Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Resting functional connectivity of language networks: characterization and reproducibility

Abstract

The neural basis of language comprehension and production has been associated with superior temporal (Wernicke's) and inferior frontal (Broca's) cortical areas, respectively. However, recent resting-state functional connectivity (RSFC) and lesion studies have implicated a more extended network in language processing. Using a large RSFC data set from 970 healthy subjects and seed regions in Broca's and Wernicke's, we recapitulate this extended network that includes not only adjoining prefrontal, temporal and parietal regions but also bilateral caudate and left putamen/globus pallidus and subthalamic nucleus. We also show that the language network has predominance of short-range functional connectivity (except posterior Wernicke's area that exhibited predominant long-range connectivity), which is consistent with reliance on local processing. Predominantly, long-range connectivity was left lateralized (except anterior Wernicke's area that exhibited rightward lateralization). The language network also exhibited anti-correlated activity with auditory (only for Wernicke's area) and visual cortices that suggests integrated sequential activity with regions involved with listening or reading words. Assessment of the intra-subject's reproducibility of this network and its characterization in individuals with language dysfunction is required to determine its potential as a biomarker for language disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Dronkers N, Wilkins D, Van Valin RJ, Redfern B, Jaeger J . Lesion analysis of the brain areas involved in language comprehension. Cognition 2004; 92: 145–177.

    Article  Google Scholar 

  2. Price C . The anatomy of language: a review of 100 fMRI studies published in 2009. Ann NY Acad Sci 2010; 1191: 62–88.

    Article  Google Scholar 

  3. Mesulam M . Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Ann Neurol 1990; 28: 597–613.

    Article  CAS  Google Scholar 

  4. Turken A, Dronkers N . The neural architecture of the language comprehension network: converging evidence from lesion and connectivity analyses. Front Syst Neurosci 2011; 5: 1–20.

    Article  Google Scholar 

  5. Mesulam M . Imaging connectivity in the human cerebral cortex: the next frontier? Ann Neurol 2005; 57: 5–7.

    Article  Google Scholar 

  6. Catani M, Jones D, Ffytche D . Perisylvian language networks of the human brain. Ann Neurol 2005; 57: 8–16.

    Article  Google Scholar 

  7. Galaburda A . Brain Asymmetry. In: Davidson R, Hugdahl K (eds). MIT Press: Cambridge, Massachusetts, 1995; 51–73.

    Google Scholar 

  8. Narr K, Thompson P, Sharma T, Moussai J, Zoumalan C, Rayman J et al. Three-dimensional mapping of gyral shape and cortical surface asymmetries in schizophrenia: gender effects. Am J Psychiatry 2001; 158: 244–255.

    Article  CAS  Google Scholar 

  9. Herbert M, Ziegler D, Deutsch C, O'Brien L, Kennedy D, Filipek P et al. Brain asymmetries in autism and developmental language disorder: a nested whole-brain analysis. Brain 2005; 128: 213–226.

    Article  CAS  Google Scholar 

  10. Sharp D, Awad M, Warren J, Wise R, Vigliocco G, Scott S . The neural response to changing semantic and perceptual complexity during language processing. Hum Brain Mapp 2010; 31: 365–377.

    PubMed  Google Scholar 

  11. Goldberg E . The Executive Brain: Frontal Lobes and the Civilized Mind. Oxford University Press: New York, 2001.

    Google Scholar 

  12. Lohmann G, Hoehl S, Brauer J, Danielmeier C, Bornkessel-Schlesewsky I, Bahlmann J et al. Setting the frame: the human brain activates a basic low-frequency network for language processing. Cereb Cortex 2010; 20: 1286–1292.

    Article  Google Scholar 

  13. Biswal B, Yetkin F, Haughton V, Hyde J . Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 1995; 34: 537–541.

    Article  CAS  Google Scholar 

  14. Biswal B, Mennes M, Zuo X, Gohel S, Kelly C, Smith S et al. Toward discovery science of human brain function. Proc Natl Acad Sci USA 2010; 107: 4734–4739.

    Article  CAS  Google Scholar 

  15. Tomasi D, Volkow N . Association between functional connectivity hubs and brain networks. Cereb Cortex 2011; 21: 2003–2013.

    Article  Google Scholar 

  16. Vermersch P, Sergeant N, Ruchoux MM, Hofmann-Radvanyi H, Wattez A, Petit H et al. Specific tau-variants in the brains of patients with myotonic dystrophy. Neurology 1996; 47: 711–717.

    Article  CAS  Google Scholar 

  17. Xiang H, Fonteijn H, Norris D, Hagoort P . Topographical functional connectivity pattern in the Perisylvian language networks. Cereb Cortex 2010; 20: 549–560.

    Article  Google Scholar 

  18. Kelly C, Uddin L, Shehzad Z, Margulies D, Castellanos F, Milham M et al. Broca's region: linking human brain functional connectivity data and non-human primate tracing anatomy studies. Eur J Neurosci 2010; 32: 383–398.

    Article  Google Scholar 

  19. Tomasi D, Volkow N . Functional connectivity density mapping. Proc Natl Acad Sci USA 2010; 107: 9885–9890.

    Article  CAS  Google Scholar 

  20. Van Essen D . A population-average, landmark- and surface-based (PALS) atlas of human cerebral cortex. Neuroimage 2005; 28: 635–662.

    Article  Google Scholar 

  21. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard ON, Mazoyer B et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 2002; 15: 273–289.

    Article  CAS  Google Scholar 

  22. Rubinov M, Sporns O . Weight-conserving characterization of complex functional brain networks. Neuroimage 2011; 56: 2068–2079.

    Article  Google Scholar 

  23. Blondel V, Guillaume J, Lambiotte R, Lefebvre E . Fast unfolding of communities in large networks. J Stat Mech 2008; P10008.

    Article  Google Scholar 

  24. Tomasi D, Volkow N . Functional connectivity hubs in the human brain. Neuroimage 2011; 57: 908–917.

    Article  Google Scholar 

  25. Tomasi D, Volkow N . Aging and functional brain networks. Mol Psychiatry 2011 doi: 10.1038/mp.2011.81.

    Article  Google Scholar 

  26. Steinmetz H . Structure, function and cerebral asymmetry: in vivo morphometry of the planum temporale. Neurosci Biobehav Rev 1996; 20: 587–591.

    Article  CAS  Google Scholar 

  27. Tomasi D, Volkow N . Laterality patterns of brain functional connectivity: gender effects. Cereb Cortex 2011 10.1093/cercor/bhr230.

  28. Mandonnet E, Nouet A, Gatignol P, Capelle L, Duffau H . Does the left inferior longitudinal fasciculus play a role in language? A brain stimulation study. Brain 2007; 130: 623–629.

    Article  Google Scholar 

  29. Rohrer J, Warren J, Modat M, Ridgway G, Douiri A, Rossor M et al. Patterns of cortical thinning in the language variants of frontotemporal lobar degeneration. Neurology 2009; 72: 1562–1569.

    Article  CAS  Google Scholar 

  30. Crinion J, Turner R, Grogan A, Hanakawa T, Noppeney U, Devlin J et al. Language control in the bilingual brain. Science 2006; 312: 1537–1540.

    Article  CAS  Google Scholar 

  31. Abutalebi J, Miozzo A, Cappa S . Do subcortical structures control ‘language selection’ in polyglots? Evidence from pathological language mixing. Neurocase 2000; 6: 51–56.

    Google Scholar 

  32. Tan L, Chen L, Yip V, Chan A, Yang J, Gao J et al. Activity levels in the left hemisphere caudate-fusiform circuit predict how well a second language will be learned. Proc Natl Acad Sci USA 2011; 108: 2540–2544.

    Article  CAS  Google Scholar 

  33. Wallesch C . Repetitive verbal behaviour: functional and neurological considerations. Aphasiology 1990; 4: 133–154.

    Article  Google Scholar 

  34. Barat M, Mazaux J, Bioulac B, Giroire J, Vital C, Arné L . Aphasic-type language disorders associated with lesions of the putamen and caudate nucleus: clinicopathological findings in one case. Rev Neurol 1981; 137: 343–356.

    CAS  PubMed  Google Scholar 

  35. Whelan B, Murdoch B, Theodoros D, Silburn P, Hall B . Reappraising contemporary theories of subcortical participation in language: proposing an interhemispheric regulatory function for the subthalamic nucleus (STN) in the mediation of high-level linguistic processes. Neurocase 2004; 10: 70–77.

    Article  Google Scholar 

  36. Murdoch B . The cerebellum and language: historical perspective and review. Cortex 2010; 46: 858–868.

    Article  Google Scholar 

  37. Hodge S, Makris N, Kennedy D, Caviness VJ, Howard J, McGrath L et al. Cerebellum, language, and cognition in autism and specific language impairment. J Autism Dev Disord 2010; 40: 300–316.

    Article  Google Scholar 

  38. Mesulam M, Wieneke C, Rogalski E, Cobia D, Thompson C, Weintraub S . Quantitative template for subtyping primary progressive aphasia. Arch Neurol 2009; 66: 1545–1551.

    Article  Google Scholar 

  39. Fox M, Snyder A, Vincent J, Corbetta M, Van Essen D, Raichle M . The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 2005; 102: 9673–9678.

    Article  CAS  Google Scholar 

  40. Fox M, Zhang D, Snyder A, Raichle M . The global signal and observed anticorrelated resting state brain networks. J Neurophysiol 2009; 101: 3270–3283.

    Article  Google Scholar 

  41. Leff A, Schofield T, Crinion J, Seghier M, Grogan A, Green D et al. The left superior temporal gyrus is a shared substrate for auditory short-term memory and speech comprehension: evidence from 210 patients with stroke. Brain 2009; 132: 3401–3410.

    Article  Google Scholar 

  42. Dehaene S, Cohen L, Sigman M, Vinckier F . The neural code for written words: a proposal. Trends Cogn Sci 2005; 9: 335–341.

    Article  Google Scholar 

  43. Rakic P . Evolution of the neocortex: a perspective from developmental biology. Nat Rev Neurosci 2009; 10: 724–735.

    Article  CAS  Google Scholar 

  44. Blackstone C, O'Kane C, Reid E . Hereditary spastic paraplegias: membrane traffic and the motor pathway. Nat Rev Neurosci 2011; 12: 31–42.

    Article  CAS  Google Scholar 

  45. Marner L, Nyengaard J, Tang Y, Pakkenberg B . Marked loss of myelinated nerve fibers in the human brain with age. J Comp Neurol 2003; 462: 144–152.

    Article  Google Scholar 

  46. Mesulam M . From sensation to cognition. Brain 1998; 121: 1013–1052.

    Article  Google Scholar 

  47. Bondi M, Jak A, Delano-Wood L, Jacobson M, Delis D, Salmon D . Neuropsychological contributions to the early identification of Alzheimer's disease. Neuropsychol Rev 2008; 18: 73–90.

    Article  Google Scholar 

  48. Carreiras M, Seghier M, Baquero S, Estévez A, Lozano A, Devlin J et al. An anatomical signature for literacy. Nature 2009; 461: 983–986.

    Article  CAS  Google Scholar 

  49. Horwitz B, Rumsey J, Donohue B . Functional connectivity of the angular gyrus in normal reading and dyslexia. Proc Natl Acad Sci USA 1998; 95: 8939–8944.

    Article  CAS  Google Scholar 

  50. Hampson M, Tokoglu F, Sun Z, Schafer R, Skudlarski P, Gore J et al. Connectivity-behavior analysis reveals that functional connectivity between left BA39 and Broca's area varies with reading ability. Neuroimage 2006; 31: 513–519.

    Article  Google Scholar 

  51. Obleser J, Wise R, Alex Dresner M, Scott S . Functional integration across brain regions improves speech perception under adverse listening conditions. J Neurosci 2007; 27: 2283–2289.

    Article  CAS  Google Scholar 

  52. Liu H, Stufflebeam S, Sepulcre J, Hedden T, Buckner R . Evidence from intrinsic activity that asymmetry of the human brain is controlled by multiple factors. Proc Natl Acad Sci USA 2009; 106: 20499–20503.

    Article  CAS  Google Scholar 

  53. Proverbio A, Crotti N, Zani A, Adorni R . The role of left and right hemispheres in the comprehension of idiomatic language: an electrical neuroimaging study. BMC Neurosci 2009; 10: 116.

    Article  Google Scholar 

  54. Hartwigsen G, Baumgaertner A, Price C, Koehnke M, Ulmer S, Siebner H . Phonological decisions require both the left and right supramarginal gyri. Proc Natl Acad Sci USA 2010; 107: 16494–16499.

    Article  CAS  Google Scholar 

  55. Zuo X, Ehmke R, Mennes M, Imperati D, Castellanos F, Sporns O et al. Network centrality in the human functional connectome. Cereb Cortex 2011 doi:10.1093/cercor/bhr269.

    Article  Google Scholar 

  56. Tomasi D, Volkow N . Gender differences in brain functional connectivity density. Hum Brain Mapp 2011 doi: 10.1002/hbm.21252.

    Article  Google Scholar 

  57. Goldstein JM, Seidman LJ, Horton NJ, Makris N, Kennedy DN, Caviness Jr VS et al. Normal sexual dimorphism of the adult human brain assessed by in vivo magnetic resonance imaging. Cereb Cortex 2001; 11: 490–497.

    Article  CAS  Google Scholar 

  58. Gur RC, Turetsky BI, Matsui M, Yan M, Bilker W, Hughett P et al. Sex differences in brain gray and white matter in healthy young adults: correlations with cognitive performance. J Neurosci 1999; 19: 4065–4072.

    Article  CAS  Google Scholar 

  59. Jazin E, Cahill L . Sex differences in molecular neuroscience: from fruit flies to humans. Nat Rev Neurosci 2010; 11: 9–17.

    Article  CAS  Google Scholar 

  60. De Vries G, Simerley R . Hormones, Brain and Behaviour: Development of Hormone-Dependent Neuronal Systems. In: Pfaff D, Arnold A, Etgen A, Fahrbach S, Rubin R (eds). Academic Press: San Diego, CA, 2002; 137.

    Book  Google Scholar 

  61. Aries E . Men and Women in Interaction: Reconsidering the Differences. Oxford University Press: New York, NY, 1996.

    Google Scholar 

  62. Hall J . Nonverbal Sex Differences: Communication Accuracy and Expressive Style. Johns Hopkins University Press: Baltimore, MD, 1984.

    Google Scholar 

  63. Eagly A, Johnson B . Gender and leadership style: a meta-analysis. Psychol Bull 1990; 108: 233–256.

    Article  Google Scholar 

  64. Dindia K, Allen M . Sex differences in self-disclosure: a meta-analysis. Psychol Bull 1992; 112: 1060124.

    Article  Google Scholar 

  65. Birn R, Murphy K, Bandettini P . The effect of respiration variations on independent component analysis results of resting state functional connectivity. Hum Brain Mapp 2008; 29: 740–750.

    Article  Google Scholar 

  66. Schölvinck M, Maier A, Ye F, Duyn J, Leopold D . Neural basis of global resting-state fMRI activity. Proc Natl Acad Sci USA 2010; 107: 10238–10243.

    Article  Google Scholar 

Download references

Acknowledgements

We are very grateful to Olaf Sporns for assistance during computation of the modularity of the language network with the Brain Connectivity Toolbox. This study was accomplished with support from the National Institutes of Alcohol Abuse and Alcoholism (2RO1AA09481).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Tomasi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomasi, D., Volkow, N. Resting functional connectivity of language networks: characterization and reproducibility. Mol Psychiatry 17, 841–854 (2012). https://doi.org/10.1038/mp.2011.177

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2011.177

Keywords

This article is cited by

Search

Quick links