Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Neurodevelopmental and neuropsychiatric behaviour defects arise from 14-3-3ζ deficiency

Abstract

Complex neuropsychiatric disorders are believed to arise from multiple synergistic deficiencies within connected biological networks controlling neuronal migration, axonal pathfinding and synapse formation. Here, we show that deletion of 14-3-3ζ causes neurodevelopmental anomalies similar to those seen in neuropsychiatric disorders such as schizophrenia, autism spectrum disorder and bipolar disorder. 14-3-3ζ-Deficient mice displayed striking behavioural and cognitive deficiencies including a reduced capacity to learn and remember, hyperactivity and disrupted sensorimotor gating. These deficits are accompanied by subtle developmental abnormalities of the hippocampus that are underpinned by aberrant neuronal migration. Significantly, 14-3-3ζ-deficient mice exhibited abnormal mossy fibre navigation and glutamatergic synapse formation. The molecular basis of these defects involves the schizophrenia risk factor, DISC1, which interacts isoform specifically with 14-3-3ζ. Our data provide the first evidence of a direct role for 14-3-3ζ deficiency in the aetiology of neurodevelopmental disorders and identifies 14-3-3ζ as a central risk factor in the schizophrenia protein interaction network.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Berg D, Holzmann C, Riess O . 14-3-3 Proteins in the nervous system. Nat Rev Neurosci 2003; 4: 752–762.

    Article  CAS  PubMed  Google Scholar 

  2. Fu H, Subramanian RR, Masters SC . 14-3-3 Proteins: structure, function, and regulation. Annu Rev Pharmacol Toxicol 2000; 40: 617–647.

    Article  CAS  PubMed  Google Scholar 

  3. Toyo-oka K, Shionoya A, Gambello MJ, Cardoso C, Leventer R, Ward HL et al. 14-3-3Epsilon is important for neuronal migration by binding to NUDEL: a molecular explanation for Miller-Dieker syndrome. Nat Genet 2003; 34: 274–285.

    Article  CAS  PubMed  Google Scholar 

  4. Aitken A . 14-3-3 Proteins: a historic overview. Semin Cancer Biol 2006; 16: 162–172.

    Article  CAS  PubMed  Google Scholar 

  5. Rosner M, Hengstschlager M . 14-3-3 Proteins are involved in the regulation of mammalian cell proliferation. Amino Acids 2006; 30: 105–109.

    Article  CAS  PubMed  Google Scholar 

  6. Tenney JR, Hopkin RJ, Schapiro MB . Deletion of 14-3-3{varepsilon} and CRK: a clinical syndrome with macrocephaly, developmental delay, and generalized epilepsy. J Child Neurol 2011; 26: 223–227.

    Article  PubMed  Google Scholar 

  7. Wong AH, Likhodi O, Trakalo J, Yusuf M, Sinha A, Pato CN et al. Genetic and post-mortem mRNA analysis of the 14-3-3 genes that encode phosphoserine/threonine-binding regulatory proteins in schizophrenia and bipolar disorder. Schizophr Res 2005; 78: 137–146.

    Article  PubMed  Google Scholar 

  8. Grover D, Verma R, Goes FS, Mahon PL, Gershon ES, McMahon FJ et al. Family-based association of YWHAH in psychotic bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 2009; 150B: 977–983.

    Article  CAS  PubMed  Google Scholar 

  9. Bruno DL, Anderlid BM, Lindstrand A, van Ravenswaaij-Arts C, Ganesamoorthy D, Lundin J et al. Further molecular and clinical delineation of co-locating 17p13.3 microdeletions and microduplications that show distinctive phenotypes. J Med Genet 2010; 47: 299–311.

    Article  CAS  PubMed  Google Scholar 

  10. Schiff M, Delahaye A, Andrieux J, Sanlaville D, Vincent-Delorme C, Aboura A et al. Further delineation of the 17p13.3 microdeletion involving YWHAE but distal to PAFAH1B1: four additional patients. Eur J Med Genet 2010; 53: 303–308.

    Article  PubMed  Google Scholar 

  11. Duan S, Gao R, Xing Q, Du J, Liu Z, Chen Q et al. A family-based association study of schizophrenia with polymorphisms at three candidate genes. Neurosci Lett 2005; 379: 32–36.

    Article  CAS  PubMed  Google Scholar 

  12. Ikeda M, Hikita T, Taya S, Uraguchi-Asaki J, Toyo-oka K, Wynshaw-Boris A et al. Identification of YWHAE, a gene encoding 14-3-3epsilon, as a possible susceptibility gene for schizophrenia. Hum Mol Genet 2008; 17: 3212–3222.

    Article  CAS  PubMed  Google Scholar 

  13. Middleton FA, Peng L, Lewis DA, Levitt P, Mirnics K . Altered expression of 14-3-3 genes in the prefrontal cortex of subjects with schizophrenia. Neuropsychopharmacology 2005; 30: 974–983.

    Article  CAS  PubMed  Google Scholar 

  14. English JA, Dicker P, Focking M, Dunn MJ, Cotter DR . 2-D DIGE analysis implicates cytoskeletal abnormalities in psychiatric disease. Proteomics 2009; 9: 3368–3382.

    Article  CAS  PubMed  Google Scholar 

  15. English JA, Pennington K, Dunn MJ, Cotter DR . The neuroproteomics of schizophrenia. Biol Psychiatry 2011; 69: 163–172.

    Article  CAS  PubMed  Google Scholar 

  16. Sivagnanasundaram S, Crossett B, Dedova I, Cordwell S, Matsumoto I . Abnormal pathways in the genu of the corpus callosum in schizophrenia pathogenesis: a proteome study. Proteomics Clin Appl 2007; 1: 1291–1305.

    Article  CAS  PubMed  Google Scholar 

  17. Jia Y, Yu X, Zhang B, Yuan Y, Xu Q, Shen Y . An association study between polymorphisms in three genes of 14-3-3 (tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein) family and paranoid schizophrenia in northern Chinese population. Eur Psychiatry 2004; 19: 377–379.

    Article  PubMed  Google Scholar 

  18. Lewis DA, Levitt P . Schizophrenia as a disorder of neurodevelopment. Annu Rev Neurosci 2002; 25: 409–432.

    Article  CAS  PubMed  Google Scholar 

  19. Walsh T, McClellan JM, McCarthy SE, Addington AM, Pierce SB, Cooper GM et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 2008; 320: 539–543.

    Article  CAS  PubMed  Google Scholar 

  20. Purcell SM, Wray NR, Stone JL, Visscher PM, O’Donovan MC, Sullivan PF et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 2009; 460: 748–752.

    CAS  PubMed  Google Scholar 

  21. Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, Rujescu D et al. Common variants conferring risk of schizophrenia. Nature 2009; 460: 744–747.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Johnstone M, Thomson PA, Hall J, McIntosh AM, Lawrie SM, Porteous DJ . DISC1 in schizophrenia: genetic mouse models and human genomic imaging. Schizophr Bull 2010; 37: 14–20.

    Article  PubMed  PubMed Central  Google Scholar 

  23. St Clair D, Blackwood D, Muir W, Carothers A, Walker M, Spowart G et al. Association within a family of a balanced autosomal translocation with major mental illness. Lancet 1990; 336: 13–16.

    Article  CAS  PubMed  Google Scholar 

  24. Bradshaw NJ, Porteous DJ . DISC1-binding proteins in neural development, signalling and schizophrenia. Neuropharmacology 2010 (in press).

  25. Camargo LM, Collura V, Rain JC, Mizuguchi K, Hermjakob H, Kerrien S et al. Disrupted in schizophrenia 1 interactome: evidence for the close connectivity of risk genes and a potential synaptic basis for schizophrenia. Mol Psychiatry 2007; 12: 74–86.

    Article  CAS  PubMed  Google Scholar 

  26. Clapcote SJ, Lipina TV, Millar JK, Mackie S, Christie S, Ogawa F et al. Behavioral phenotypes of Disc1 missense mutations in mice. Neuron 2007; 54: 387–402.

    Article  CAS  PubMed  Google Scholar 

  27. Stark KL, Xu B, Bagchi A, Lai WS, Liu H, Hsu R et al. Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model. Nat Genet 2008; 40: 751–760.

    Article  CAS  PubMed  Google Scholar 

  28. Crawley JN . Behavioral phenotyping of transgenic and knockout mice: experimental design and evaluation of general health, sensory functions, motor abilities, and specific behavioral tests. Brain Res 1999; 835: 18–26.

    Article  CAS  PubMed  Google Scholar 

  29. Crawley JN, Belknap JK, Collins A, Crabbe JC, Frankel W, Henderson N et al. Behavioral phenotypes of inbred mouse strains: implications and recommendations for molecular studies. Psychopharmacology (Berl) 1997; 132: 107–124.

    Article  CAS  Google Scholar 

  30. Coyle P, Tran N, Fung JN, Summers BL, Rofe AM . Maternal dietary zinc supplementation prevents aberrant behaviour in an object recognition task in mice offspring exposed to LPS in early pregnancy. Behav Brain Res 2009; 197: 210–218.

    Article  CAS  PubMed  Google Scholar 

  31. Summers BL, Rofe AM, Coyle P . Prenatal zinc treatment at the time of acute ethanol exposure limits spatial memory impairments in mouse offspring. Pediatr Res 2006; 59: 66–71.

    Article  CAS  PubMed  Google Scholar 

  32. van den Buuse M, Wischhof L, Lee RX, Martin S, Karl T . Neuregulin 1 hypomorphic mutant mice: enhanced baseline locomotor activity but normal psychotropic drug-induced hyperlocomotion and prepulse inhibition regulation. Int J Neuropsychopharmacol 2009; 12: 1383–1393.

    Article  CAS  PubMed  Google Scholar 

  33. Dere E, Kart-Teke E, Huston JP, De Souza Silva MA . The case for episodic memory in animals. Neurosci Biobehav Rev 2006; 30: 1206–1224.

    Article  CAS  PubMed  Google Scholar 

  34. Sik A, van Nieuwehuyzen P, Prickaerts J, Blokland A . Performance of different mouse strains in an object recognition task. Behav Brain Res 2003; 147: 49–54.

    Article  PubMed  Google Scholar 

  35. de Bruin N, Pouzet B . Beneficial effects of galantamine on performance in the object recognition task in Swiss mice: deficits induced by scopolamine and by prolonging the retention interval. Pharmacol Biochem Behav 2006; 85: 253–260.

    Article  CAS  PubMed  Google Scholar 

  36. Komada M, Takao K, Miyakawa T . Elevated plus maze for mice. J Vis Exp 2008; pii: 1088.

  37. Walf AA, Frye CA . The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat Protoc 2007; 2: 322–328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Koike H, Arguello PA, Kvajo M, Karayiorgou M, Gogos JA . Disc1 is mutated in the 129S6/SvEv strain and modulates working memory in mice. Proc Natl Acad Sci USA 2006; 103: 3693–3697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Komiyama NH, Watabe AM, Carlisle HJ, Porter K, Charlesworth P, Monti J et al. SynGAP regulates ERK/MAPK signaling, synaptic plasticity, and learning in the complex with postsynaptic density 95 and NMDA receptor. J Neurosci 2002; 22: 9721–9732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schwarz Q, Gu C, Fujisawa H, Sabelko K, Gertsenstein M, Nagy A et al. Vascular endothelial growth factor controls neuronal migration and cooperates with Sema3A to pattern distinct compartments of the facial nerve. Genes Dev 2004; 18: 2822–2834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Guthridge MA, Barry EF, Felquer FA, McClure BJ, Stomski FC, Ramshaw H et al. The phosphoserine-585-dependent pathway of the GM-CSF/IL-3/IL-5 receptors mediates hematopoietic cell survival through activation of NF-kappaB and induction of bcl-2. Blood 2004; 103: 820–827.

    Article  CAS  PubMed  Google Scholar 

  42. Kaech S, Banker G . Culturing hippocampal neurons. Nat Protoc 2006; 1: 2406–2415.

    Article  CAS  PubMed  Google Scholar 

  43. Baxter HC, Liu WG, Forster JL, Aitken A, Fraser JR . Immunolocalisation of 14-3-3 isoforms in normal and scrapie-infected murine brain. Neuroscience 2002; 109: 5–14.

    Article  CAS  PubMed  Google Scholar 

  44. Su YW, Hao Z, Hirao A, Yamamoto K, Lin WJ, Young A et al. 14-3-3{sigma} regulates B-cell homeostasis through stabilization of FOXO1. Proc Natl Acad Sci USA 2011; 108: 1555–1560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Forwood SE, Winters BD, Bussey TJ . Hippocampal lesions that abolish spatial maze performance spare object recognition memory at delays of up to 48 hours. Hippocampus 2005; 15: 347–355.

    Article  CAS  PubMed  Google Scholar 

  46. Winters BD, Bussey TJ . Glutamate receptors in perirhinal cortex mediate encoding, retrieval, and consolidation of object recognition memory. J Neurosci 2005; 25: 4243–4251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lister RG . The use of a plus-maze to measure anxiety in the mouse. Psychopharmacology (Berl) 1987; 92: 180–185.

    CAS  Google Scholar 

  48. Nakahira E, Yuasa S . Neuronal generation, migration, and differentiation in the mouse hippocampal primoridium as revealed by enhanced green fluorescent protein gene transfer by means of in utero electroporation. J Comp Neurol 2005; 483: 329–340.

    Article  PubMed  Google Scholar 

  49. Jablensky A, Sartorius N, Ernberg G, Anker M, Korten A, Cooper JE et al. Schizophrenia: manifestations, incidence and course in different cultures. A World Health Organization ten-country study. Psychol Med Monogr Suppl 1992; 20: 1–97.

    Article  CAS  PubMed  Google Scholar 

  50. Insel TR . Rethinking schizophrenia. Nature 2010; 468: 187–193.

    Article  CAS  PubMed  Google Scholar 

  51. Tamminga CA, Stan AD, Wagner AD . The hippocampal formation in schizophrenia. Am J Psychiatry 2010; 167: 1178–1193.

    Article  PubMed  Google Scholar 

  52. Taya S, Shinoda T, Tsuboi D, Asaki J, Nagai K, Hikita T et al. DISC1 regulates the transport of the NUDEL/LIS1/14-3-3epsilon complex through kinesin-1. J Neurosci 2007; 27: 15–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Guthridge MA, Stomski FC, Barry EF, Winnall W, Woodcock JM, McClure BJ et al. Site-specific serine phosphorylation of the IL-3 receptor is required for hemopoietic cell survival. Mol Cell 2000; 6: 99–108.

    Article  CAS  PubMed  Google Scholar 

  54. Stomski FC, Dottore M, Winnall W, Guthridge MA, Woodcock J, Bagley CJ et al. Identification of a 14-3-3 binding sequence in the common beta chain of the granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3), and IL-5 receptors that is serine-phosphorylated by GM-CSF. Blood 1999; 94: 1933–1942.

    CAS  PubMed  Google Scholar 

  55. Thomas D, Guthridge M, Woodcock J, Lopez A . 14-3-3 protein signaling in development and growth factor responses. Curr Top Dev Biol 2005; 67: 285–303.

    Article  CAS  PubMed  Google Scholar 

  56. Hirotsune S, Fleck MW, Gambello MJ, Bix GJ, Chen A, Clark GD et al. Graded reduction of Pafah1b1 (Lis1) activity results in neuronal migration defects and early embryonic lethality. Nat Genet 1998; 19: 333–339.

    Article  CAS  PubMed  Google Scholar 

  57. Sasaki S, Mori D, Toyo-oka K, Chen A, Garrett-Beal L, Muramatsu M et al. Complete loss of Ndel1 results in neuronal migration defects and early embryonic lethality. Mol Cell Biol 2005; 25: 7812–7827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Duan X, Chang JH, Ge S, Faulkner RL, Kim JY, Kitabatake Y et al. Disrupted-in-schizophrenia 1 regulates integration of newly generated neurons in the adult brain. Cell 2007; 130: 1146–1158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Youn YH, Pramparo T, Hirotsune S, Wynshaw-Boris A . Distinct dose-dependent cortical neuronal migration and neurite extension defects in Lis1 and Ndel1 mutant mice. J Neurosci 2009; 29: 15520–15530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hayashi-Takagi A, Sawa A . Disturbed synaptic connectivity in schizophrenia: convergence of genetic risk factors during neurodevelopment. Brain Res Bull 2011; 83: 140–146.

    Article  Google Scholar 

  61. Faulkner RL, Jang MH, Liu XB, Duan X, Sailor KA, Kim JY et al. Development of hippocampal mossy fiber synaptic outputs by new neurons in the adult brain. Proc Natl Acad Sci USA 2008; 105: 14157–14162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Brandon NJ, Handford EJ, Schurov I, Rain JC, Pelling M, Duran-Jimeniz B et al. Disrupted in schizophrenia 1 and Nudel form a neurodevelopmentally regulated protein complex: implications for schizophrenia and other major neurological disorders. Mol Cell Neurosci 2004; 25: 42–55.

    Article  CAS  PubMed  Google Scholar 

  63. Murdoch H, Mackie S, Collins DM, Hill EV, Bolger GB, Klussmann E et al. Isoform-selective susceptibility of DISC1/phosphodiesterase-4 complexes to dissociation by elevated intracellular cAMP levels. J Neurosci 2007; 27: 9513–9524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sun J, Jia P, Fanous AH, van den Oord E, Chen X, Riley BP et al. Schizophrenia gene networks and pathways and their applications for novel candidate gene selection. PLoS One 2010; 5: e11351.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Keuchler A, Buysse K, Clayton-Smith J, Le Caignec C, David A, Engels H et al. Five patients with novel overlapping interstitial deletions in 8q22.2q22.3. Am J Med Genet 2011; 155A: 1857–1864.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Rebecca Krake for genotyping mice, aiding in behavioural studies, and maintaining the mouse colonies, Daniel Thomas for criticizing the paper and Thomas Sullivan for help with statistical analysis. This work was funded by grants from the National Health and Medical Research Council of Australia and Medvet Laboratories. HSR is the recipient of the Peter Nelson Leukaemia Research Fellowship and QS is the recipient of a National Health and Medical Research Council of Australia Career Development Award.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A F Lopez or Q P Schwarz.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheah, PS., Ramshaw, H., Thomas, P. et al. Neurodevelopmental and neuropsychiatric behaviour defects arise from 14-3-3ζ deficiency. Mol Psychiatry 17, 451–466 (2012). https://doi.org/10.1038/mp.2011.158

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2011.158

Keywords

This article is cited by

Search

Quick links