Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A phenotype of early infancy predicts reactivity of the amygdala in male adults

Abstract

One of the central questions that has occupied those disciplines concerned with human development is the nature of continuities and discontinuities from birth to maturity. The amygdala has a central role in the processing of novelty and emotion in the brain. Although there is considerable variability among individuals in the reactivity of the amygdala to novel and emotional stimuli, the origin of these individual differences is not well understood. Four-month old infants called high reactive (HR) demonstrate a distinctive pattern of vigorous motor activity and crying to specific unfamiliar visual, auditory and olfactory stimuli in the laboratory. Low-reactive infants show the complementary pattern. Here, we demonstrate that the HR infant phenotype predicts greater amygdalar reactivity to novel faces almost two decades later in adults. A prediction of individual differences in brain function at maturity can be made on the basis of a single behavioral assessment made in the laboratory at 4 months of age. This is the earliest known human behavioral phenotype that predicts individual differences in patterns of neural activity at maturity. These temperamental differences rooted in infancy may be relevant to understanding individual differences in vulnerability and resilience to clinical psychiatric disorder. Males who were HR infants showed particularly high levels of reactivity to novel faces in the amygdala that distinguished them as adults from all other sex/temperament subgroups, suggesting that their amygdala is particularly prone to engagement by unfamiliar faces. These findings underline the importance of taking gender into account when studying the developmental neurobiology of human temperament and anxiety disorders. The genetic study of behavioral and biologic intermediate phenotypes (or ‘endophenotypes’) indexing anxiety-proneness offers an important alternative to examining phenotypes based on clinically defined disorder. As the HR phenotype is characterized by specific patterns of reactivity to elemental visual, olfactory and auditory stimuli, well before complex social behaviors such as shyness or fearful interaction with strangers can be observed, it may be closer to underlying neurobiological mechanisms than behavioral profiles observed later in life. This possibility, together with the fact that environmental factors have less time to impact the 4-month phenotype, suggests that this temperamental profile may be a fruitful target for high-risk genetic studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Schwartz CE, Wright CI, Shin LM, Kagan J, Rauch SL . Inhibited and uninhibited infants ‘grown up’: adult amygdalar response to novelty. Science 2003; 300: 1952–1953.

    Article  CAS  PubMed  Google Scholar 

  2. Blackford JU, Avery SN, Shelton RC, Zald DH . Amygdala temporal dynamics: temperamental differences in the timing of amygdala response to familiar and novel faces. BMC Neurosci 2009; 10: 145.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Perez-Edgar K, Roberson-Nay R, Hardin MG, Poeth K, Guyer AE, Nelson EE et al. Attention alters neural responses to evocative faces in behaviorally inhibited adolescents. Neuroimage 2007; 35: 1538–1546.

    Article  PubMed  Google Scholar 

  4. Calkins SD, Fox NA, Marshall TR . Behavioral and physiological antecedents of inhibited and uninhibited behavior. Child Dev 1996; 67: 523–540.

    Article  CAS  PubMed  Google Scholar 

  5. Kagan J, Snidman N, Arcus D . Childhood derivatives of high and low reactivity in infancy. Child Dev 1998; 69: 1483–1493.

    Article  CAS  PubMed  Google Scholar 

  6. Kagan J . Galen's Prophecy. Basic Books: New York, 1994.

    Google Scholar 

  7. Kagan J, Reznick JS, Snidman N . Biological bases of childhood shyness. Science 1988; 240: 167–171.

    Article  CAS  PubMed  Google Scholar 

  8. Schwartz C, Snidman N, Kagan J . Adolescent social anxiety as an outcome of inhibited temperament in childhood. J Am Acad Child Adolesc Psychiatry 1999; 38: 1008–1015.

    Article  CAS  PubMed  Google Scholar 

  9. Biederman J, Hirshfeld-Becker DR, Rosenbaum JF, Herot C, Friedman D, Snidman N et al. Further evidence of association between behavioral inhibition and social anxiety in children. Am J Psychiatry 2001; 158: 1673–1679.

    Article  CAS  PubMed  Google Scholar 

  10. Hayward C, Killen JD, Kraemer HC, Taylor CB . Linking self-reported childhood behavioral inhibition to adolescent social phobia. J Am Acad Child Adolesc Psychiatry 1998; 37: 1308–1316.

    Article  CAS  PubMed  Google Scholar 

  11. Mick MA, Telch MJ . Social anxiety and history of behavioral inhibition in young adults. J Anxiety Disord 1998; 12: 1–20.

    Article  CAS  PubMed  Google Scholar 

  12. Stein MB, Fuetsch M, Muller N, Hofler M, Lieb R, Wittchen HU . Social anxiety disorder and the risk of depression: a prospective community study of adolescents and young adults. Arch Gen Psychiatry 2001; 58: 251–256.

    Article  CAS  PubMed  Google Scholar 

  13. Pine DS, Cohen P, Gurley D, Brook J, Ma Y . The risk for early-adulthood anxiety and depressive disorders in adolescents with anxiety and depressive disorders. Arch Gen Psychiatry 1998; 55: 56–64.

    Article  CAS  PubMed  Google Scholar 

  14. Kagan J, Snidman N . The Long Shadow of Temperament. Belknap Press: Cambridge, MA, 2004.

    Google Scholar 

  15. Kagan J, Snidman N, Kahn V, Towsley S . The preservation of two infant temperaments into adolescence. Monogr Soc Res Child Dev 2007; 72: 1–75, vii; discussion 76–91.

    PubMed  Google Scholar 

  16. Kagan J, Snidman N, McManis M, Woodward S . Temperamental contributions to the affect family of anxiety. Psychiatr Clin North Am 2001; 24: 677–688.

    Article  CAS  PubMed  Google Scholar 

  17. Woodward SA, Lenzenweger MF, Kagan J, Snidman N, Arcus D . Taxonic structure of infant reactivity: evidence from a taxometric perspective. Psychol Sci 2000; 11: 296–301.

    Article  CAS  PubMed  Google Scholar 

  18. Erwin RJ, Gur RC, Gur RE, Skolnick B, Mawhinney-Hee M, Smailis J . Facial emotion discrimination: I. Task construction and behavioral findings in normal subjects. Psychiatry Res 1992; 42: 231–240.

    Article  CAS  PubMed  Google Scholar 

  19. Gur RC, Erwin RJ, Gur RE, Zwil AS, Heimberg C, Kraemer HC . Facial emotion discrimination: II. Behavioral findings in depression. Psychiatry Res 1992; 42: 241–251.

    Article  CAS  PubMed  Google Scholar 

  20. Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 1992; 89: 5675–5679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schwartz CE, Wright CI, Shin LM, Kagan J, Whalen PJ, McMullin KG et al. Differential amygdalar response to novel versus newly familiar neutral faces: a functional MRI probe developed for studying inhibited temperament. Biol Psychiatry 2003; 53: 854–862.

    Article  PubMed  Google Scholar 

  22. Cox RW . AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 1996; 29: 162–173.

    Article  CAS  PubMed  Google Scholar 

  23. Cox RW, Jesmanowicz A . Real-time 3D image registration for functional MRI. Magn Reson Med 1999; 42: 1014–1018.

    Article  CAS  PubMed  Google Scholar 

  24. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 2002; 33: 341–355.

    Article  CAS  PubMed  Google Scholar 

  25. Filipek PA, Richelme C, Kennedy DN, Caviness Jr VS . The young adult human brain: an MRI-based morphometric analysis. Cereb Cortex 1994; 4: 344–360.

    Article  CAS  PubMed  Google Scholar 

  26. Kennedy DN, Filipek PA, Caviness VR . Anatomic segmentation and volumetric calculations in nuclear magnetic resonance imaging. IEEE Trans Med Imaging 1989; 8: 1–7.

    Article  CAS  PubMed  Google Scholar 

  27. Rademacher J, Caviness Jr VS, Steinmetz H, Galaburda AM . Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology. Cereb Cortex 1993; 3: 313–329.

    Article  CAS  PubMed  Google Scholar 

  28. Caviness VS, Meyer J, Makris N, Kennedy DN . MRI-based topographic parcellation of human neocortex: an anatomically specified method with estimate for reliability. J Cog Neurosci 1996; 8: 566–587.

    Article  Google Scholar 

  29. Collins DL, Neelin P, Peters TM, Evans AC . Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr 1994; 18: 192–205.

    Article  CAS  PubMed  Google Scholar 

  30. Talairach J, Tournoux P . Co-Planar Stereotaxic Atlas of the Human Brain. 3-D Proportional System: An Approach to Cerebral Imaging. Thieme Medical Publishers: New York, 1998.

    Google Scholar 

  31. Whalen PJ, Rauch SL, Etcoff NL, McInerney SC, Lee MB, Jenike MA . Masked presentations of emotional facial expressions modulate amygdala activity without explicit knowledge. J Neurosci 1998; 18: 411–418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wright CI, Fischer H, Whalen PJ, McInerney SC, Shin LM, Rauch SL . Differential prefrontal cortex and amygdala habituation to repeatedly presented emotional stimuli. Neuroreport 2001; 12: 379–383.

    Article  CAS  PubMed  Google Scholar 

  33. Leonard CM, Rolls ET, Wilson FA, Baylis GC . Neurons in the amygdala of the monkey with responses selective for faces. Behav Brain Res 1985; 15: 159–176.

    Article  CAS  PubMed  Google Scholar 

  34. Whalen PJ, Shin LM, McInerney SC, Fischer H, Wright CI, Rauch SL . A functional MRI study of human amygdala responses to facial expressions of fear versus anger. Emotion 2001; 1: 70–83.

    Article  CAS  PubMed  Google Scholar 

  35. Huynh H, Feldt LS . Conditions under which mean square ratios in repeated measurements designs have exact F-distributions. J Am Stat Assoc 1970; 65: 1582–1589.

    Article  Google Scholar 

  36. Anderson TW . An Introduction to Multivariate Statistical Analysis. John Wiley and Sons: New York, 1958.

    Google Scholar 

  37. Greenhouse SW, Geisser S . On methods in the analysis of profile data. Psychometrika 1959; 32: 95–112.

    Article  Google Scholar 

  38. Weierich MR, Wright CI, Negreira A, Dickerson BC, Barrett LF . Novelty as a dimension in the affective brain. Neuroimage 2010; 49: 2871–2878.

    Article  PubMed  Google Scholar 

  39. Davis M, Whalen PJ . The amygdala: vigilance and emotion. Mol Psychiatry 2001; 6: 13–34.

    Article  CAS  PubMed  Google Scholar 

  40. Ledoux JE . Emotion circuits in the brain. Annu Rev Neurosci 2000; 23: 155–184.

    Article  CAS  PubMed  Google Scholar 

  41. Pape HC, Pare D . Plastic synaptic networks of the amygdala for the acquisition, expression, and extinction of conditioned fear. Physiol Rev 2010; 90: 419–463.

    Article  CAS  PubMed  Google Scholar 

  42. Kendler KS, Neale MC, Kessler RC, Heath AC, Eaves LJ . The genetic epidemiology of phobias in women: the interrelationship of agoraphobia, social phobia, situational phobia, and simple phobia. Arch Gen Psychiatry 1992; 49: 273–281.

    Article  CAS  PubMed  Google Scholar 

  43. Nestadt G, Samuels J, Riddle MA, Liang KY, Bienvenu OJ, Hoehn-Saric R et al. The relationship between obsessive-compulsive disorder and anxiety and affective disorders: results from the Johns Hopkins OCD Family Study. Psychol Med 2001; 31: 481–487.

    Article  CAS  PubMed  Google Scholar 

  44. Smoller JW, Tsuang MT . Panic and phobic anxiety: defining phenotypes for genetic studies. Am J Psychiatry 1998; 155: 1152–1162.

    Article  CAS  PubMed  Google Scholar 

  45. Hudson JI, Mangweth B, Pope Jr HG, De Col C, Hausmann A, Gutweniger S et al. Family study of affective spectrum disorder. Arch Gen Psychiatry 2003; 60: 170–177.

    Article  PubMed  Google Scholar 

  46. Kendler KS, Walter EE, Neale MC, Kessler RC, Heath AC, Eaves LJ . The structure of the genetic and environmental risk factors for six major psychiatric disorders in women. Arch Gen Psychiatry 1995; 52: 374–383.

    Article  CAS  PubMed  Google Scholar 

  47. Scherrer JF, True WR, Xian H, Lyons MJ, Eisen SA, Goldberg J et al. Evidence for genetic influences common and specific to symptoms of generalized anxiety and panic. J Affect Disord 2000; 57: 25–35.

    Article  CAS  PubMed  Google Scholar 

  48. Chantarujikapong SI, Scherrer JF, Xian H, Eisen SA, Lyons MJ, Goldberg J et al. A twin study of generalized anxiety disorder symptoms, panic disorder symptoms and post-traumatic stress disorder in men. Psychiatry Res 2001; 103: 133–145.

    Article  CAS  PubMed  Google Scholar 

  49. Pfeifer M, Goldsmith HH, Davidson RJ, Rickman M . Continuity and change in inhibited and uninhibited children. Child Dev 2002; 73: 1474–1485.

    Article  PubMed  Google Scholar 

  50. Insel TR, Cuthbert BN . Endophenotypes: bridging genomic complexity and disorder heterogeneity. Biol Psychiatry 2009; 66: 988–989.

    Article  PubMed  Google Scholar 

  51. Insel T, Cuthbert B, Garvey M, Heinssen R, Pine DS, Quinn K et al. Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. Am J Psychiatry 2010; 167: 748–751.

    PubMed  Google Scholar 

  52. McDonald AJ . Cortical pathways to the mammalian amygdala. Prog Neurobiol 1998; 55: 257–332.

    Article  CAS  PubMed  Google Scholar 

  53. Royer S, Martina M, Pare D . An inhibitory interface gates impulse traffic between the input and output stations of the amygdala. J Neurosci 1999; 19: 10575–10583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Barbas H . Specialized elements of orbitofrontal cortex in primates. Ann NY Acad Sci 2007; 1121: 10–32.

    Article  PubMed  Google Scholar 

  55. Barbas H, Zikopoulos B . Sequential and parallel circuits for emotional processing in primate orbitofrontal cortex. In: Zald DH, Rauch SL (eds). The Orbitofrontal Cortex. Oxford University Press: New York, 2006, pp 57–91.

    Chapter  Google Scholar 

  56. Ghashghaei HT, Barbas H . Pathways for emotion: interactions of prefrontal and anterior temporal pathways in the amygdala of the rhesus monkey. Neuroscience 2002; 115: 1261–1279.

    Article  CAS  PubMed  Google Scholar 

  57. Kim JJ, Jung MW . Neural circuits and mechanisms involved in Pavlovian fear conditioning: a critical review. Neurosci Biobehav Rev 2006; 30: 188–202.

    Article  PubMed  Google Scholar 

  58. Mineka S, Oehlberg K . The relevance of recent developments in classical conditioning to understanding the etiology and maintenance of anxiety disorders. Acta Psychol (Amst) 2008; 127: 567–580.

    Article  Google Scholar 

  59. Norrholm SD, Jovanovic T, Olin IW, Sands LA, Karapanou I, Bradley B et al. Fear extinction in traumatized civilians with posttraumatic stress disorder: relation to symptom severity. Biol Psychiatry 2011; 69: 556–563.

    Article  PubMed  Google Scholar 

  60. Rougemont-Bucking A, Linnman C, Zeffiro TA, Zeidan MA, Lebron-Milad K, Rodriguez-Romaguera J et al. Altered processing of contextual information during fear extinction in PTSD: an fMRI study. CNS Neurosci Ther 2011; 17: 227–236.

    Article  PubMed  Google Scholar 

  61. Milad MR, Orr SP, Lasko NB, Chang Y, Rauch SL, Pitman RK . Presence and acquired origin of reduced recall for fear extinction in PTSD: results of a Twin study. J Psychiatr Res 2008; 42: 515–520.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Blechert J, Michael T, Vriends N, Margraf J, Wilhelm FH . Fear conditioning in posttraumatic stress disorder: evidence for delayed extinction of autonomic, experiential, and behavioural responses. Behav Res Ther 2007; 45: 2019–2033.

    Article  PubMed  Google Scholar 

  63. Orr SP, Metzger LJ, Lasko NB, Macklin ML, Peri T, Pitman RK . De novo conditioning in trauma-exposed individuals with and without posttraumatic stress disorder. J Abnorm Psychol 2000; 109: 290–298.

    Article  CAS  PubMed  Google Scholar 

  64. Peri T, Ben Shakhar G, Orr SP, Shalev AY . Psychophysiologic assessment of aversive conditioning in posttraumatic stress disorder. Biol Psychiatry 2000; 47: 512–519.

    Article  CAS  PubMed  Google Scholar 

  65. Michael T, Blechert J, Vriends N, Margraf J, Wilhelm FH . Fear conditioning in panic disorder: enhanced resistance to extinction. J Abnorm Psychol 2007; 116: 612–617.

    Article  PubMed  Google Scholar 

  66. Milad MR, Pitman RK, Ellis CB, Gold AL, Shin LM, Lasko NB et al. Neurobiological basis of failure to recall extinction memory in posttraumatic stress disorder. Biol Psychiatry 2009; 66: 1075–1082.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Bremner JD, Vermetten E, Schmahl C, Vaccarino V, Vythilingam M, Afzal N et al. Positron emission tomographic imaging of neural correlates of a fear acquisition and extinction paradigm in women with childhood sexual-abuse-related post-traumatic stress disorder. Psychol Med 2005; 35: 791–806.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Bishop SJ . Neurocognitive mechanisms of anxiety: an integrative account. Trends Cognitive Sci 2007; 11: 307–316.

    Article  Google Scholar 

  69. Maren S, Quirk GJ . Neuronal signalling of fear memory. Nat Rev Neurosci 2004; 5: 844–852.

    Article  CAS  PubMed  Google Scholar 

  70. Davis EP, Glynn LM, Schetter CD, Hobel C, Chicz-Demet A, Sandman CA . Prenatal exposure to maternal depression and cortisol influences infant temperament. J Am Acad Child Adolesc Psychiatry 2007; 46: 737–746.

    Article  PubMed  Google Scholar 

  71. Milad MR, Quinn BT, Pitman RK, Orr SP, Fischl B, Rauch SL . Thickness of ventromedial prefrontal cortex in humans is correlated with extinction memory. Proc Natl Acad Sci USA 2005; 102: 10706–10711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hartley CA, Fischl B, Phelps EA . Brain structure correlates of individual differences in the acquisition and inhibition of conditioned fear. Cereb Cortex 2011; doi:10.1093/cercor/bhq253.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Barrett J, Armony JL . Influence of trait anxiety on brain activity during the acquisition and extinction of aversive conditioning. Psychol Med 2009; 39: 255–265.

    Article  CAS  PubMed  Google Scholar 

  74. Sehlmeyer C, Dannlowski U, Schoning S, Kugel H, Pyka M, Pfleiderer B et al. Neural correlates of trait anxiety in fear extinction. Psychol Med 2011; 41: 789–798.

    Article  CAS  PubMed  Google Scholar 

  75. Indovina I, Robbins TW, Nunez-Elizalde AO, Dunn BD, Bishop SJ . Fear-conditioning mechanisms associated with trait vulnerability to anxiety in humans. Neuron 2011; 69: 563–571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Dalla C, Shors TJ . Sex differences in learning processes of classical and operant conditioning. Physiol Behav 2009; 97: 229–238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. De Vries GJ, Villalba C . Brain sexual dimorphism and sex differences in parental and other social behaviors. Ann NY Acad Sci 1997; 807: 273–286.

    Article  CAS  PubMed  Google Scholar 

  78. McCarthy MM, deVries GJ, Forger NG . Sexual differentiation of the brain: mode, mechanisms, and meaning. In: Pfaff DW, Arnold AP, Etgen AM, Fahrbach SE, Rubin RT (eds). Hormones, Brain, and Behavior, 2 edn., Vol. 3. Academic: San Diego, 2009.

    Google Scholar 

  79. de Vries GJ, Sodersten P . Sex differences in the brain: the relation between structure and function. Horm Behav 2009; 55: 589–596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. De Vries GJ, Boyle PA . Double duty for sex differences in the brain. Behav Brain Res 1998; 92: 205–213.

    Article  CAS  PubMed  Google Scholar 

  81. De Vries GJ . Minireview: sex differences in adult and developing brains: compensation, compensation, compensation. Endocrinology 2004; 145: 1063–1068.

    Article  CAS  PubMed  Google Scholar 

  82. Milad MR, Zeidan MA, Contero A, Pitman RK, Klibanski A, Rauch SL et al. The influence of gonadal hormones on conditioned fear extinction in healthy humans. Neuroscience 2010; 168: 652–658.

    Article  CAS  PubMed  Google Scholar 

  83. van der Molen GM, Merckelbach H, van den Hout MA . The possible relation of the menstrual cycle to susceptibility to fear acquisition. J Behav Ther Exp Psychiatry 1988; 19: 127–133.

    Article  CAS  PubMed  Google Scholar 

  84. Leuner B, Mendolia-Loffredo S, Shors TJ . High levels of estrogen enhance associative memory formation in ovariectomized females. Psychoneuroendocrinology 2004; 29: 883–890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gupta RR, Sen S, Diepenhorst LL, Rudick CN, Maren S . Estrogen modulates sexually dimorphic contextual fear conditioning and hippocampal long-term potentiation (LTP) in rats(1). Brain Res 2001; 888: 356–365.

    Article  CAS  PubMed  Google Scholar 

  86. Goldstein JM, Jerram M, Abbs B, Whitfield-Gabrieli S, Makris N . Sex differences in stress response circuitry activation dependent on female hormonal cycle. J Neurosci 2009; 30: 431–438.

    Article  Google Scholar 

  87. Goldstein JM, Jerram M, Poldrack R, Ahern T, Kennedy DN, Seidman LJ et al. Hormonal cycle modulates arousal circuitry in women using functional magnetic resonance imaging. J Neurosci 2005; 25: 9309–9316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Anagnostaras SG, Maren S, DeCola JP, Lane NI, Gale GD, Schlinger BA et al. Testicular hormones do not regulate sexually dimorphic Pavlovian fear conditioning or perforant-path long-term potentiation in adult male rats. Behav Brain Res 1998; 92: 1–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the families and children who have stayed with the study over 18 years. This study was supported by the National Institutes of Mental Health R01MH071467 and R01MH074848 (CES). This research was carried out in part at the Athinoula A Martinos Center for Biomedical Imaging at the Massachusetts General Hospital, using resources provided by the Center for Functional Neuroimaging Technologies, P41RR14075, a P41 Regional Resource supported by the Biomedical Technology Program of the National Center for Research Resources (NCRR), National Institutes of Health.

Author contributions: CES designed the study, directed data collection and analyses, conducted analyses, and wrote the paper. PSK conducted analyses. DNG wrote analytic software and advised on its use. JK and NCS characterized the temperament of the subjects at 4 months of age. RBB served as a study coordinator and collected MRI data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C E Schwartz.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwartz, C., Kunwar, P., Greve, D. et al. A phenotype of early infancy predicts reactivity of the amygdala in male adults. Mol Psychiatry 17, 1042–1050 (2012). https://doi.org/10.1038/mp.2011.96

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2011.96

Keywords

This article is cited by

Search

Quick links