Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Immediate Communication
  • Published:

5-HT2B receptors are required for serotonin-selective antidepressant actions

Abstract

The therapeutic effects induced by serotonin-selective reuptake inhibitor (SSRI) antidepressants are initially triggered by blocking the serotonin transporter and rely on long-term adaptations of pre- and post-synaptic receptors. We show here that long-term behavioral and neurogenic SSRI effects are abolished after either genetic or pharmacological inactivation of 5-HT2B receptors. Conversely, direct agonist stimulation of 5-HT2B receptors induces an SSRI-like response in behavioral and neurogenic assays. Moreover, the observation that (i) this receptor is expressed by raphe serotonergic neurons, (ii) the SSRI-induced increase in hippocampal extracellular serotonin concentration is strongly reduced in the absence of functional 5-HT2B receptors and (iii) a selective 5-HT2B agonist mimics SSRI responses, supports a positive regulation of serotonergic neurons by 5-HT2B receptors. The 5-HT2B receptor appears, therefore, to positively modulate serotonergic activity and to be required for the therapeutic actions of SSRIs. Consequently, the 5-HT2B receptor should be considered as a new tractable target in the combat against depression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Berton O, Nestler EJ . New approaches to antidepressant drug discovery: beyond monoamines. Nat Rev Neurosci 2006; 7: 137–151.

    Article  CAS  PubMed  Google Scholar 

  2. Wong ML, Licinio J . From monoamines to genomic targets: a paradigm shift for drug discovery in depression. Nat Rev Drug Discov 2004; 3: 136–151.

    Article  CAS  PubMed  Google Scholar 

  3. Schafer WR . How do antidepressants work? Prospects for genetic analysis of drug mechanisms. Cell 1999; 98: 551–554.

    Article  CAS  PubMed  Google Scholar 

  4. Miller KJ, Hoffman BJ . Adenosine A3 receptors regulate serotonin transport via nitric oxide and cGMP. J Biol Chem 1994; 269: 27351–27356.

    CAS  PubMed  Google Scholar 

  5. Prasad HC, Zhu CB, McCauley JL, Samuvel DJ, Ramamoorthy S, Shelton RC et al. Human serotonin transporter variants display altered sensitivity to protein kinase G and p38 mitogen-activated protein kinase. Proc Natl Acad Sci U S A 2005; 102: 11545–11550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bevilacqua L, Doly S, Kaprio J, Yuan Q, Tikkanen R, Paunio T et al. A population-specific HTR2B stop codon predisposes to severe impulsivity. Nature 2010; 468: 1061–1066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Launay JM, Schneider B, Loric S, Da Prada M, Kellermann O . Serotonin transport and serotonin transporter-mediated antidepressant recognition are controlled by 5-HT2B receptor signaling in serotonergic neuronal cells. FASEB J 2006; 20: 1843–1854.

    Article  CAS  PubMed  Google Scholar 

  8. Doly S, Bertran-Gonzalez J, Callebert J, Bruneau A, Banas SM, Belmer A et al. Role of serotonin via 5-HT2B receptors in the reinforcing effects of MDMA in mice. PLoS ONE 2009; 4: e7952.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Doly S, Valjent E, Setola V, Callebert J, Herve D, Launay JM et al. Serotonin 5-HT2B receptors are required for 3,4-methylenedioxymethamphetamine-induced hyperlocomotion and 5-HT release in vivo and in vitro. J Neurosci 2008; 28: 2933–2940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Banas S, Doly S, Boutourlinsky K, Diaz S, Belmer A, Callebert J et al. Deconstructing antiobesity compound action: requirement of serotonin 5-HT2B receptors for dexfenfluramine anorectic effects. Neuropsychopharmacology 2011; 36: 423–433.

    Article  CAS  PubMed  Google Scholar 

  11. Diaz S, Maroteaux L . Implication of 5-HT2B receptors in the serotonin syndrome. Neuropharmacology 2011; 61: 495–502.

    Article  CAS  PubMed  Google Scholar 

  12. Popa D, Cerdan J, Reperant C, Guiard BP, Guilloux JP, David DJ et al. A longitudinal study of 5-HT outflow during chronic fluoxetine treatment using a new technique of chronic microdialysis in a highly emotional mouse strain. Eur J Pharmacol 2010; 628: 83–90.

    Article  CAS  PubMed  Google Scholar 

  13. Cryan JF, Lucki I . Antidepressant-like behavioral effects mediated by 5-hydroxytryptamine2C receptors. J Pharmacol Exp Ther 2000; 295: 1120–1126.

    CAS  PubMed  Google Scholar 

  14. Cryan JF, Lucki I . 5-HT4 receptors do not mediate the antidepressant-like behavioral effects of fluoxetine in a modified forced swim test. Eur J Pharmacol 2000; 409: 295–299.

    Article  CAS  PubMed  Google Scholar 

  15. Lucas G, Rymar VV, Du J, Mnie-Filali O, Bisgaard C, Manta S et al. Serotonin(4) (5-HT(4)) receptor agonists are putative antidepressants with a rapid onset of action. Neuron 2007; 55: 712–725.

    Article  CAS  PubMed  Google Scholar 

  16. Yamauchi M, Miyara T, Matsushima T, Imanishi T . Desensitization of 5-HT2A receptor function by chronic administration of selective serotonin reuptake inhibitors. Brain Res 2006; 1067: 164–169.

    Article  CAS  PubMed  Google Scholar 

  17. Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 2003; 301: 805–809.

    Article  CAS  PubMed  Google Scholar 

  18. Tanti A, Belzung C . Open questions in current models of antidepressant action. Br J Pharmacol 2010; 159: 1187–1200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nebigil CG, Choi D-S, Dierich A, Hickel P, Le Meur M, Messaddeq N et al. Serotonin 2B receptor is required for heart development. Proc Natl Acad Sci USA 2000; 97: 9508–9513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bengel D, Murphy DL, Andrews AM, Wichems CH, Feltner D, Heils A et al. Altered brain serotonin homeostasis and locomotor insensitivity to 3, 4-methylenedioxymethamphetamine (‘Ecstasy’) in serotonin transporter-deficient mice. Mol Pharmacol 1998; 53: 649–655.

    Article  CAS  PubMed  Google Scholar 

  21. Hendricks TJ, Fyodorov DV, Wegman LJ, Lelutiu NB, Pehek EA, Yamamoto B et al. Pet-1 ETS gene plays a critical role in 5-HT neuron development and is required for normal anxiety-like and aggressive behavior. Neuron 2003; 37: 233–247.

    Article  CAS  PubMed  Google Scholar 

  22. Lucki I, Dalvi A, Mayorga AJ . Sensitivity to the effects of pharmacologically selective antidepressants in different strains of mice. Psychopharmacology (Berl) 2001; 155: 315–322.

    Article  CAS  Google Scholar 

  23. Scott MM, Wylie CJ, Lerch JK, Murphy R, Lobur K, Herlitze S et al. A genetic approach to access serotonin neurons for in vivo and in vitro studies. Proc Natl Acad Sci USA 2005; 102: 16472–16477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sousa VH, Miyoshi G, Hjerling-Leffler J, Karayannis T, Fishell G . Characterization of Nkx6-2-derived neocortical interneuron lineages. Cereb Cortex 2009; 19 (Suppl 1): i1–i10.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cauli B, Audinat E, Lambolez B, Angulo MC, Ropert N, Tsuzuki K et al. Molecular and physiological diversity of cortical nonpyramidal cells. J Neurosci 1997; 17: 3894–3906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bally-Cuif L, Wassef M . Ectopic induction and reorganization of Wnt-1 expression in quail/chick chimeras. Development 1994; 120: 3379–3394.

    CAS  PubMed  Google Scholar 

  27. Bortolozzi A, Castañé A, Semakova J, Santana N, Alvarado G, Cortés R et al. Selective siRNA-mediated suppression of 5-HT(1A) autoreceptors evokes strong anti-depressant-like effects. Mol Psychiatry 2011 (in press).

  28. Malberg JE, Eisch AJ, Nestler EJ, Duman RS . Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 2000; 20: 9104–9110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li B, Zhang S, Zhang H, Nu W, Cai L, Hertz L et al. Fluoxetine-mediated 5-HT2B receptor stimulation in astrocytes causes EGF receptor transactivation and ERK phosphorylation. Psychopharmacology (Berl) 2008; 201: 443–458.

    Article  CAS  Google Scholar 

  30. O’Leary OF, Bechtholt AJ, Crowley JJ, Hill TE, Page ME, Lucki I . Depletion of serotonin and catecholamines block the acute behavioral response to different classes of antidepressant drugs in the mouse tail suspension test. Psychopharmacology (Berl) 2007; 192: 357–371.

    Article  Google Scholar 

  31. Kim DK, Tolliver TJ, Huang SJ, Martin BJ, Andrews AM, Wichems C et al. Altered serotonin synthesis, turnover and dynamic regulation in multiple brain regions of mice lacking the serotonin transporter. Neuropharmacology 2005; 49: 798–810.

    Article  CAS  PubMed  Google Scholar 

  32. Richardson-Jones JW, Craige CP, Guiard BP, Stephen A, Metzger KL, Kung HF et al. 5-HT1A autoreceptor levels determine vulnerability to stress and response to antidepressants. Neuron 2010; 65: 40–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Blier P . Altered function of the serotonin 1A autoreceptor and the antidepressant response. Neuron 2010; 65: 1–2.

    Article  CAS  PubMed  Google Scholar 

  34. David DJ, Samuels BA, Rainer Q, Wang J-W, Marsteller D, Mendez I et al. Neurogenesis-dependent and -independent effects of fluoxetine in an animal model of anxiety/depression. Neuron 2009; 62: 479–493.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Sairanen M, Lucas G, Ernfors P, Castrén M, Castrén E . Brain-derived neurotrophic factor and antidepressant drugs have different but coordinated effects on neuronal turnover, proliferation, and survival in the adult dentate gyrus. J Neurosci 2005; 25: 1089–1094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Verge D, Daval G, Patey A, Gozlan H, el Mestikawy S, Hamon M . Presynaptic 5-HT autoreceptors on serotonergic cell bodies and/or dendrites but not terminals are of the 5-HT1A subtype. Eur J Pharmacol 1985; 113: 463–464.

    Article  CAS  PubMed  Google Scholar 

  37. Craven RM, Grahame-Smith DG, Newberry NR . 5-HT1A and 5-HT2 receptors differentially regulate the excitability of 5-HT-containing neurones of the guinea pig dorsal raphe nucleus in vitro. Brain Res 2001; 899: 159–168.

    Article  CAS  PubMed  Google Scholar 

  38. Smits KM, Smits LJ, Schouten JS, Stelma FF, Nelemans P, Prins MH . Influence of SERTPR and STin2 in the serotonin transporter gene on the effect of selective serotonin reuptake inhibitors in depression: a systematic review. Mol Psychiatry 2004; 9: 433–441.

    Article  CAS  PubMed  Google Scholar 

  39. Roth BL . Drugs and valvular heart disease. N Engl J Med 2007; 356: 6–9.

    Article  CAS  PubMed  Google Scholar 

  40. Farber HW, Loscalzo J . Pulmonary arterial hypertension. N Engl J Med 2004; 351: 1655–1665.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs Patricia Gaspar and Fiona Francis for critical reading of the manuscript, Sarah Rogan for English editing of the manuscript, as well as C G Bonelli (Institute of Pharmacological Research-CONICET, Argentina) for her excellent assistance on HPLC techniques. Pet-1-CRE and Pet-1−/− mice were kindly provided by Dr Evan Deneris (Case Western Reserve University, Cleveland, USA), whereas RCE:loxP mice were kindly obtained from Dr Fishell (Smilow Research Center, New York University, USA). This work has been supported by funds from the Centre National de la Recherche Scientifique, the Institut National de la Santé et de la Recherche Médicale, the Université Pierre et Marie Curie, and by grants from the Fondation de France, the Fondation pour la Recherche Médicale, the French ministry of research (Agence Nationale pour la Recherche), and the European Commission (FP7-health-2007-A-201714-DEVANX). S Diaz is supported by fellowships from IBRO and from Region Ile de France DIM STEM and S Doly by a LeFoulon-DeLalande fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Maroteaux.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diaz, S., Doly, S., Narboux-Nême, N. et al. 5-HT2B receptors are required for serotonin-selective antidepressant actions. Mol Psychiatry 17, 154–163 (2012). https://doi.org/10.1038/mp.2011.159

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2011.159

Keywords

This article is cited by

Search

Quick links