Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The ADHD-susceptibility gene lphn3.1 modulates dopaminergic neuron formation and locomotor activity during zebrafish development

Abstract

Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by inattention, hyperactivity, increased impulsivity and emotion dysregulation. Linkage analysis followed by fine-mapping identified variation in the gene coding for Latrophilin 3 (LPHN3), a putative adhesion-G protein-coupled receptor, as a risk factor for ADHD. In order to validate the link between LPHN3 and ADHD, and to understand the function of LPHN3 in the etiology of the disease, we examined its ortholog lphn3.1 during zebrafish development. Loss of lphn3.1 function causes a reduction and misplacement of dopamine-positive neurons in the ventral diencephalon and a hyperactive/impulsive motor phenotype. The behavioral phenotype can be rescued by the ADHD treatment drugs methylphenidate and atomoxetine. Together, our results implicate decreased Lphn3 activity in eliciting ADHD-like behavior, and demonstrate its correlated contribution to the development of the brain dopaminergic circuitry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Geissler J, Lesch KP . A lifetime of attention-deficit/hyperactivity disorder: diagnostic challenges, treatment and neurobiological mechanisms. Expert Rev Neurother 2011; 11: 1467–1484.

    Article  PubMed  Google Scholar 

  2. Polanczyk G, Rohde LA . Epidemiology of attention-deficit/hyperactivity disorder across the lifespan. Curr Opin Psychiatry 2007; 20: 386–392.

    Article  PubMed  Google Scholar 

  3. Swanson JM, Sunohara GA, Kennedy JL, Regino R, Fineberg E, Wigal T et al. Association of the dopamine receptor D4 (DRD4) gene with a refined phenotype of attention deficit hyperactivity disorder (ADHD): a family-based approach. Mol Psychiatry 1998; 3: 38–41.

    Article  CAS  PubMed  Google Scholar 

  4. Faraone SV, Perlis RH, Doyle AE, Smoller JW, Goralnick JJ, Holmgren MA et al. Molecular genetics of attention-deficit/hyperactivity disorder. Biol Psychiatry 2005; 57: 1313–1323.

    Article  CAS  PubMed  Google Scholar 

  5. Lesch KP, Selch S, Renner TJ, Jacob C, Nguyen TT, Hahn T et al. Genome-wide copy number variation analysis in attention-deficit/hyperactivity disorder: association with neuropeptide Y gene dosage in an extended pedigree. Mol Psychiatry 2011; 16: 491–503.

    Article  CAS  PubMed  Google Scholar 

  6. Lesch KP, Timmesfeld N, Renner TJ, Halperin R, Roser C, Nguyen TT et al. Molecular genetics of adult ADHD: converging evidence from genome-wide association and extended pedigree linkage studies. J Neural Transm 2008; 115: 1573–1585.

    Article  CAS  PubMed  Google Scholar 

  7. Neale BM, Medland SE, Ripke S, Asherson P, Franke B, Lesch KP et al. Meta-analysis of genome-wide association studies of attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 2010; 49: 884–897.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhou K, Dempfle A, Arcos-Burgos M, Bakker SC, Banaschewski T, Biederman J et al. Meta-analysis of genome-wide linkage scans of attention deficit hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet 2008; 147B: 1392–1398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Banaschewski T, Becker K, Scherag S, Franke B, Coghill D . Molecular genetics of attention-deficit/hyperactivity disorder: an overview. Eur Child Adolesc Psychiatry 2010; 19: 237–257.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kostrzewa RM, Kostrzewa JP, Kostrzewa RA, Nowak P, Brus R . Pharmacological models of ADHD. J Neural Transm 2008; 115: 287–298.

    Article  CAS  PubMed  Google Scholar 

  11. Russell VA, Sagvolden T, Johansen EB . Animal models of attention-deficit hyperactivity disorder. Behav Brain Funct 2005; 1: 9.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sagvolden T, Johansen EB, Aase H, Russell VA . A dynamic developmental theory of attention-deficit/hyperactivity disorder (ADHD) predominantly hyperactive/impulsive and combined subtypes. Behav Brain Sci 2005; 28: 397–419, discussion 419-368.

    Article  PubMed  Google Scholar 

  13. Williams NM, Zaharieva I, Martin A, Langley K, Mantripragada K, Fossdal R et al. Rare chromosomal deletions and duplications in attention-deficit hyperactivity disorder: a genome-wide analysis. Lancet 2010; 376: 1401–1408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sagvolden T . Behavioral validation of the spontaneously hypertensive rat (SHR) as an animal model of attention-deficit/hyperactivity disorder (AD/HD). Neurosci Biobehav Rev 2000; 24: 31–39.

    Article  CAS  PubMed  Google Scholar 

  15. Cook Jr EH, Stein MA, Krasowski MD, Cox NJ, Olkon DM, Kieffer JE et al. Association of attention-deficit disorder and the dopamine transporter gene. Am J Hum Genet 1995; 56: 993–998.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Gizer IR, Ficks C, Waldman ID . Candidate gene studies of ADHD: a meta-analytic review. Hum Genet 2009; 126: 51–90.

    Article  CAS  PubMed  Google Scholar 

  17. LaHoste GJ, Swanson JM, Wigal SB, Glabe C, Wigal T, King N et al. Dopamine D4 receptor gene polymorphism is associated with attention deficit hyperactivity disorder. Mol Psychiatry 1996; 1: 121–124.

    CAS  PubMed  Google Scholar 

  18. Oades RD . Role of the serotonin system in ADHD: treatment implications. Expert Rev Neurother 2007; 7: 1357–1374.

    Article  CAS  PubMed  Google Scholar 

  19. Walitza S, Renner TJ, Dempfle A, Konrad K, Wewetzer C, Halbach A et al. Transmission disequilibrium of polymorphic variants in the tryptophan hydroxylase-2 gene in attention-deficit/hyperactivity disorder. Mol Psychiatry 2005; 10: 1126–1132.

    Article  CAS  PubMed  Google Scholar 

  20. Franke B, Vasquez AA, Johansson S, Hoogman M, Romanos J, Boreatti-Hummer A et al. Multicenter analysis of the SLC6A3/DAT1 VNTR haplotype in persistent ADHD suggests differential involvement of the gene in childhood and persistent ADHD. Neuropsychopharmacology 2010; 35: 656–664.

    Article  CAS  PubMed  Google Scholar 

  21. Arcos-Burgos M, Jain M, Acosta MT, Shively S, Stanescu H, Wallis D et al. A common variant of the latrophilin 3 gene, LPHN3, confers susceptibility to ADHD and predicts effectiveness of stimulant medication. Mol Psychiatry 2010; 15: 1053–1066.

    Article  CAS  PubMed  Google Scholar 

  22. Ribasés M, Ramos-Quiroga JA, Sánchez-Mora C, Bosch R, Richarte V, Palomar G et al. Contribution of LPHN3 to the genetic susceptibility to ADHD in adulthood: a replication study. Genes Brain Behav 2011; 10: 149–157.

    Article  PubMed  Google Scholar 

  23. Liu QR, Drgon T, Johnson C, Walther D, Hess J, Uhl GR . Addiction molecular genetics: 639 401 SNP whole genome association identifies many ″cell adhesion″ genes. Am J Med Genet B Neuropsychiatr Genet 2006; 141B: 918–925.

    Article  CAS  PubMed  Google Scholar 

  24. Langenhan T, Promel S, Mestek L, Esmaeili B, Waller-Evans H, Hennig C et al. Latrophilin signaling links anterior-posterior tissue polarity and oriented cell divisions in the C. elegans embryo. Dev Cell 2009; 17: 494–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fero K, Yokogawa T, Burgess HA . The behavioral repertoire of larval zebrafish. In: Kalueff AV, Cachat JM, eds. Zebrafish Models in Neurobehavioral Research 2011; 249–291.

  26. Lieschke GJ, Currie PD . Animal models of human disease: zebrafish swim into view. Nat Rev Genet 2007; 8: 353–367.

    Article  CAS  PubMed  Google Scholar 

  27. Norton W, Bally-Cuif L . Adult zebrafish as a model organism for behavioral genetics. BMC Neurosci 2010; 11: 90.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rihel J, Prober DA, Arvanites A, Lam K, Zimmerman S, Jang S et al. Zebrafish behavioral profiling links drugs to biological targets and rest/wake regulation. Science (New York, NY) 2010; 327: 348–351.

    Article  CAS  Google Scholar 

  29. Guo S, Brush J, Teraoka H, Goddard A, Wilson SW, Mullins MC et al. Development of noradrenergic neurons in the zebrafish hindbrain requires BMP, FGF8, and the homeodomain protein soulless/Phox2a. Neuron 1999; 24: 555–566.

    Article  CAS  PubMed  Google Scholar 

  30. Lillesaar C, Tannhauser B, Stigloher C, Kremmer E, Bally-Cuif L . The serotonergic phenotype is acquired by converging genetic mechanisms within the zebrafish central nervous system. Dev Dyn 2007; 236: 1072–1084.

    Article  CAS  PubMed  Google Scholar 

  31. Norton WH, Folchert A, Bally-Cuif L . Comparative analysis of serotonin receptor (HTR1A/HTR1B families) and transporter (slc6a4a/b) gene expression in the zebrafish brain. J Comp Neurol 2008; 511: 521–542.

    Article  CAS  PubMed  Google Scholar 

  32. Thisse B, Heyer V, Lux A, Alunni V, Degrave A, Seiliez I et al. Spatial and temporal expression of the zebrafish genome by large-scale in situ hybridization screening. Methods Cell Biol 2004; 77: 505–519.

    Article  CAS  PubMed  Google Scholar 

  33. Porrino LJ, Rapoport JL, Behar D, Sceery W, Ismond DR, Bunney Jr WE . A naturalistic assessment of the motor activity of hyperactive boys. I. Comparison with normal controls. Arch Gen Psychiatry 1983; 40: 681–687.

    Article  CAS  PubMed  Google Scholar 

  34. Taylor E . Clinical foundations of hyperactivity research. Behav Brain Res 1998; 94: 11–24.

    Article  CAS  PubMed  Google Scholar 

  35. Gruber R . Sleep characteristics of children and adolescents with attention deficit-hyperactivity disorder. Child Adolesc Psychiatr Clin N Am 2009; 18: 863–876.

    Article  PubMed  Google Scholar 

  36. Patton JH, Stanford MS, Barratt ES . Factor structure of the Barratt impulsiveness scale. J Clin Psychol 1995; 51: 768–774.

    Article  CAS  PubMed  Google Scholar 

  37. Bush G, Valera EM, Seidman LJ . Functional neuroimaging of attention-deficit/hyperactivity disorder: a review and suggested future directions. Biol Psychiatry 2005; 57: 1273–1284.

    Article  PubMed  Google Scholar 

  38. Zhuang X, Oosting RS, Jones SR, Gainetdinov RR, Miller GW, Caron MG et al. Hyperactivity and impaired response habituation in hyperdopaminergic mice. Proc Natl Acad Sci U S A 2001; 98: 1982–1987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tay TL, Ronneberger O, Ryu S, Nitschke R, Driever W . Comprehensive catecholaminergic projectome analysis reveals single-neuron integration of zebrafish ascending and descending dopaminergic systems. Nat Commun 2011; 2: 171.

    Article  PubMed  Google Scholar 

  40. Blin M, Norton W, Bally-Cuif L, Vernier P . NR4A2 controls the differentiation of selective dopaminergic nuclei in the zebrafish brain. Mol Cell Neurosci 2008; 39: 592–604.

    Article  CAS  PubMed  Google Scholar 

  41. Bretaud S, Lee S, Guo S . Sensitivity of zebrafish to environmental toxins implicated in Parkinson's disease. Neurotoxicol Teratol 2004; 26: 857–864.

    Article  CAS  PubMed  Google Scholar 

  42. Sallinen V, Torkko V, Sundvik M, Reenila I, Khrustalyov D, Kaslin J et al. MPTP and MPP+ target specific aminergic cell populations in larval zebrafish. J Neurochem 2009; 108: 719–731.

    Article  CAS  PubMed  Google Scholar 

  43. Rink E, Wullimann MF . Development of the catecholaminergic system in the early zebrafish brain: an immunohistochemical study. Brain Res Dev Brain Res 2002; 137: 89–100.

    Article  CAS  PubMed  Google Scholar 

  44. Tripp G, Wickens JR . Neurobiology of ADHD. Neuropharmacology 2009; 57: 579–589.

    Article  CAS  PubMed  Google Scholar 

  45. Ma PM . Catecholaminergic systems in the zebrafish. I. Number, morphology, and histochemical characteristics of neurons in the locus coeruleus. J Comp Neurol 1994; 344: 242–255.

    Article  CAS  PubMed  Google Scholar 

  46. Bellipanni G, Rink E, Bally-Cuif L . Cloning of two tryptophan hydroxylase genes expressed in the diencephalon of the developing zebrafish brain. Gene Expr Patterns 2002; 2: 251–256.

    Article  CAS  PubMed  Google Scholar 

  47. Kaslin J, Panula P . Comparative anatomy of the histaminergic and other aminergic systems in zebrafish (Danio rerio). J Comp Neurol 2001; 440: 342–377.

    Article  CAS  PubMed  Google Scholar 

  48. Teraoka H, Russell C, Regan J, Chandrasekhar A, Concha ML, Yokoyama R et al. Hedgehog and Fgf signaling pathways regulate the development of tphR-expressing serotonergic raphe neurons in zebrafish embryos. J Neurobiol 2004; 60: 275–288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Buitelaar J, Medori R . Treating attention-deficit/hyperactivity disorder beyond symptom control alone in children and adolescents: a review of the potential benefits of long-acting stimulants. Eur Child Adolesc Psychiatry 2010; 19: 325–340.

    Article  PubMed  Google Scholar 

  50. Sulzer D, Sonders MS, Poulsen NW, Galli A . Mechanisms of neurotransmitter release by amphetamines: a review. Prog Neurobiol 2005; 75: 406–433.

    Article  CAS  PubMed  Google Scholar 

  51. Bymaster FP, Katner JS, Nelson DL, Hemrick-Luecke SK, Threlkeld PG, Heiligenstein JH et al. Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology 2002; 27: 699–711.

    Article  CAS  PubMed  Google Scholar 

  52. Newcorn JH . New treatments and approaches for attention deficit hyperactivity disorder. Curr Psychiatry Rep 2001; 3: 87–91.

    Article  CAS  PubMed  Google Scholar 

  53. Hammerness P, McCarthy K, Mancuso E, Gendron C, Geller D . Atomoxetine for the treatment of attention-deficit/hyperactivity disorder in children and adolescents: a review. Neuropsychiatr Dis Treat 2009; 5: 215–226.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Prasad S, Arellano J, Steer C, Libretto SE . Assessing the value of atomoxetine in treating children and adolescents with ADHD in the UK. Int J Clin Pract 2009; 63: 1031–1040.

    Article  CAS  PubMed  Google Scholar 

  55. Benkert D, Krause KH, Wasem J, Aidelsburger P . Effectiveness of pharmaceutical therapy of ADHD (Attention-Deficit/Hyperactivity Disorder) in adults - health technology assessment. GMS Health Technol Assess 2010; 6: Doc13.

    PubMed  PubMed Central  Google Scholar 

  56. Blomme T, Vandepoele K, De Bodt S, Simillion C, Maere S, Van de Peer Y . The gain and loss of genes during 600 million years of vertebrate evolution. Genome Biol 2006; 7: R43.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Domene S, Stanescu H, Wallis D, Tinloy B, Pineda DE, Kleta R et al. Screening of human LPHN3 for variants with a potential impact on ADHD susceptibility. Am J Med Genet B Neuropsychiatr Genet 2011; 156B: 11–18.

    Article  PubMed  Google Scholar 

  58. Castellanos FX, Tannock R . Neuroscience of attention-deficit/hyperactivity disorder: the search for endophenotypes. Nat Rev Neurosci 2002; 3: 617–628.

    Article  CAS  PubMed  Google Scholar 

  59. Faraone SV, Biederman J, Mick E . The age-dependent decline of attention deficit hyperactivity disorder: a meta-analysis of follow-up studies. Psychol Med 2006; 36: 159–165.

    Article  PubMed  Google Scholar 

  60. Rapport MD, Bolden J, Kofler MJ, Sarver DE, Raiker JS, Alderson RM . Hyperactivity in boys with attention-deficit/hyperactivity disorder (ADHD): a ubiquitous core symptom or manifestation of working memory deficits? J Abnorm Child Psychol 2009; 37: 521–534.

    Article  PubMed  Google Scholar 

  61. Granon S, Changeux JP . Attention-deficit/hyperactivity disorder: a plausible mouse model? Acta Paediatr 2006; 95: 645–649.

    Article  PubMed  Google Scholar 

  62. Siesser WB, Zhao J, Miller LR, Cheng SY, McDonald MP . Transgenic mice expressing a human mutant beta1 thyroid receptor are hyperactive, impulsive, and inattentive. Genes Brain Behav 2006; 5: 282–297.

    Article  CAS  PubMed  Google Scholar 

  63. Alkam T, Hiramatsu M, Mamiya T, Aoyama Y, Nitta A, Yamada K et al. Evaluation of object-based attention in mice. Behav Brain Res 2011; 220: 185–193.

    Article  PubMed  Google Scholar 

  64. Biederman J, Faraone SV . Attention-deficit hyperactivity disorder. Lancet 2005; 366: 237–248.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to all members of Laure Bally-Cuif's lab for their support and to Sébastien Bedu for expert fish care. We thank Drs Alessandro Alunni, Isabelle Foucher and Monika Krecsmarik for providing us with reagents. We are also indebted to Mario Kreutzfeldt and all members of Klaus-Peter Lesch's lab for technical assistance. We thank M Muenke and M Arcos-Burgos for helpful discussion and comments. We also thank Dr Sylvie Granon for her insightful comments on this project, Dr Theresa Faus-Kessler for help with the statistical analyses presented in Supplementary Figure S6A, Dr Baptiste Mouginot for the mathematical analysis of Figure 1c, and Dr Manfred Schartl for critical reading of the manuscript. Merlin Lange is supported by a fellowship from the French Ministry of Education. Work in LBC's laboratory is supported by the Neuroscience School of Paris (ENP), the ANR (Chair of Excellence ANR-08-CEXC-001-01), the FRM (program DPR 20081214424), the PIME program, the Schlumberger Association (grant DLS/GP/LB090305) and the EU projects NeuroXsys (Grant agreement FP7 2007-2013, no 223262) and ZF-Health (grant agreement HEALTH-F4-2010-242048). Work in Klaus-Peter Lesch's laboratory is supported by the Deutsche Forschungsgemeinschaft (DFG KFO 125, SFB 581 and SFB TRR 58) and the Bundesministerium für Bildung und Forschung (BMBF 01GV0605).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to W Norton or L Bally-Cuif.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lange, M., Norton, W., Coolen, M. et al. The ADHD-susceptibility gene lphn3.1 modulates dopaminergic neuron formation and locomotor activity during zebrafish development. Mol Psychiatry 17, 946–954 (2012). https://doi.org/10.1038/mp.2012.29

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2012.29

Keywords

This article is cited by

Search

Quick links