Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Aging and functional brain networks

Abstract

Aging is associated with changes in human brain anatomy and function and cognitive decline. Recent studies suggest the aging decline of major functional connectivity hubs in the ‘default-mode’ network (DMN). Aging effects on other networks, however, are largely unknown. We hypothesized that aging would be associated with a decline of short- and long-range functional connectivity density (FCD) hubs in the DMN. To test this hypothesis, we evaluated resting-state data sets corresponding to 913 healthy subjects from a public magnetic resonance imaging database using functional connectivity density mapping (FCDM), a voxelwise and data-driven approach, together with parallel computing. Aging was associated with pronounced long-range FCD decreases in DMN and dorsal attention network (DAN) and with increases in somatosensory and subcortical networks. Aging effects in these networks were stronger for long-range than for short-range FCD and were also detected at the level of the main functional hubs. Females had higher short- and long-range FCD in DMN and lower FCD in the somatosensory network than males, but the gender by age interaction effects were not significant for any of the networks or hubs. These findings suggest that long-range connections may be more vulnerable to aging effects than short-range connections and that, in addition to the DMN, the DAN is also sensitive to aging effects, which could underlie the deterioration of attention processes that occurs with aging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Raz N, Rodrigue KM . Differential aging of the brain: patterns, cognitive correlates and modifiers. Neurosci Biobehav Rev 2006; 30: 730–748.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bäckman L, Nyberg L, Lindenberger U, Li S, Farde L . The correlative triad among aging, dopamine, and cognition: current status and future prospects. Neurosci Biobehav Rev 2006; 30: 791–807.

    Article  PubMed  Google Scholar 

  3. Buckner R . Memory and executive function in aging and AD: multiple factors that cause decline and reserve factors that compensate. Neuron 2004; 44: 195–208.

    Article  CAS  PubMed  Google Scholar 

  4. Logan J, Sanders A, Snyder A, Morris J, Buckner R . Under-recruitment and nonselective recruitment: dissociable neural mechanisms associated with aging. Neuron 2002; 33: 827–840.

    Article  CAS  PubMed  Google Scholar 

  5. Davis S, Dennis N, Daselaar S, Fleck M, Cabeza R . Que PASA? The posterior-anterior shift in aging. Cereb Cortex 2008; 18: 1201–1209.

    Article  PubMed  Google Scholar 

  6. Buckner R, Snyder A, Shannon B, LaRossa G, Sachs R, Fotenos A et al. Molecular, structural, and functional characterization of Alzheimer's disease: evidence for a relationship between default activity, amyloid, and memory. J Neurosci 2005; 25: 7709–7719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kapogiannis D, Mattson M . Disrupted energy metabolism and neuronal circuit dysfunction in cognitive impairment and Alzheimer's disease. Lancet Neurol 2011; 10: 187–198.

    Article  CAS  PubMed  Google Scholar 

  8. Buckner R, Sepulcre J, Talukdar T, Krienen F, Liu H, Hedden T et al. Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer's disease. J Neurosci 2009; 29: 1860–1873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Oh H, Mormino E, Madison C, Hayenga A, Smiljic A, Jagust W . Amyloid affects frontal and posterior brain networks in normal aging. Neuroimage 2011; 54: 1887–1895.

    Article  CAS  PubMed  Google Scholar 

  10. Rentz D, Locascio J, Becker J, Moran E, Eng E, Buckner R et al. Cognition, reserve, and amyloid deposition in normal aging. Ann Neurol 2010; 67: 353–364.

    PubMed  Google Scholar 

  11. Dosenbach N, Nardos B, Cohen A, Fair D, Power J, Church J et al. Prediction of individual brain maturity using fMRI. Science 2010; 329: 1358–1361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. van den Heuvel M, Stam C, Boersma M, Hulshoff Pol H . Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain. Neuroimage 2008; 43: 528–539.

    Article  CAS  PubMed  Google Scholar 

  13. Beu M, Baudrexel S, Hautzel H, Antke C, Mueller H-W . Neural traffic as voxel-based measure of cerebral functional connectivity in fMRI. J Neurosci Methods 2009; 176: 263–269.

    Article  CAS  PubMed  Google Scholar 

  14. van den Heuvel M, Mandl R, Kahn R, Hulshoff Pol H . Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Hum Brain Mapp 2009; 30: 3127–3141.

    Article  PubMed  PubMed Central  Google Scholar 

  15. van den Heuvel M, Stam C, Kahn R, Hulshoff Pol H . Efficiency of functional brain networks and intellectual performance. J Neurosci 2009; 29: 7619–7624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tomasi D, Volkow N . Functional connectivity density mapping. Proc Natl Acad Sci USA 2010; 107: 9885–9890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tomasi D, Volkow N . Association between functional connectivity hubs and brain networks. Cereb Cortex; published online 31 January 2011; doi: 10.1093/cercor/bhq268.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Buckner R . Human functional connectivity: new tools, unresolved questions. Proc Natl Acad Sci USA 2010; 107: 10769–10770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Biswal B, Mennes M, Zuo X, Gohel S, Kelly C, Smith S et al. Toward discovery science of human brain function. Proc Natl Acad Sci USA 2010; 107: 4734–4739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Foerster B, Tomasi D, Caparelli E . Magnetic field shift due to mechanical vibration in functional magnetic resonance imaging. Magn Reson Med 2005; 54: 1261–1267.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Cordes D, Haughton V, Arfanakis K, Carew J, Turski P, Moritz C et al. Frequencies contributing to functional connectivity in the cerebral cortex in ‘‘resting-state’’ data. AJNR Am J Neuroradiol 2001; 22: 1326–1333.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Tomasi D, Volkow N . Functional connectivity hubs in the human brain. Neuroimage 2011 doi: 10.1016/J.Neuroimage.2011.05.024.

    Article  PubMed  Google Scholar 

  23. Worsley K, Evans A, Marrett S, Neelin P . A three-dimensional statistical analysis for CBF activation studies in human brain. J Cereb Blood Flow Metab 1992; 12: 900–918.

    Article  CAS  PubMed  Google Scholar 

  24. Fjell A, Walhovd K . Structural brain changes in aging: courses, causes and cognitive consequences. Rev Neurosci 2010; 21: 187–221.

    Article  PubMed  Google Scholar 

  25. Volkow N, Logan J, Fowler J, Wang G, Gur R, Wong C et al. Association between age-related decline in brain dopamine activity and impairment in frontal and cingulate metabolism. Am J Psychiatry 2000; 157: 75–80.

    Article  CAS  PubMed  Google Scholar 

  26. Salzman K (ed) 2005. Clinical Geriatric Psychopharmacology. Lippincott Williams & Wilkins: Pennsylvania.

    Google Scholar 

  27. Madden D, Bennett I, Song A . Cerebral white matter integrity and cognitive aging: contributions from diffusion tensor imaging. Neuropsychol Rev 2009; 19: 415–435.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Stern Y, Moeller J, Anderson K, Luber B, Zubin N, DiMauro A et al. Different brain networks mediate task performance in normal aging and AD: defining compensation. Neurology 2000; 55: 1291–1297.

    Article  CAS  PubMed  Google Scholar 

  29. Reuter-Lorenz P, Park D . Human neuroscience and the aging mind: a new look at old problems. J Gerontol B Psychol Sci Soc Sci 2010; 65: 405–415.

    Article  PubMed  Google Scholar 

  30. Craik F, Salthouse T (eds) 2000. The Handbook of Aging and Cognition. Lawrence Erlbaum Associates Inc.: Mahwah, NJ.

    Google Scholar 

  31. Wingfield A, Grossman M . Language and the aging brain: patterns of neural compensation revealed by functional brain imaging. J Neurophysiol 2006; 96: 2830–2839.

    Article  PubMed  Google Scholar 

  32. Sanfey A, Hastie R . Judgement and decision making across the adult life span: a tutorial review of psychological research. In: Park D, Schwarz N (eds) Cognitive Aging: A Primer. Psychology Press: Philadelphia, PA, 2000, p 253.

    Google Scholar 

  33. Raichle ME, Gusnard DA . Appraising the brain's energy budget. Proc Nat Acad Sci USA 2002; 99: 10237–10239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Langbaum J, Chen K, Lee W, Reschke C, Bandy D, Fleisher A et al. Alzheimer's disease neuroimaging initiative. Neuroimage 2009; 45: 1107–1116.

    Article  PubMed  Google Scholar 

  35. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA . A default mode of brain function. Proc Natl Acad Sci USA 2001; 98: 676–682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tomasi D, Ernst T, Caparelli E, Chang L . Common deactivation patterns during working memory and visual attention tasks: an intra-subject fMRI study at 4 Tesla. Hum Brain Mapp 2006; 27: 694–705.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Changeux J 1997. Neuronal Man. Princeton University Press: New Jersey.

    Google Scholar 

  38. Tootell R, Hadjikhani N, Vanduffel W, Liu A, Mendola J, Sereno M et al. Functional analysis of primary visual cortex (V1) in humans. Proc Natl Acad Sci USA 1998; 95: 811–817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Damoiseaux J, Beckmann C, Arigita E, Barkhof F, Scheltens P, Stam C et al. Reduced resting-state brain activity in the ‘default network’ in normal aging. Cereb Cortex 2008; 18: 1856–1864.

    Article  CAS  PubMed  Google Scholar 

  40. Reyngoudt H, Claeys T, Vlerick L, Verleden S, Acou M, Deblaere K et al. Age-related differences in metabolites in the posterior cingulate cortex and hippocampus of normal ageing brain: A (1)H-MRS study. Eur J Radiol 2011; doi: 10.1016/j.ejrad.2011.01.106.

    Article  PubMed  Google Scholar 

  41. Andrews-Hanna J, Snyder A, Vincent J, Lustig C, Head D, Raichle M et al. Disruption of large-scale brain systems in advanced aging. Neuron 2007; 56: 924–935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sambataro F, Murty V, Callicott J, Tan H, Das S, Weinberger D et al. Age-related alterations in default mode network: impact on working memory performance. Neurobiol Aging 2010; 31: 839–852.

    Article  PubMed  Google Scholar 

  43. Kalpouzos G, Chételat G, Baron J, Landeau B, Mevel K, Godeau C et al. Voxel-based mapping of brain gray matter volume and glucose metabolism profiles in normal aging. Neurobiol Aging 2009; 30: 112–124.

    Article  CAS  PubMed  Google Scholar 

  44. Pardo J, Lee J, Sheikh S, Surerus-Johnson C, Shah H, Munch K et al. Where the brain grows old: decline in anterior cingulate and medial prefrontal function with normal aging. Neuroimage 2007; 35: 1231–1237.

    Article  PubMed  Google Scholar 

  45. Filley C, Cullum C . Attention and vigilance functions in normal aging. Appl Neuropsychol 1994; 1: 29–32.

    Article  CAS  PubMed  Google Scholar 

  46. Volkow N, Gur R, Wang G, Fowler J, Moberg P, Ding Y et al. Association between decline in brain dopamine activity with age and cognitive and motor impairment in healthy individuals. Am J Psychiatry 1998; 155: 344–349.

    Article  CAS  PubMed  Google Scholar 

  47. Tomasi D, Volkow N, Wang G, Wang R, Telang F, Caparelli E et al. Methylphenidate enhances brain activation and deactivation responses to visual attention and working memory tasks in healthy controls. Neuroimage 2011; 54: 3101–3110.

    Article  CAS  PubMed  Google Scholar 

  48. Schneider-Garces N, Gordon B, Brumback-Peltz C, Shin E, Lee Y, Sutton B et al. Span, CRUNCH, and beyond: working memory capacity and the aging brain. J Cogn Neurosci 2010; 22: 655–669.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Beason-Held L, Kraut M, Resnick S . I: Longitudinal changes in aging brain function. Neurobiol Aging 2008; 29: 483–496.

    Article  CAS  PubMed  Google Scholar 

  50. Blackstone C, O’Kane C, Reid E . Hereditary spastic paraplegias: membrane traffic and the motor pathway. Nat Rev Neurosci 2011; 12: 31–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Calhoun M, Mao Y, Roberts J, Rapp P . Reduction in hippocampal cholinergic innervation is unrelated to recognition memory impairment in aged rhesus monkeys. Comp Neurol 2004; 475: 238–246.

    Article  Google Scholar 

  52. Marner L, Nyengaard J, Tang Y, Pakkenberg B . Marked loss of myelinated nerve fibers in the human brain with age. J Comp Neurol 2003; 462: 144–152.

    Article  PubMed  Google Scholar 

  53. Gong G, Rosa-Neto P, Carbonell F, Chen Z, He Y, Evans A . Age- and gender-related differences in the cortical anatomical network. J Neurosci 2009; 29: 15684–15693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gur R, Gur R, Obrist W, Hungerbuhler J, Younkin D, Rosen A et al. Sex and handedness differences in cerebral blood flow during rest and cognitive activity. Science 1982; 217: 659–661.

    Article  CAS  PubMed  Google Scholar 

  55. Baxter LJ, Mazziotta J, Phelps M, Selin C, Guze B, Fairbanks L . Cerebral glucose metabolic rates in normal human females versus normal males. Psychiatry Res 1987; 21: 237–245.

    Article  PubMed  Google Scholar 

  56. Perneczky R, Drzezga A, Diehl-Schmid J, Li Y, Kurz A . Gender differences in brain reserve: an (18)F-FDG PET study in Alzheimer's disease. J Neurol 2007; 254: 1395–1400.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Institutes of Alcohol Abuse and Alcoholism (2RO1AA09481).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Tomasi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomasi, D., Volkow, N. Aging and functional brain networks. Mol Psychiatry 17, 549–558 (2012). https://doi.org/10.1038/mp.2011.81

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2011.81

Keywords

This article is cited by

Search

Quick links