic effect of serotonin depletion in the novelty-induced hypophagia test. Psychopharmacology (Berl) 2007; 190: 531–540.

    Article  CAS  Google Scholar 

  18. Dulawa SC, Hen R . Recent advances in animal models of chronic antidepressant effects: the novelty-induced hypophagia test. NeurosciBiobehav Rev 2005; 29: 771–783.

    CAS  Google Scholar 

  19. Bechtholt AJ, Valentino RJ, Lucki I . Overlapping and distinct brain regions associated with the anxiolytic effects of chlordiazepoxide and chronic fluoxetine. Neuropsychopharmacology 2008; 33: 2117–2130.

    CAS  PubMed  Google Scholar 

  20. Gur TL, Conti AC, Holden J, Bechtholt AJ, Hill TE, Lucki I et al. cAMP response element-binding protein deficiency allows for increased neurogenesis and a rapid onset of antidepressant response. J Neurosci 2007; 27: 7860–7868.

    Article  CAS  Google Scholar 

  21. Balu DT, Turner JR, Brookshire BR, Hill-Smith TE, Blendy JA, Lucki I . Brain monoamines and antidepressant-like responses in MRL/MpJ versus C57BL/6J mice. Neuropharmacology 2013; 67: 503–510.

    Article  CAS  Google Scholar 

  22. Onksen JL, Briand LA, Galante RJ, Pack AI, Blendy JA . Running-induced anxiety is dependent on increases in hippocampal neurogenesis. Genes Brain Behav 2012; 11: 529–538.

    Article  CAS  PubMed Central  Google Scholar 

  23. Goeldner C, Spooren W, Wichmann J, Prinssen EP . Further characterization of the prototypical nociceptin/orphanin FQ peptide receptor agonist Ro 64-6198 in rodent models of conflict anxiety and despair. Psychopharmacology (Berl) 2012; 222: 203–214.

    Article  CAS  Google Scholar 

  24. Turner JR, Castellano LM, Blendy JA . Nicotinic partial agonists varenicline and sazetidine-a have differential effects on affective behavior. J Pharmacol Exp Ther 2010; 334: 665–672.

    Article  CAS  PubMed Central  Google Scholar 

  25. Gamble-George JC, Conger JR, Hartley ND, Gupta P, Sumislawski JJ, Patel S . Dissociable effects of CB1 receptor blockade on anxiety-like and consummatory behaviors in the novelty-induced hypophagia test in mice. Psychopharmacology (Berl) 2013; 228: 401–409.

    Article  CAS  Google Scholar 

  26. Nicolas L, Kolb Y, Prinssen E . A combined marble burying-locomotor activity test in mice: a practical screening test with sensitivity to different classes of anxiolytics and antidepressants. European J Pharmacol 2006; 547: 106–115.

    Article  CAS  Google Scholar 

  27. Turner JR, Castellano LM, Blendy JA . Parallel anxiolytic-like effects and upregulation of neuronal nicotinic acetylcholine receptors following chronic nicotine and varenicline. Nicotine Tob Res 2011; 13: 41–46.

    Article  CAS  Google Scholar 

  28. Tuteja G, White P, Schug J, Kaestner KH . Extracting transcription factor targets from ChIP-Seq data. Nucleic Acids Res 2009; 37: e113.

    Article  PubMed Central  Google Scholar 

  29. Le Lay J, Tuteja G, White P, Dhir R, Ahima R, Kaestner KH . CRTC2 (TORC2) contributes to the transcriptional response to fasting in the liver but is not required for the maintenance of glucose homeostasis. Cell Metab 2009; 10: 55–62.

    Article  CAS  PubMed Central  Google Scholar 

  30. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 2010; 38: 576–589.

    Article  CAS  PubMed Central  Google Scholar 

  31. Zhang L, Rubins NE, Ahima RS, Greenbaum LE, Kaestner KH . Foxa2 integrates the transcriptional response of the hepatocyte to fasting. Cell Metab 2005; 2: 141–148.

    Article  PubMed Central  Google Scholar 

  32. Friedman JR, Larris B, Le PP, Peiris TH, Arsenlis A, Schug J et al. Orthogonal analysis of C/EBPbeta targets in vivo during liver proliferation. Proc Natl Acad Sci USA 2004; 101: 12986–12991.

    Article  CAS  Google Scholar 

  33. Cleck JN, Ecke LE, Blendy JA . Endocrine and gene expression changes following forced swim stress exposure during cocaine abstinence in mice. Psychopharmacology (Berl) 2008; 201: 15–28.

    Article  CAS  Google Scholar 

  34. Portugal GS, Wilkinson DS, Turner JR, Blendy JA, Gould TJ . Developmental effects of acute, chronic, and withdrawal from chronic nicotine on fear conditioning. Neurobiol Learn Mem 2012; 97: 482–494.

    Article  CAS  PubMed Central  Google Scholar 

  35. Brown R, Burgess E, Sales S, Whiteley J, Evans D, Miller I . Reliability and validity of a smoking timeline follow-back interview. Psychol Addict Behav 1998; 12: 101–112.

    Article  Google Scholar 

  36. SRNT. Subcommittee on Biochemical Verification. Biochemical verification of tobacco use and cessation. Nicotine Tob Res 2002; 4: 149–159.

    Article  Google Scholar 

  37. Schnoll RA, Patterson F, Wileyto EP, Heitjan DF, Shields AE, Asch DA et al. Effectiveness of extended-duration transdermal nicotine therapy: a randomized trial. Ann Intern Med 2010; 152: 144–151.

    Article  PubMed Central  Google Scholar 

  38. Barrett JC, Fry B, Maller J, Daly MJ . Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21: 263–265.

    Article  CAS  Google Scholar 

  39. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B et al. The structure of haplotype blocks in the human genome. Science (New York, NY) 2002; 296: 2225–2229.

    Article  CAS  Google Scholar 

  40. Excoffier L, Slatkin M . Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population. Mol Biol Evol 1995; 12: 921–927.

    CAS  Google Scholar 

  41. Schaid DJ . Relative efficiency of ambiguous vs. directly measured haplotype frequencies. Genet Epidemiol 2002; 23: 426–443.

    Article  Google Scholar 

  42. Lerman C, Kaufmann V, Rukstalis M, Patterson F, Perkins K, Audrain-McGovern J et al. Individualizing nicotine replacement therapy for the treatment of tobacco dependence: a randomized trial. Ann Intern Med 2004; 140: 426–433.

    Article  CAS  Google Scholar 

  43. Benito E, Barco A . CREB's control of intrinsic and synaptic plasticity: implications for CREB-dependent memory models. Trends Neurosc 2010; 33: 230–240.

    Article  CAS  Google Scholar 

  44. Howard B, Panchal H, McCarthy A, Ashworth A . Identification of the scaramanga gene implicates Neuregulin3 in mammary gland specification. Genes Dev 2005; 19: 2078–2090.

    Article  CAS  PubMed Central  Google Scholar 

  45. Marks MJ, Burch JB, Collins AC . Effects of chronic nicotine infusion on tolerance development and nicotinic receptors. J Pharmacol Exp Ther 1983; 226: 817–825.

    CAS  Google Scholar 

  46. Schwartz R, Kellar K . Nicotinic cholinergic receptor binding sites in the brain: regulation in vivo. Science (New York, NY) 1983; 220: 214–216.

    Article  CAS  Google Scholar 

  47. Houghtling RA, Davila-Garcia MI, Kellar KJ . Characterization of (+/−)(−)[3H]epibatidine binding to nicotinic cholinergic receptors in rat and human brain. Mol Pharmacol 1995; 48: 280–287.

    CAS  Google Scholar 

  48. Avalos M, Parker MJ, Maddox FN, Carroll FI, Luetje CW . Effects of pyridine ring substitutions on affinity, efficacy, and subtype selectivity of neuronal nicotinic receptor agonist epibatidine. J Pharmacol Exp Ther 2002; 302: 1246–1252.

    Article  CAS  Google Scholar 

  49. Xiao Y, Kellar KJ . The comparative pharmacology and up-regulation of rat neuronal nicotinic receptor subtype binding sites stably expressed in transfected mammalian cells. J Pharmacol Exp Ther 2004; 310: 98–107.

    Article  CAS  Google Scholar 

  50. Dani JA, Harris RA . Nicotine addiction and comorbidity with alcohol abuse and mental illness. Nat Neurosci 2005; 8: 1465–1470.

    Article  CAS  Google Scholar 

  51. Turner JR, Wilkinson D, Poole RL, Gould TJ, Carlson GC, Blendy JA . Divergent functional effects of sazetidine-a and varenicline during nicotine withdrawal. Neuropsychopharmacol, advance online publication, 29 April 2013; doi:10.1038/npp.2013.105.

    Article  CAS  PubMed Central  Google Scholar 

  52. Anderson SM, Brunzell DH . Low dose nicotine and antagonism of beta2 subunit containing nicotinic acetylcholine receptors have similar effects on affective behavior in mice. PLoS One 2012; 7: e48665.

    Article  CAS  PubMed Central  Google Scholar 

  53. Wang YC, Chen JY, Chen ML, Chen CH, Lai IC, Chen TT et al. Neuregulin 3 genetic variations and susceptibility to schizophrenia in a Chinese population. Biol Psychiatry 2008; 64: 1093–1096.

    Article  CAS  PubMed Central  Google Scholar 

  54. Chen PL, Avramopoulos D, Lasseter VK, McGrath JA, Fallin MD, Liang KY et al. Fine mapping on chromosome 10q22-q23 implicates Neuregulin 3 in schizophrenia. Am J Hum Genet 2009; 84: 21–34.

    Article  CAS  PubMed Central  Google Scholar 

  55. Kao WT, Wang Y, Kleinman JE, Lipska BK, Hyde TM, Weinberger DR et al. Common genetic variation in Neuregulin 3 (NRG3) influences risk for schizophrenia and impacts NRG3 expression in human brain. Proc Natl Acad Sci USA 2010; 107: 15619–15624.

    Article  CAS  Google Scholar 

  56. Morar B, Dragovic M, Waters FA, Chandler D, Kalaydjieva L, Jablensky A . Neuregulin 3 (NRG3) as a susceptibility gene in a schizophrenia subtype with florid delusions and relatively spared cognition. Mol Psychiatry 2011; 16: 860–866.

    Article  CAS  Google Scholar 

  57. Sonuga-Barke EJ, Lasky-Su J, Neale BM, Oades R, Chen W, Franke B et al. Does parental expressed emotion moderate genetic effects in ADHD? An exploration using a genome wide association scan. Am J Med Genet B Neuropsychiatr Genet 2008; 147B: 1359–1368.

    Article  CAS  PubMed Central  Google Scholar 

  58. Loukola A, Wedenoja J, Keskitalo-Vuokko K, Broms U, Korhonen T, Ripatti S et al. Genome-wide association study on detailed profiles of smoking behavior and nicotine dependence in a twin sample. Mol Psychiatry, advance online publication, 11 June 2013; doi:10.1038/mp.2013.72.

    Article  PubMed Central  Google Scholar 

  59. Holmes WE, Sliwkowski MX, Akita RW, Henzel WJ, Lee J, Park JW et al. Identification of heregulin, a specific activator of p185erbB2. Science (New York, NY) 1992; 256: 1205–1210.

    Article  CAS  Google Scholar 

  60. Wen D, Peles E, Cupples R, Suggs SV, Bacus SS, Luo Y et al. Neu differentiation factor: a transmembrane glycoprotein containing an EGF domain and an immunoglobulin homology unit. Cell 1992; 69: 559–572.

    Article  CAS  Google Scholar 

  61. Peles E, Bacus SS, Koski RA, Lu HS, Wen D, Ogden SG et al. Isolation of the neu/HER-2 stimulatory ligand: a 44 kd glycoprotein that induces differentiation of mammary tumor cells. Cell 1992; 69: 205–216.

    Article  CAS  Google Scholar 

  62. Zhang D, Sliwkowski MX, Mark M, Frantz G, Akita R, Sun Y et al. Neuregulin-3 (NRG3): a novel neural tissue-enriched protein that binds and activates ErbB4. Proc Natl Acad Sci USA 1997; 94: 9562–9567.

    Article  CAS  PubMed Central  Google Scholar 

  63. Longart M, Liu Y, Karavanova I, Buonanno A . Neuregulin-2 is developmentally regulated and targeted to dendrites of central neurons. J Comp Neurol 2004; 472: 156–172.

    Article  CAS  PubMed Central  Google Scholar 

  64. Li B, Woo RS, Mei L, Malinow R . The neuregulin-1 receptor erbB4 controls glutamatergic synapse maturation and plasticity. Neuron 2007; 54: 583–597.

    Article  CAS  PubMed Central  Google Scholar 

  65. Prochaska JJ, Hall SM, Bero LA . Tobacco use among individuals with schizophrenia: what role has the tobacco industry played? Schizophr Bull 2008; 34: 555–567.

    Article  Google Scholar 

  66. Pomerleau OF, Downey KK, Stelson FW, Pomerleau CS . Cigarette smoking in adult patients diagnosed with attention deficit hyperactivity disorder. J Subst Abuse 1995; 7: 373–378.

    Article  CAS  PubMed Central  Google Scholar 

  67. Mathew SV, Law AJ, Lipska BK, Davila-Garcia MI, Zamora ED, Mitkus SN et al. Alpha7 nicotinic acetylcholine receptor mRNA expression and binding in postmortem human brain are associated with genetic variation in neuregulin 1. Hum Mol Genet 2007; 16: 2921–2932.

    Article  CAS  Google Scholar 

  68. Freedman R, Coon H, Myles-Worsley M, Orr-Urtreger A, Olincy A, Davis A et al. Linkage of a neurophysiological deficit in schizophrenia to a chromosome 15 locus. Proc Natl Acad Sci USA 1997; 94: 587–592.

    Article  CAS  PubMed Central  Google Scholar 

  69. Liu Y, Ford B, Mann MA, Fischbach GD . Neuregulins increase alpha7 nicotinic acetylcholine receptors and enhance excitatory synaptic transmission in GABAergic interneurons of the hippocampus. J Neurosci 2001; 21: 5660–5669.

    Article  CAS  Google Scholar 

  70. Chang Q, Fischbach GD . An acute effect of neuregulin 1 beta to suppress alpha 7-containing nicotinic acetylcholine receptors in hippocampal interneurons. J Neurosci 2006; 26: 11295–11303.

    Article  CAS  Google Scholar 

  71. Zhong C, Du C, Hancock M, Mertz M, Talmage DA, Role LW . Presynaptic type III neuregulin 1 is required for sustained enhancement of hippocampal transmission by nicotine and for axonal targeting of alpha7 nicotinic acetylcholine receptors. J Neurosci 2008; 28: 9111–9116.

    Article  CAS  PubMed Central  Google Scholar 

  72. Chen YJ, Johnson MA, Lieberman MD, Goodchild RE, Schobel S, Lewandowski N et al. Type III neuregulin-1 is required for normal sensorimotor gating, memory-related behaviors, and corticostriatal circuit components. J Neurosci 2008; 28: 6872–6883.

    Article  CAS  PubMed Central  Google Scholar 

  73. Lerman C, LeSage MG, Perkins KA, O'Malley SS, Siegel SJ, Benowitz NL et al. Translational research in medication development for nicotine dependence. Nat Rev Drug Discov 2007; 6: 746–762.

    Article  CAS  Google Scholar 

  74. Cinciripini PM, Robinson JD, Karam-Hage M, Minnix JA, Lam C, Versace F et al. Effects of Varenicline and bupropion sustained-release use plus intensive smoking cessation counseling on prolonged abstinence from smoking and on depression, negative affect, and other symptoms of nicotine withdrawal. JAMA Psychiatry 2013; 70: 522–533.

    Article  CAS  PubMed Central  Google Scholar 

  75. Langdon KJ, Leventhal AM, Stewart S, Rosenfield D, Steeves D, Zvolensky MJ . Anhedonia and anxiety sensitivity: prospective relationships to nicotine withdrawal symptoms during smoking cessation. J Stud Alcohol Drugs 2013; 74: 469–478.

    Article  PubMed Central  Google Scholar 

  76. Kelly MM, Grant C, Cooper S, Cooney JL . Anxiety and smoking cessation outcomes in alcohol-dependent smokers. Nicotine Tob Res 2013; 15: 364–375.

    Article  Google Scholar 

  77. Nakajima M, al'Absi M . Predictors of risk for smoking relapse in men and women: a prospective examination. Psychol Addict Behav 2012; 26: 633–637.

    Article  PubMed Central  Google Scholar 

  78. Alkam T, Kim HC, Hiramatsu M, Mamiya T, Aoyama Y, Nitta A et al. Evaluation of emotional behaviors in young offspring of C57BL/6J mice after gestational and/or perinatal exposure to nicotine in six different time-windows. Behav Brain Res 2013; 239: 80–89.

    Article  CAS  Google Scholar 

  79. Mannucci C, Navarra M, Calzavara E, Caputi AP, Calapai G . Serotonin involvement in Rhodiola rosea attenuation of nicotine withdrawal signs in rats. Phytomedicine 2012; 19: 1117–1124.

    Article  CAS  Google Scholar 

  80. Roni MA, Rahman S . Neuronal nicotinic receptor antagonist reduces anxiety-like behavior in mice. Neurosci Lett 2011; 504: 237–241.

    Article  CAS  Google Scholar 

  81. Moy SS, Nadler JJ, Young NB, Perez A, Holloway LP, Barbaro RP et al. Mouse behavioral tasks relevant to autism: phenotypes of 10 inbred strains. Behav Brain Res 2007; 176: 4–20.

    Article  PubMed Central  Google Scholar 

  82. Dow HC, Kreibich AS, Kaercher KA, Sankoorikal GM, Pauley ED, Lohoff FW et al. Genetic dissection of intermale aggressive behavior in BALB/cJ and A/J mice. Genes Brain Behav 2011; 10: 57–68.

    Article  CAS  Google Scholar 

  83. Crowley JJ, Brodkin ES, Blendy JA, Berrettini WH, Lucki I . Pharmacogenomic evaluation of the antidepressant citalopram in the mouse tail suspension test. Neuropsychopharmacology 2006; 31: 2433–2442.

    Article  CAS  Google Scholar 

  84. Crowley JJ, Blendy JA, Lucki I . Strain-dependent antidepressant-like effects of citalopram in the mouse tail suspension test. Psychopharmacology (Berl) 2005; 183: 257–264.

    Article  CAS  Google Scholar 

  85. CDC. Cigarette smoking among adults—United States, 2006. Morbid Mortal Wkly Rep 2007; 56: 1157–1161.

    Google Scholar 

Download references

Acknowledgements

This research was funded by grants from the National Cancer Institute and National Institute on Drug Abuse, P50-CA143187, 1-F32-DA026236, K01-DA031747, 1-K99-DA032681, and U01-DA020830. We thank the Next Generation Sequencing Core at the University of Pennsylvania for sequencing support and technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J A Blendy.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turner, J., Ray, R., Lee, B. et al. Evidence from mouse and man for a role of neuregulin 3 in nicotine dependence. Mol Psychiatry 19, 801–810 (2014). https://doi.org/10.1038/mp.2013.104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2013.104

Keywords

This article is cited by

Search

Quick links