Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Targeting the BH3-interacting domain death agonist to develop mechanistically unique antidepressants

Abstract

The BH3-interacting domain death agonist (Bid) is a pro-apoptotic member of the B-cell lymphoma-2 (Bcl-2) protein family. Previous studies have shown that stress reduces levels of Bcl-2 in brain regions implicated in the pathophysiology of mood disorders, whereas antidepressants and mood stabilizers increase Bcl-2 levels. The Bcl-2 protein family has an essential role in cellular resilience as well as synaptic and neuronal plasticity and may influence mood and affective behaviors. This study inhibited Bid in mice using two pharmacological antagonists (BI-11A7 and BI-2A7); the selective serotonin reuptake inhibitor citalopram was used as a positive control. These agents were studied in several well-known rodent models of depression—the forced swim test (FST), the tail suspension test (TST), and the learned helplessness (LH) paradigm—as well as in the female urine sniffing test (FUST), a measure of sex-related reward-seeking behavior. Citalopram and BI-11A7 both significantly reduced immobility time in the FST and TST and attenuated escape latencies in mice that underwent the LH paradigm. In the FUST, both agents significantly improved duration of female urine sniffing in mice that had developed helplessness. LH induction increased the activation of apoptosis-inducing factor (AIF), a caspase-independent cell death constituent activated by Bid, and mitochondrial AIF expression was attenuated by chronic BI-11A7 infusion. Taken together, the results suggest that functional perturbation of apoptotic proteins such as Bid and, alternatively, enhancement of Bcl-2 function, is a putative strategy for developing novel therapeutics for mood disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Duman RS . Neuronal damage and protection in the pathophysiology and treatment of psychiatric illness: stress and depression. Dialog Clin Neurosci 2009; 11: 239–255.

    Google Scholar 

  2. Belmaker RH, Agam G . Major depressive disorder. N Engl J Med 2008; 358: 55–68.

    Article  CAS  Google Scholar 

  3. Hunsberger J, Austin DR, Henter ID, Chen G . The neurotrophic and neuroprotective effects of psychotropic agents. Dialog Clin Neurosci 2009; 11: 333–348.

    Google Scholar 

  4. Manji HK, Drevets WC, Charney DS . The cellular neurobiology of depression. Nat Med 2001; 7: 541–547.

    Article  CAS  Google Scholar 

  5. Goldman LS, Nielsen NH, Champion HC . Awareness, diagnosis, and treatment of depression. J Gen Intern Med 1999; 14: 569–580.

    Article  CAS  Google Scholar 

  6. Simon GE . Social and economic burden of mood disorders. Biol Psychiatry 2003; 54: 208–215.

    Article  Google Scholar 

  7. World Health Organization. The Global Burden of Disease (GBD) 2004 Update. 2008 (cited 1 October 2009); available from: http://www.who.int/healthinfo/global_burden_disease/2004_report_update/en/index.html.

  8. Angst F, Stassen HH, Clayton PJ, Angst J . Mortality of patients with mood disorders: follow-up over 34–38 years. J Affect Disord 2002; 68: 167–181.

    Article  CAS  Google Scholar 

  9. Harris EC, Barraclough B . Excess mortality of mental disorder. Br J Psychiatry 1998; 173: 11–53.

    Article  CAS  Google Scholar 

  10. Hiroeh U, Appleby L, Mortensen PB, Dunn G . Death by homicide, suicide, and other unnatural causes in people with mental illness: a population-based study. Lancet 2001; 358: 2110–2112.

    Article  CAS  Google Scholar 

  11. Goodwin FK, Jamison KR . Manic-Depressive Illness: Bipolar and Recurrent Unipolar Disorders, 2nd edn. Oxford University Press: New York, 2007.

    Google Scholar 

  12. Krishnan V, Nestler EJ . The molecular neurobiology of depression. Nature 2008; 455: 894–902.

    Article  CAS  Google Scholar 

  13. Coyle JT, Duman RS . Finding the intracellular signaling pathways affected by mood disorder treatments. Neuron 2003; 38: 157–160.

    Article  CAS  Google Scholar 

  14. Manji HK, Quiroz JA, Sporn J, Payne JL, Denicoff K, A Gray N et al. Enhancing neuronal plasticity and cellular resilience to develop novel, improved therapeutics for difficult-to-treat depression. Biol Psychiatry 2003; 53: 707–742.

    Article  CAS  Google Scholar 

  15. Hunsberger JG, Austin DR, Chen G, Manji HK . Cellular mechanisms underlying affective resiliency: the role of glucocorticoid receptor- and mitochondrially-mediated plasticity. Brain Res 2009; 1293: 76–84.

    Article  CAS  Google Scholar 

  16. Hunsberger JG, Austin DR, Chen G, Manji HK . MicroRNAs in mental health: from biological underpinnings to potential therapies. Neuromol Med 2009; 11: 173–182.

    Article  CAS  Google Scholar 

  17. Reed JC . Apoptosis mechanisms: implications for cancer drug discovery. Oncology (Williston Park) 2004; 13 (Suppl 10): 11–20.

    Google Scholar 

  18. Yip KW, Reed JC . Bcl-2 family proteins and cancer. Oncogene 2008; 27: 6398–6406.

    Article  CAS  Google Scholar 

  19. Hetz C, Glimcher L . The daily job of night killers: alternative roles of the BCL-2 family in organelle physiology. Trends Cell Biol 2008; 18: 38–44.

    Article  CAS  Google Scholar 

  20. Youle RJ, Strasser A . The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 2008; 9: 47–59.

    Article  CAS  Google Scholar 

  21. Kuhn HG, Biebl M, Wilhelm D, Li M, Friedlander RM, Winkler J . Increased generation of granule cells in adult Bcl-2-overexpressing mice: a role for cell death during continued hippocampal neurogenesis. Eur J Neurosci 2005; 22: 1907–1915.

    Article  Google Scholar 

  22. Chen G, Ray R, Dubik D, Shi L, Cizeau J, Bleackley RC et al. The E1B 19K/Bcl-2-binding protein Nip3 is a dimeric mitochondrial protein that activates apoptosis. J Exp Med 1997; 186: 1975–1983.

    Article  CAS  Google Scholar 

  23. Hao Y, Creson T, Zhang L, Li P, Du F, Yuan P et al. Mood stabilizer valproate promotes ERK pathway-dependent cortical neuronal growth and neurogenesis. J Neurosci 2004; 24: 6590–6599.

    Article  CAS  Google Scholar 

  24. Yuan P, Huang LD, Jiang YM, Gutkind JS, Manji HK, Chen G . The mood stabilizer valproic acid activates mitogen-activated protein kinases and promotes neurite growth. J Biol Chem 2001; 276: 31674–31683.

    Article  CAS  Google Scholar 

  25. Jonas E . BCL-xL regulates synaptic plasticity. Mol Interv 2006; 6: 208–222.

    Article  CAS  Google Scholar 

  26. Mattson MP . Mitochondrial regulation of neuronal plasticity. Neurochem Res 2007; 32: 707–715.

    Article  CAS  Google Scholar 

  27. Kosten TA, Galloway MP, Duman RS, Russell DS, D'Sa C . Repeated unpredictable stress and antidepressants differentially regulate expression of the bcl-2 family of apoptotic genes in rat cortical, hippocampal, and limbic brain structures. Neuropsychopharmacology 2007; 33: 1545–1558.

    Article  Google Scholar 

  28. Huang YY, Peng CH, Yang YP, Wu CC, Hsu WM, Wang HJ et al. Desipramine activated Bcl-2 expression and inhibited lipopolysaccharide-induced apoptosis in hippocampus-derived adult neural stem cells. J Pharmacol Sci 2007; 104: 61–72.

    Article  CAS  Google Scholar 

  29. Murray F, Hutson PH . Hippocampal Bcl-2 expression is selectively increased following chronic but not acute treatment with antidepressants, 5-HT(1A) or 5-HT(2C/2B) receptor antagonists. Eur J Pharmacol 2007; 13: 41–47.

    Article  Google Scholar 

  30. Xu H, Richardson J, Li XM . Dose-related effects of chronic antidepressants on neuroprotective proteins BDNF, Bcl-2 and Cu/Zn-SOD in rat hippocampus. Neuropsychopharmacology 2003; 28: 53–62.

    Article  CAS  Google Scholar 

  31. Bravo JA, Diaz-Veliz G, Mora S, Ulloa JL, Berthoud VM, Morales P et al. Desipramine prevents stress-induced changes in depressive-like behavior and hippocampal markers of neuroprotection. Behav Pharmacol 2009; 20: 273–285.

    Article  Google Scholar 

  32. Maeng S, Hunsberger JG, Pearson B, Yuan P, Wang Y, Wei Y et al. BAG1 plays a critical role in regulating recovery from both manic-like and depression-like behavioral impairments. Proc Natl Acad Sci USA 2008; 105: 8766–8771.

    Article  CAS  Google Scholar 

  33. Schendel SL, Azimov R, Pawlowski K, Godzik A, Kagan BL, Reed JC . Ion channel activity of the BH3 only Bcl-2 family member, BID. J Biol Chem 1999; 274: 21932–21936.

    Article  CAS  Google Scholar 

  34. Breckenridge DG, Stojanovic M, Marcellus RC, Shore GC . Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol. J Cell Biol 2003; 160: 1115–1127.

    Article  CAS  Google Scholar 

  35. Cregan SP, Dawson VL, Slack RS . Role of AIF in caspase-dependent and caspase-independent cell death. Oncogene 2004; 23: 2785–2796.

    Article  CAS  Google Scholar 

  36. Yin XM, Wang K, Gross A, Zhao Y, Zinkel S, Klocke B et al. Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature 1999; 400: 886–891.

    Article  CAS  Google Scholar 

  37. Zou H, Li Y, Liu X, Wang X . An APAF-1 cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem 1999; 274: 11549–11556.

    Article  CAS  Google Scholar 

  38. Plesnila N, Zinkel S, Le DA, Amin-Hanjani S, Wu Y, Qiu J et al. BID mediates neuronal cell death after oxygen/glucose deprivation and focal cerebral ischemia. Proc Natl Acad Sci USA 2001; 98: 15318–15323.

    Article  CAS  Google Scholar 

  39. Culmsee C, Zhu C, Landshamer S, Becattini B, Wagner E, Pellecchia M et al. Apoptosis-inducing factor triggered by poly(ADP-ribose) polymerase and Bid mediates neuronal cell death after oxygen-glucose deprivation and focal cerebral ischemia. J Neurosci 2005; 25: 10262–10272.

    Article  CAS  Google Scholar 

  40. Cregan SP, Fortin A, MacLaurin JG, Callaghan SM, Cecconi F, Yu SW et al. Apoptosis-inducing factor is involved in the regulation of caspase-independent neuronal cell death. J Cell Biol 2002; 158: 507–517.

    Article  CAS  Google Scholar 

  41. Becattini B, Culmsee C, Leone M, Zhai D, Zhang X, Crowell KJ et al. Structure-activity relationships by interligand NOE-based design and synthesis of antiapoptotic compounds targeting Bid. Proc Natl Acad Sci USA 2006; 103: 12602–12606.

    Article  CAS  Google Scholar 

  42. Becattini B, Sareth S, Zhai D, Crowell KJ, Leone M, Reed JC et al. Targeting apoptosis via chemical design: inhibition of bid-induced cell death by small organic molecules. Chem Biol 2004; 11: 1107–1117.

    Article  CAS  Google Scholar 

  43. Thakker DR, Natt F, Husken D, van der Putten H, Maier R, Hoyer D et al. siRNA-mediated knockdown of the serotonin transporter in the adult mouse brain. Mol Psychiatry 2005; 10: 782–789.

    Article  CAS  Google Scholar 

  44. Xu B, Pu S, Kalra PS, Hyde JF, Crowley WR, Kalra SP . An interactive physiological role of neuropeptide Y and galanin in pulsatile pituitary luteinizing hormone secretion. Endocrinology 1996; 137: 5297–5302.

    Article  CAS  Google Scholar 

  45. Shaltiel G, Maeng S, Malkesman O, Pearson B, Schloesser RJ, Tragon T et al. Evidence for the involvement of the kainate receptor subunit GluR6 (GRIK2) in mediating behavioral displays related to behavioral symptoms of mania. Mol Psychiatry 2008; 13: 858–872.

    Article  CAS  Google Scholar 

  46. Gould TD, O'Donnell KC, Dow ER, Du J, Chen G, Manji HK . Involvement of AMPA receptors in the antidepressant-like effects of lithium in the mouse tail suspension test and forced swim test. Neuropharmacology 2008; 54: 577–587.

    Article  CAS  Google Scholar 

  47. Maeng S, Zarate Jr CA, Du J, Schloesser RJ, McCammon J, Chen G et al. Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol Psychiatry 2008; 63: 349–352.

    Article  CAS  Google Scholar 

  48. Malkesman O, Scattoni ML, Paredes D, Tragon T, Pearson B, Shaltiel G et al. The female urine sniffing test: a novel approach for assessing reward-seeking behavior in rodents. Biol Psychiatry 2010; 67: 864–871.

    Article  CAS  Google Scholar 

  49. Malkesman O, Austin DR, Chen G, Manji HK . Reverse translational strategies for developing animal models of bipolar disorder. Dis Model Mech 2009; 2: 238–245.

    Article  CAS  Google Scholar 

  50. Cryan JF, Mombereau C . In search of a depressed mouse: utility of models for studying depression-related behavior in genetically modified mice. Mol Psychiatry 2004; 9: 326–357.

    Article  CAS  Google Scholar 

  51. Cryan JF, Mombereau C, Vassout A . The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev 2005; 29: 571–625.

    Article  CAS  Google Scholar 

  52. Cryan JF, Markou A, Lucki I . Assessing antidepressant activity in rodents: recent developments and future needs. Trends Pharmacol Sci 2002; 23: 238–245.

    Article  CAS  Google Scholar 

  53. Engin E, Treit D, Dickson CT . Anxiolytic- and antidepressant-like properties of ketamine in behavioral and neurophysiological animal models. Neuroscience 2009; 161: 359–369.

    Article  CAS  Google Scholar 

  54. Foreman MM, Hanania T, Stratton SC, Wilcox KS, White HS, Stables JP et al. In vivo pharmacological effects of JZP-4, a novel anticonvulsant, in models for anticonvulsant, antimania and antidepressant activity. Pharmacol Biochem Behav 2008; 89: 523–534.

    Article  CAS  Google Scholar 

  55. Liu X, Peprah D, Gershenfeld HK . Tail-suspension induced hyperthermia: a new measure of stress reactivity. J Psychiatr Res 2003; 37: 249–259.

    Article  Google Scholar 

  56. Lucki I, Dalvi A, Mayorga AJ . Sensitivity to the effects of pharmacologically selective antidepressants in different strains of mice. Psychopharmacology (Berl) 2001; 155: 315–322.

    Article  CAS  Google Scholar 

  57. Abel EL . Ontogeny of immobility and response to alarm substance in the forced swim test. Physiol Behav 1993; 54: 713–716.

    Article  CAS  Google Scholar 

  58. Mayorga AJ, Lucki I . Limitations on the use of the C57BL/6 mouse in the tail suspension test. Psychopharmacology (Berl) 2001; 155: 110–112.

    Article  CAS  Google Scholar 

  59. Mombereau C, Kaupmann K, Froestl W, Sansig G, van der Putten H, Cryan JF . Genetic and pharmacological evidence of a role for GABA(B) receptors in the modulation of anxiety- and antidepressant-like behavior. Neuropsychopharmacology 2004; 29: 1050–1062.

    Article  CAS  Google Scholar 

  60. Porsolt R, Lenegre A . Behavioral models of depresion. In: Elliot J, Heal D, Marsden C (eds). Experimental Approaches to Anxiety and Depression. Wiley and Sons: London, 1992, pp 73–85.

    Google Scholar 

  61. Chourbaji S, Zacher C, Sanchis-Segura C, Dormann C, Vollmayr B, Gass P . Learned helplessness: validity and reliability of depressive-like states in mice. Brain Res Brain Res Protoc 2005; 16: 70–78.

    Article  CAS  Google Scholar 

  62. Henn FA, Edwards E, Muneyyirci . Animal models of depression. Clin Neurosci 1993; 1: 152–156.

    Google Scholar 

  63. Gambarana C, Scheggi S, Tagliamonte A, Tolu P, DeMontis MG . Animal models for the study of antidepressant activity. Brain Res Brain Res Protoc 2001; 7: 11–20.

    Article  CAS  Google Scholar 

  64. Henkel V, Bussfeld P, Moller HJ, Hegerl U . Cognitive–behavioural theories of helplessness/hopelessness: valid models of depression? Eur Arch Psychiatry Clin Neurosci 2002; 252: 240–249.

    Article  CAS  Google Scholar 

  65. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. Fourth Edition (DSM-IV). American Psychiatric Association: Washington, DC, 2000.

  66. Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 2010; 329: 959–964.

    Article  CAS  Google Scholar 

  67. Maier SF . Learned helplessness and animal models of depression. Prog Neuropsychopharmacol Biol Psychiatry 1984; 8: 435–446.

    Article  CAS  Google Scholar 

  68. Plesnila N, Zhu C, Culmsee C, Groger M, Moskowitz MA, Blomgren K . Nuclear translocation of apoptosis-inducing factor after focal cerebral ischemia. J Cereb Blood Flow Metab 2004; 24: 458–466.

    Article  Google Scholar 

  69. Cheung EC, Melanson-Drapeau L, Cregan SP, Vanderluit JL, Ferguson KL, McIntosh WC et al. Apoptosis-inducing factor is a key factor in neuronal cell death propagated by BAX-dependent and BAX-independent mechanisms. J Neurosci 2005; 25: 1324–1334.

    Article  CAS  Google Scholar 

  70. Landshamer S, Hoehn M, Barth N, Duvezin-Caubet S, Schwake G, Tobaben S et al. Bid-induced release of AIF from mitochondria causes immediate neuronal cell death. Cell Death Differ 2008; 15: 1553–1563.

    Article  CAS  Google Scholar 

  71. McKernan DP, Dinan TG, Cryan JF . ‘Killing the Blues’: a role for cellular suicide (apoptosis) in depression and the antidepressant response? Prog Neurobiol 2009; 88: 246–263.

    Article  CAS  Google Scholar 

  72. Drzyzga LR, Marcinowska A, Obuchowicz E . Antiapoptotic and neurotrophic effects of antidepressants: a review of clinical and experimental studies. Brain Res Bull 2009; 79: 248–257.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the support of the Intramural Research Program of the National Institute of Mental Health (NIMH: OM, TT, DRA, IDH, GC and HKM) and NIH Grant (R01 HL082574) to JCR. Adithya Simha provided invaluable technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H K Manji.

Ethics declarations

Competing interests

There are no personal financial holdings that could be perceived as constituting a potential conflict of interest. Drs Chen and Manji are now at Johnson & Johnson Pharmaceutical Research and Development; this work was initiated and largely undertaken while they were employees of the NIMH.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malkesman, O., Austin, D., Tragon, T. et al. Targeting the BH3-interacting domain death agonist to develop mechanistically unique antidepressants. Mol Psychiatry 17, 770–780 (2012). https://doi.org/10.1038/mp.2011.77

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2011.77

Keywords

This article is cited by

Search

Quick links