Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Opioid receptor mu 1 gene, fat intake and obesity in adolescence

Abstract

Dietary preference for fat may increase risk for obesity. It is a complex behavior regulated in part by the amygdala, a brain structure involved in reward processing and food behavior, and modulated by genetic factors. Here, we conducted a genome-wide association study (GWAS) to search for gene loci associated with dietary intake of fat, and we tested whether these loci are also associated with adiposity and amygdala volume. We studied 598 adolescents (12–18 years) recruited from the French–Canadian founder population and genotyped them with 530 011 single-nucleotide polymorphisms. Fat intake was assessed with a 24-hour food recall. Adiposity was examined with anthropometry and bioimpedance. Amygdala volume was measured by magnetic resonance imaging. GWAS identified a locus of fat intake in the μ-opioid receptor gene (OPRM1, rs2281617, P=5.2 × 10−6), which encodes a receptor expressed in the brain-reward system and shown previously to modulate fat preference in animals. The minor OPRM1 allele appeared to have a ‘protective’ effect: it was associated with lower fat intake (by 4%) and lower body-fat mass (by 2 kg, P=0.02). Consistent with the possible amygdala-mediated inhibition of fat preference, this allele was additionally associated with higher amygdala volume (by 69 mm3, P=0.02) and, in the carriers of this allele, amygdala volume correlated inversely with fat intake (P=0.02). Finally, OPRM1 was associated with fat intake in an independent sample of 490 young adults. In summary, OPRM1 may modulate dietary intake of fat and hence risk for obesity, and this effect may be modulated by subtle variations in the amygdala volume.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Klesges RC, Klesges LM, Haddock CK, Eck LH . A longitudinal analysis of the impact of dietary intake and physical activity on weight change in adults. Am J Clin Nutr 1992; 55: 818–822.

    Article  CAS  PubMed  Google Scholar 

  2. Tucker LA, Seljaas GT, Hager RL . Body fat percentage of children varies according to their diet composition. J Am Diet Assoc 1997; 97: 981–986.

    Article  CAS  PubMed  Google Scholar 

  3. Bray GA, Popkin BM . Dietary fat intake does affect obesity!. Am J Clin Nutr 1998; 68: 1157–1173.

    Article  CAS  PubMed  Google Scholar 

  4. Herberg L, Doppen W, Major E, Gries FA . Dietary-induced hypertrophic–hyperplastic obesity in mice. J Lipid Res 1974; 15: 580–585.

    CAS  PubMed  Google Scholar 

  5. Jen KL . Effects of diet composition on food intake and carcass composition in rats. Physiol Behav 1988; 42: 551–556.

    Article  CAS  PubMed  Google Scholar 

  6. Levin BE, Triscari J, Sullivan AC . Metabolic features of diet-induced obesity without hyperphagia in young rats. Am J Physiol 1986; 251 (3 Part 2): R433–R440.

    CAS  PubMed  Google Scholar 

  7. Oscai LB, Brown MM, Miller WC . Effect of dietary fat on food intake, growth and body composition in rats. Growth 1984; 48: 415–424.

    CAS  PubMed  Google Scholar 

  8. Oscai LB, Miller WC, Arnall DA . Effects of dietary sugar and of dietary fat on food intake and body fat content in rats. Growth 1987; 51: 64–73.

    CAS  PubMed  Google Scholar 

  9. Hill JO, Peters JC . Environmental contributions to the obesity epidemic. Science 1998; 280: 1371–1374.

    Article  CAS  PubMed  Google Scholar 

  10. Rubner M . Der energiewert der Kost des Menschen. Z Biol 1901; 42: 261.

    CAS  Google Scholar 

  11. Tappy L . Thermic effect of food and sympathetic nervous system activity in humans. Reprod Nutr Dev 1996; 36: 391–397.

    Article  CAS  PubMed  Google Scholar 

  12. Kenny PJ . Reward mechanisms in obesity: new insights and future directions. Neuron 2011; 69: 664–679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kenny PJ . Common cellular and molecular mechanisms in obesity and drug addiction. Nat Rev Neurosci 2011; 12: 638–651.

    Article  CAS  PubMed  Google Scholar 

  14. Hill SY . Trajectories of alcohol use and electrophysiological and morphological indices of brain development: distinguishing causes from consequences. Ann N Y Acad Sci 2004; 1021: 245–259.

    Article  PubMed  Google Scholar 

  15. Wrase J, Makris N, Braus DF, Mann K, Smolka MN, Kennedy DN et al. Amygdala volume associated with alcohol abuse relapse and craving. Am J Psychiatry 2008; 165: 1179–1184.

    Article  PubMed  Google Scholar 

  16. Hill SY, De Bellis MD, Keshavan MS, Lowers L, Shen S, Hall J et al. Right amygdala volume in adolescent and young adult offspring from families at high risk for developing alcoholism. Biol Psychiatry 2001; 49: 894–905.

    Article  CAS  PubMed  Google Scholar 

  17. Primeaux SD, York DA, Bray GA . Neuropeptide Y administration into the amygdala alters high fat food intake. Peptides 2006; 27: 1644–1651.

    Article  CAS  PubMed  Google Scholar 

  18. Boghossian S, Park M, York DA . Melanocortin activity in the amygdala controls appetite for dietary fat. Am J Physiol Regul Integr Comp Physiol 2010; 298: R385–R393.

    Article  CAS  PubMed  Google Scholar 

  19. Grabenhorst F, Rolls ET, Parris BA, d'Souza AA . How the brain represents the reward value of fat in the mouth. Cereb Cortex 2010; 20: 1082–1091.

    Article  PubMed  Google Scholar 

  20. Haghighi A, Schwartz DH, Abrahamowicz M, Leonard GT, Perron M, Richer L et al. Prenatal exposure to maternal cigarette smoking, amygdala volume and fat intake in adolescence. Arch Gen Psychiatry 2012; 3: 1–8.

    Google Scholar 

  21. Reed DR, Bachmanov AA, Beauchamp GK, Tordoff MG, Price RA . Heritable variation in food preferences and their contribution to obesity. Behav Genet 1997; 27: 373–387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cai G, Cole SA, Bastarrachea RA, Maccluer JW, Blangero J, Comuzzie AG . Quantitative trait locus determining dietary macronutrient intakes is located on human chromosome 2p22. Am J Clin Nutr 2004; 80: 1410–1414.

    Article  CAS  PubMed  Google Scholar 

  23. Choquette AC, Lemieux S, Tremblay A, Chagnon YC, Bouchard C, Vohl MC et al. Evidence of a quantitative trait locus for energy and macronutrient intakes on chromosome 3q27.3: the Quebec Family Study. Am J Clin Nutr 2008; 88: 1142–1148.

    Article  CAS  PubMed  Google Scholar 

  24. Collaku A, Rankinen T, Rice T, Leon AS, Rao DC, Skinner JS et al. A genome-wide linkage scan for dietary energy and nutrient intakes: the Health, Risk Factors, Exercise Training, and Genetics (HERITAGE) Family Study. Am J Clin Nutr 2004; 79: 881–886.

    Article  CAS  PubMed  Google Scholar 

  25. Smith Richards BK, Belton BN, Poole AC, Mancuso JJ, Churchill GA, Li R et al. QTL analysis of self-selected macronutrient diet intake: fat, carbohydrate, and total kilocalories. Physiol Genomics 2002; 11: 205–217.

    Article  CAS  PubMed  Google Scholar 

  26. Bauer F, Elbers CC, Adan RA, Loos RJ, Onland-Moret NC, Grobbee DE et al. Obesity genes identified in genome-wide association studies are associated with adiposity measures and potentially with nutrient-specific food preference. Am J Clin Nutr 2009; 90: 951–959.

    Article  CAS  PubMed  Google Scholar 

  27. De Braekeleer M . Hereditary disorders in Saguenay-Lac-St-Jean (Quebec, Canada). Hum Hered 1991; 41: 141–146.

    Article  CAS  PubMed  Google Scholar 

  28. Grompe M, St-Louis M, Demers SI, al-Dhalimy M, Leclerc B, Tanguay RM . A single mutation of the fumarylacetoacetate hydrolase gene in French Canadians with hereditary tyrosinemia type I. N Engl J Med 1994; 331: 353–357.

    Article  CAS  PubMed  Google Scholar 

  29. De Braekeleer M, Mari C, Verlingue C, Allard C, Leblanc JP, Simard F et al. Complete identification of cystic fibrosis transmembrane conductance regulator mutations in the CF population of Saguenay Lac-Saint-Jean (Quebec, Canada). Clin Genet 1998; 53: 44–46.

    Article  CAS  PubMed  Google Scholar 

  30. Peltonen L, Palotie A, Lange K . Use of population isolates for mapping complex traits. Nat Rev Genet 2000; 1: 182–190.

    Article  CAS  PubMed  Google Scholar 

  31. Pausova Z, Paus T, Abrahamowicz M, Almerigi J, Arbour N, Bernard M et al. Genes, maternal smoking, and the offspring brain and body during adolescence: design of the Saguenay Youth Study. Hum Brain Mapp 2007; 28: 502–518.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Thompson FE, Subar AF . Dietary assessment methodology. In: Bousky C, (ed). Nutrition in the Prevention and Treatment of Disease 2nd edn Academic Press, 2008.

    Google Scholar 

  33. Buzzard IM, Faucett CL, Jeffery RW, McBane L, McGovern P, Baxter JS et al. Monitoring dietary change in a low-fat diet intervention study: advantages of using 24-hour dietary recalls vs food records. J Am Diet Assoc 1996; 96: 574–579.

    Article  CAS  PubMed  Google Scholar 

  34. Berthiaume P, Lavalee C, Villeneuve M, Vigneaut M . Enquête sociale et de santé auprès des enfants et des adolescents québécois, In nutrition V, (ed). Les Publications du Québec, 2004 pp 19–33.

    Google Scholar 

  35. Fischl B, Dale AM . Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci USA 2000; 97: 11050–11055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 2002; 33: 341–355.

    Article  CAS  PubMed  Google Scholar 

  37. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D . Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 2006; 38: 904–909.

    Article  CAS  PubMed  Google Scholar 

  38. Abecasis GR, Cherny SS, Cookson WO, Cardon LR . Merlin–rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet 2002; 30: 97–101.

    Article  CAS  PubMed  Google Scholar 

  39. Abecasis GR, Wigginton JE . Handling marker-marker linkage disequilibrium: pedigree analysis with clustered markers. Am J Hum Genet 2005; 77: 754–767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lander ES, Green P . Construction of multilocus genetic linkage maps in humans. Proc Natl Acad Sci USA 1987; 84: 2363–2367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cahill LE, El-Sohemy A . Haptoglobin genotype modifies the association between dietary vitamin C and serum ascorbic acid deficiency. Am J Clin Nutr 2010; 92: 1494–1500.

    Article  CAS  PubMed  Google Scholar 

  42. Yu A, Zhao C, Fan Y, Jang W, Mungall AJ, Deloukas P et al. Comparison of human genetic and sequence-based physical maps. Nature 2001; 409: 951–953.

    Article  CAS  PubMed  Google Scholar 

  43. Chanock SJ, Manolio T, Boehnke M, Boerwinkle E, Hunter DJ, Thomas G et al. Replicating genotype-phenotype associations. Nature 2007; 447: 655–660.

    Article  CAS  PubMed  Google Scholar 

  44. Pecina S, Smith KS . Hedonic and motivational roles of opioids in food reward: implications for overeating disorders. Pharmacol Biochem Behav 2010; 97: 34–46.

    Article  CAS  PubMed  Google Scholar 

  45. Gosnell BA, Levine AS . Reward systems and food intake: role of opioids. Int J Obes (Lond) 2009; 33 (Suppl 2): S54–S58.

    Article  CAS  Google Scholar 

  46. Zhang M, Gosnell BA, Kelley AE . Intake of high-fat food is selectively enhanced by mu opioid receptor stimulation within the nucleus accumbens. J Pharmacol Exp Ther 1998; 285: 908–914.

    CAS  PubMed  Google Scholar 

  47. Barnes MJ, Argyropoulos G, Bray GA . Preference for a high fat diet, but not hyperphagia following activation of mu opioid receptors is blocked in AgRP knockout mice. Brain Res 2010; 1317: 100–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zheng H, Townsend RL, Shin AC, Patterson LM, Phifer CB, Berthoud HR . High-fat intake induced by mu-opioid activation of the nucleus accumbens is inhibited by Y1R-blockade and MC3/4R- stimulation. Brain Res 2010; 1350: 131–138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Taha SA . Preference or fat? Revisiting opioid effects on food intake. Physiol Behav 2010; 100: 429–437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dlugos AM, Hamidovic A, Hodgkinson C, Shen PH, Goldman D, Palmer AA et al. OPRM1 gene variants modulate amphetamine-induced euphoria in humans. Genes Brain Behav 2011; 10: 199–209.

    Article  CAS  PubMed  Google Scholar 

  51. Zhu W, Pan ZZ . Mu-opioid-mediated inhibition of glutamate synaptic transmission in rat central amygdala neurons. Neuroscience 2005; 133: 97–103.

    Article  CAS  PubMed  Google Scholar 

  52. Tong Y, Chabot JG, Shen SH, O'Dowd BF, George SR, Quirion R . Ontogenic profile of the expression of the mu opioid receptor gene in the rat telencephalon and diencephalon: an in situ hybridization study. J Chem Neuroanat 2000; 18: 209–222.

    Article  CAS  PubMed  Google Scholar 

  53. Khurshid N, Hameed LS, Mohanasundaram S, Iyengar S . Opioid modulation of cell proliferation in the ventricular zone of adult zebra finches (Taenopygia guttata). FASEB J 2010; 24: 3681–3695.

    Article  CAS  PubMed  Google Scholar 

  54. Neel JV . Diabetes mellitus: a ‘thrifty’ genotype rendered detrimental by ‘progress’? Am J Hum Genet 1962; 14: 353–362.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Eaton SB, Konner M . Paleolithic nutrition. A consideration of its nature and current implications. N Engl J Med 1985; 312: 283–289.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the following individuals for their contributions in acquiring data: Jacynthe Tremblay and her team of research nurses (Saguenay Hospital), Helene Simard and her team of research assistants (Cégep de Jonquière) and Dr Rosanne Aleong (program manager, Rotman Research Institute). The Canadian Institutes of Health Research (ZP, TP) funds the SYS. MA is a James McGill Professor of Biostatistics at McGill University. TP is the Tanenbaum Chair in Population Neuroscience at the Rotman Research Institute, University of Toronto.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z Pausova.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haghighi, A., Melka, M., Bernard, M. et al. Opioid receptor mu 1 gene, fat intake and obesity in adolescence. Mol Psychiatry 19, 63–68 (2014). https://doi.org/10.1038/mp.2012.179

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2012.179

Keywords

This article is cited by

Search

Quick links