Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The protective effect of the obesity-associated rs9939609 A variant in fat mass- and obesity-associated gene on depression

A Corrigendum to this article was published on 05 March 2013

Abstract

Candidate gene and genome-wide association studies have not identified common variants, which are reliably associated with depression. The recent identification of obesity predisposing genes that are highly expressed in the brain raises the possibility of their genetic contribution to depression. As variation in the intron 1 of the fat mass- and obesity-associated (FTO) gene contributes to polygenic obesity, we assessed the possibility that FTO gene may contribute to depression in a cross-sectional multi-ethnic sample of 6561 depression cases and 21 932 controls selected from the EpiDREAM, INTERHEART, DeCC (depression case–control study) and Cohorte Lausannoise (CoLaus) studies. Major depression was defined according to DSM IV diagnostic criteria. Association analyses were performed under the additive genetic model. A meta-analysis of the four studies showed a significant inverse association between the obesity risk FTO rs9939609 A variant and depression (odds ratio=0.92 (0.89, 0.97), P=3 × 10−4) adjusted for age, sex, ethnicity/population structure and body-mass index (BMI) with no significant between-study heterogeneity (I2=0%, P=0.63). The FTO rs9939609 A variant was also associated with increased BMI in the four studies (β 0.30 (0.08, 0.51), P=0.0064) adjusted for age, sex and ethnicity/population structure. In conclusion, we provide the first evidence that the FTO rs9939609 A variant may be associated with a lower risk of depression independently of its effect on BMI. This study highlights the potential importance of obesity predisposing genes on depression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. James WP . The epidemiology of obesity: the size of the problem. J Intern Med 2008; 263: 336–352.

    Article  CAS  PubMed  Google Scholar 

  2. Gelenberg AJ . The prevalence and impact of depression. J Clin Psychiatry 2010; 71: e06.

    PubMed  Google Scholar 

  3. Sullivan P, Neale M, K K . Genetic epidemiology of major depression: review and meta analysis. Am J Psychiatry 2000; 157: 1552–1562.

    CAS  PubMed  Google Scholar 

  4. Lohoff FW . Overview of the genetics of major depressive disorder. Curr Psychiatry Rep 2010; 12: 539–546.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Shyn SI, Hamilton SP . The genetics of major depression: moving beyond the monoamine hypothesis. Psychiatr Clin North Am 2010; 33: 125–140.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Boomsma DI, Willemsen G, Sullivan PF, Heutink P, Meijer P, Sondervan D et al. Genome-wide association of major depression: description of samples for the GAIN Major Depressive Disorder Study: NTR and NESDA biobank projects. Eur J Hum Genet 2008; 16: 335–342.

    Article  CAS  PubMed  Google Scholar 

  7. Sullivan PF, de Geus EJ, Willemsen G, James MR, Smit JH, Zandbelt T et al. Genome-wide association for major depressive disorder: a possible role for the presynaptic protein piccolo. Mol Psychiatry 2009; 14: 359–375.

    Article  CAS  PubMed  Google Scholar 

  8. Muglia P, Tozzi F, Galwey NW, Francks C, Upmanyu R, Kong XQ et al. Genome-wide association study of recurrent major depressive disorder in two European case-control cohorts. Mol Psychiatry 2010; 15: 589–601.

    Article  CAS  PubMed  Google Scholar 

  9. Shi J, Potash JB, Knowles JA, Weissman MM, Coryell W, Scheftner WA et al. Genome-wide association study of recurrent early-onset major depressive disorder. Mol Psychiatry 2011; 16: 193–201.

    Article  CAS  PubMed  Google Scholar 

  10. Lewis CM, Ng MY, Butler AW, Cohen-Woods S, Uher R, Pirlo K et al. Genome-wide association study of major recurrent depression in the U.K. population. Am J Psychiatry 2010; 167: 949–957.

    Article  PubMed  Google Scholar 

  11. Rietschel M, Mattheisen M, Frank J, Treutlein J, Degenhardt F, Breuer R et al. Genome-wide association-, replication-, and neuroimaging study implicates HOMER1 in the etiology of major depression. Biol Psychiatry 2010; 68: 578–585.

    Article  CAS  PubMed  Google Scholar 

  12. Terracciano A, Tanaka T, Sutin AR, Sanna S, Deiana B, Lai S et al. Genome-wide association scan of trait depression. Biol Psychiatry 2010; 68: 811–817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wray NR, Pergadia ML, Blackwood DH, Penninx BW, Gordon SD, Nyholt DR et al. Genome-wide association study of major depressive disorder: new results, meta-analysis, and lessons learned. Mol Psychiatry 2012; 17: 36–48.

    Article  CAS  PubMed  Google Scholar 

  14. Kohli MA, Lucae S, Saemann PG, Schmidt MV, Demirkan A, Hek K et al. The neuronal transporter gene SLC6A15 confers risk to major depression. Neuron 2011; 70: 252–265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Consortium MDDWGotPG. A mega-analysis of genome-wide association studies for major depressive disorder. Mol Psychiatry 2012.

  16. Cirulli ET, Goldstein DB . Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat Rev Genet 2010; 11: 415–425.

    Article  CAS  PubMed  Google Scholar 

  17. Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 2007; 316: 889–894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dina C, Meyre D, Gallina S, Durand E, Korner A, Jacobson P et al. Variation in FTO contributes to childhood obesity and severe adult obesity. Nat Genet 2007; 39: 724–726.

    Article  CAS  PubMed  Google Scholar 

  19. Scuteri A, Sanna S, Chen WM, Uda M, Albai G, Strait J et al. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet 2007; 3: e115.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hinney A, Nguyen TT, Scherag A, Friedel S, Bronner G, Muller TD et al. Genome wide association (GWA) study for early onset extreme obesity supports the role of fat mass and obesity associated gene (FTO) variants. PLoS One 2007; 2: e1361.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chang YC, Liu PH, Lee WJ, Chang TJ, Jiang YD, Li HY et al. Common variation in the fat mass and obesity-associated (FTO) gene confers risk of obesity and modulates BMI in the Chinese population. Diabetes 2008; 57: 2245–2252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yajnik CS, Janipalli CS, Bhaskar S, Kulkarni SR, Freathy RM, Prakash S et al. FTO gene variants are strongly associated with type 2 diabetes in South Asian Indians. Diabetologia 2009; 52: 247–252.

    Article  CAS  PubMed  Google Scholar 

  23. Rong R, Hanson RL, Ortiz D, Wiedrich C, Kobes S, Knowler WC et al. Association analysis of variation in/near FTO, CDKAL1, SLC30A8, HHEX, EXT2, IGF2BP2, LOC387761, and CDKN2B with type 2 diabetes and related quantitative traits in Pima Indians. Diabetes 2009; 58: 478–488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Villalobos-Comparan M, Teresa Flores-Dorantes M, Teresa Villarreal-Molina M, Rodriguez-Cruz M, Garcia-Ulloa AC, Robles L et al. The FTO gene is associated with adulthood obesity in the Mexican population. Obesity (Silver Spring) 2008; 16: 2296–2301.

    Article  CAS  Google Scholar 

  25. Wing MR, Ziegler J, Langefeld CD, Ng MC, Haffner SM, Norris JM et al. Analysis of FTO gene variants with measures of obesity and glucose homeostasis in the IRAS Family Study. Hum Genet 2009; 125: 615–626.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Rivera M, Cohen-Woods S, Kapur K, Breen G, Ng MY, Butler AW et al. Depressive disorder moderates the effect of the FTO gene on body mass index. Mol Psychiatry 2011; 17: 604–611.

    Article  PubMed  Google Scholar 

  27. Faith MS, Matz PE, Jorge MA . Obesity-depression associations in the population. J Psychosom Res 2002; 53: 935–942.

    Article  PubMed  Google Scholar 

  28. Ho AJ, Stein JL, Hua X, Lee S, Hibar DP, Leow AD et al. A commonly carried allele of the obesity-related FTO gene is associated with reduced brain volume in the healthy elderly. Proc Natl Acad Sci USA 2010; 107: 8404–8409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Benedict C, Jacobsson JA, Ronnemaa E, Sallman-Almen M, Brooks S, Schultes B et al. The fat mass and obesity gene is linked to reduced verbal fluency in overweight and obese elderly men. Neurobiol Aging 2011; 32: 1159 e1–5.

    Article  Google Scholar 

  30. Boissel S, Reish O, Proulx K, Kawagoe-Takaki H, Sedgwick B, Yeo GS et al. Loss-of-function mutation in the dioxygenase-encoding FTO gene causes severe growth retardation and multiple malformations. Am J Hum Genet 2009; 85: 106–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dream I . Rationale, design and recruitment characteristics of a large, simple international trial of diabetes prevention: the DREAM trial. Diabetologia 2004; 47: 1519–1527.

    Article  Google Scholar 

  32. Anand SS, Dagenais GR, Mohan V, Diaz R, Probstfield J, Freeman R et al. Glucose levels are associated with cardiovascular disease and death in an international cohort of normal glycaemic and dysglycaemic men and women: the EpiDREAM cohort study. Eur J Cardiovasc Prev Rehabil 2011; 19: 755–764.

    Article  Google Scholar 

  33. APA. Diagnostic and Statistical Manual of Mental Disorders Fourth Edition, Text Revision DSM-IV-TR American Psychiatric Association: Washington DC, 2000.

  34. Keating BJ, Tischfield S, Murray SS, Bhangale T, Price TS, Glessner JT et al. Concept, design and implementation of a cardiovascular gene-centric 50k snp array for large-scale genomic association studies. PLoS ONE 2008; 3: e3583.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet 2004; 364: 937–952.

    Article  PubMed  Google Scholar 

  36. Paré G, Serre D, Brisson D, Anand SS, Montpetit A, Tremblay G et al. Genetic analysis of 103 candidate genes for coronary artery disease and associated phenotypes in a founder population reveals a new association between endothelin-1 and high-density lipoprotein cholesterol. Am J Hum Genet 2007; 80: 673–682.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Anand S, Xie C, Pare G, Montpetit A, Rangarajan S, McQueen M et al. Genetic variants associated with myocardial infarction risk factors in over 8,000 individuals from five ethnic groups: The INTERHEART Genetics Study. Circ Cardiovasc Genet 2009; 2: 16–25.

    Article  CAS  PubMed  Google Scholar 

  38. Samaan Z, Farmer A, Craddock N, Jones L, Korszun A, Owen M et al. A case- control study of migraine in recurrent depression. Br J Psychiatry 2009; 194: 350–354.

    Article  PubMed  Google Scholar 

  39. Nash MW, Huezo-Diaz P, Williamson RJ, Sterne A, Purcell S, Hoda F et al. Genome-wide linkage analysis of a composite index of neuroticism and mood-related scales in extreme selected sibships. Hum Mol Genet 2004; 13: 2173–2182.

    Article  CAS  PubMed  Google Scholar 

  40. Wing JK, Babor T, Burgha T, Cooper JE, Giel R, Jablenski A et al. SCAN. Schedule for the clinical assessment of neuropsychiatry. Arch Gen Psychiatry 1990; 47: 589–593.

    Article  CAS  PubMed  Google Scholar 

  41. McGuffin P, Katz R, Aldrich J . Past and present state examination: the assessment of ‘lifetime ever’ psychopathology. Psychol Med 1986; 16: 461–465.

    Article  CAS  PubMed  Google Scholar 

  42. Gaysina D, Cohen S, Craddock N, Farmer A, Hoda F, Korszun A et al. No association with the 5,10-methylenetetrahydrofolate reductase gene and major depressive disorder: Results of the depression case control (DeCC) study and a meta-analysis. Am J Med Genet B Neuropsychiatr Genet 2008; 147B: 699–706.

    Article  CAS  PubMed  Google Scholar 

  43. Firmann M, Mayor V, Vidal P, Bochud M, Pecoud A, Hayoz D et al. The CoLaus study: a population-based study to investigate the epidemiology and genetic determinants of cardiovascular risk factors and metabolic syndrome. BMC Cardiovasc Disord 2008; 8: 6.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Nurnberger JI, Blehar MC, Kaufmann CA, York-Cooler C, Simpson SG, Harkavy-Friedman J et al. Diagnostic interview for genetic studies: rationale, unique features, and training. Arch Gen Psychiatry 1994; 51: 849–859.

    Article  PubMed  Google Scholar 

  45. Gauderman WJ, Morrison JM QUANTO 1.1: a computer program for power and sample size calculations for genetic-epidemiology studieshttp://hydra.usc.edu/gxe2006.

  46. SAS Institute. I. SAS 9. Cary, North Carolina, USA.

  47. Hair JFJ, Anderson RE, Tatham RL, Black WC . Multivariate Data Analysis 3rd edn. Macmillan: New York, 1995.

    Google Scholar 

  48. Lumley T http://cran.r-project.org/web/packages/rmeta/index.html2009.

  49. Zollner S, JK P . Overcoming the winner’s curse: estimating penetrance parameters from case-control data. Am J Hum Genet 2007; 80: 605–615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wray NR, Pergadia ML, Blackwood DH, Penninx BW, Gordon SD, Nyholt DR et al. Genome-wide association study of major depressive disorder: new results, meta-analysis, and lessons learned. Mol Psychiatry 17: 36–48.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Lawlor DA, Fraser A, Macdonald-Wallis C, Nelson SM, Palmer TM, Davey Smith G et al. Maternal and offspring adiposity-related genetic variants and gestational weight gain. Am J Clin Nutr 2011; 94: 149–155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tanofsky-Kraff M, Han JC, Anandalingam K, Shomaker LB, Columbo KM, Wolkoff LE et al. The FTO gene rs9939609 obesity-risk allele and loss of control over eating. Am J Clin Nutr 2009; 90: 1483–1488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Southam L, Soranzo N, Montgomery SB, Frayling TM, McCarthy MI, Barroso I et al. Is the thrifty genotype hypothesis supported by evidence based on confirmed type 2 diabetes- and obesity-susceptibility variants? Diabetologia 2009; 52: 1846–1851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Klimentidis YC, Abrams M, Wang J, Fernandez JR, Allison DB . Natural selection at genomic regions associated with obesity and type-2 diabetes: East Asians and sub-Saharan Africans exhibit high levels of differentiation at type-2 diabetes regions. Hum Genet 2011; 129: 407–418.

    Article  PubMed  Google Scholar 

  55. Miettinen OS . Proportion of disease caused or prevented by a given exposure, trait or intervention. Am J Epidemiol 1974; 99: 325–332.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Z Samaan is supported by a New Investigator Fund from Hamilton Health Sciences Foundation to carry out this study. D Meyre is supported by a Canada Research Chair. P McGuffin and AE Farmer, CM Lewis and G Breen contributed data to the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Meyre.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samaan, Z., Anand, S., Zhang, X. et al. The protective effect of the obesity-associated rs9939609 A variant in fat mass- and obesity-associated gene on depression. Mol Psychiatry 18, 1281–1286 (2013). https://doi.org/10.1038/mp.2012.160

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2012.160

Keywords

This article is cited by

Search

Quick links