Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Common functional polymorphisms of DISC1 and cortical maturation in typically developing children and adolescents

Abstract

Disrupted-in-schizophrenia-1 (DISC1), contains two common non-synonymous single-nucleotide polymorphisms (SNPs)—Leu607Phe and Ser704Cys—that modulate (i) facets of DISC1 molecular functioning important for cortical development, (ii) fronto-temporal cortical anatomy in adults and (iii) risk for diverse psychiatric phenotypes that often emerge during childhood and adolescence, and are associated with altered fronto-temporal cortical development. It remains unknown, however, if Leu607Phe and Ser704Cys influence cortical maturation before adulthood, and whether each SNP shows unique or overlapping effects. Therefore, we related genotype at Leu607Phe and Ser704Cys to cortical thickness (CT) in 255 typically developing individuals aged 9–22 years on whom 598 magnetic resonance imaging brain scans had been acquired longitudinally. Rate of cortical thinning varied with DISC1 genotype. Specifically, the rate of cortical thinning was attenuated in Phe-carrier compared with Leu-homozygous groups (in bilateral superior frontal and left angular gyri) and accelerated in Ser-homozygous compared with Cys-carrier groups (in left anterior cingulate and temporal cortices). Both SNPs additively predicted fixed differences in right lateral temporal CT, which were maximal between Phe-carrier/Ser-homozygous (thinnest) vs Leu-homozygous/Cys-carrier (thickest) groups. Leu607Phe and Ser704Cys genotype interacted to predict the rate of cortical thinning in right orbitofrontal, middle temporal and superior parietal cortices, wherein a significantly reduced rate of CT loss was observed in Phe-carrier/Cys-carrier participants only. Our findings argue for further examination of Leu607Phe and Ser704Cys interactions at a molecular level, and suggest that these SNPs might operate (in concert with other genetic and environmental factors) to shape risk for diverse phenotypes by impacting on the early maturation of fronto-temporal cortices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Millar JK, Wilson-Annan JC, Anderson S, Christie S, Taylor MS, Semple CA et al. Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum Mol Genet 2000; 9: 1415–1423.

    Article  CAS  Google Scholar 

  2. St Clair D, Blackwood D, Muir W, Carothers A, Walker M, Spowart G et al. Association within a family of a balanced autosomal translocation with major mental illness. Lancet 1990; 336: 13–16.

    Article  CAS  Google Scholar 

  3. Chubb JE, Bradshaw NJ, Soares DC, Porteous DJ, Millar JK . The DISC locus in psychiatric illness. Mol Psychiatry 2008; 13: 36–64.

    Article  CAS  Google Scholar 

  4. Hodgkinson CA, Goldman D, Jaeger J, Persaud S, Kane JM, Lipsky RH et al. Disrupted in schizophrenia 1 (DISC1): association with schizophrenia, schizoaffective disorder, and bipolar disorder. Am J Hum Genet 2004; 75: 862–872.

    Article  CAS  Google Scholar 

  5. Hennah W, Thomson P, McQuillin A, Bass N, Loukola A, Anjorin A et al. DISC1 association, heterogeneity and interplay in schizophrenia and bipolar disorder. Mol Psychiatry 2009; 14: 865–873.

    Article  CAS  Google Scholar 

  6. Kilpinen H, Ylisaukko-Oja T, Hennah W, Palo OM, Varilo T, Vanhala R et al. Association of DISC1 with autism and Asperger syndrome. Mol Psychiatry 2008; 13: 187–196.

    Article  CAS  Google Scholar 

  7. Williams JM, Beck TF, Pearson DM, Proud MB, Cheung SW, Scott DA . A 1q42 deletion involving DISC1, DISC2, and TSNAX in an autism spectrum disorder. Am J Med Genet A 2009; 149A: 1758–1762.

    Article  CAS  Google Scholar 

  8. Cannon TD, Hennah W, van Erp TG, Thompson PM, Lonnqvist J, Huttunen M et al. Association of DISC1/TRAX haplotypes with schizophrenia, reduced prefrontal gray matter, and impaired short- and long-term memory. Arch Gen Psychiatry 2005; 62: 1205–1213.

    Article  CAS  Google Scholar 

  9. Hennah W, Tuulio-Henriksson A, Paunio T, Ekelund J, Varilo T, Partonen T et al. A haplotype within the DISC1 gene is associated with visual memory functions in families with a high density of schizophrenia. Mol Psychiatry 2005; 10: 1097–1103.

    Article  CAS  Google Scholar 

  10. Callicott JH, Straub RE, Pezawas L, Egan MF, Mattay VS, Hariri AR et al. Variation in DISC1 affects hippocampal structure and function and increases risk for schizophrenia. Proc Natl Acad Sci USA 2005; 102: 8627–8632.

    Article  CAS  Google Scholar 

  11. DeRosse P, Hodgkinson CA, Lencz T, Burdick KE, Kane JM, Goldman D et al. Disrupted in schizophrenia 1 genotype and positive symptoms in schizophrenia. Biol Psychiatry 2007; 61: 1208–1210.

    Article  CAS  Google Scholar 

  12. Tomppo L, Hennah W, Miettunen J, Jarvelin MR, Veijola J, Ripatti S et al. Association of variants in DISC1 with psychosis-related traits in a large population cohort. Arch Gen Psychiatry 2009; 66: 134–141.

    Article  Google Scholar 

  13. Thomson PA, Harris SE, Starr JM, Whalley LJ, Porteous DJ, Deary IJ . Association between genotype at an exonic SNP in DISC1 and normal cognitive aging. Neurosci Lett 2005; 389: 41–45.

    Article  CAS  Google Scholar 

  14. Harris SE, Hennah W, Thomson PA, Luciano M, Starr JM, Porteous DJ et al. Variation in DISC1 is associated with anxiety, depression and emotional stability in elderly women. Mol Psychiatry 2010; 15: 232–234.

    Article  CAS  Google Scholar 

  15. Jaaro-Peled H, Hayashi-Takagi A, Seshadri S, Kamiya A, Brandon NJ, Sawa A . Neurodevelopmental mechanisms of schizophrenia: understanding disturbed postnatal brain maturation through neuregulin-1-ErbB4 and DISC1. Trends Neurosci 2009; 32: 485–495.

    Article  CAS  Google Scholar 

  16. Harrison PJ, Weinberger DR . Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. [References]. Mol Psychiatry 2005; 10: 68.

    Article  Google Scholar 

  17. Bauman ML, Kemper TL . Neuroanatomic observations of the brain in autism: A review and future directions. Int J Dev Neurosci 2005; 23: 183–187.

    Article  Google Scholar 

  18. Haldane M, Frangou S . New insights help define the pathophysiology of bipolar affective disorder: neuroimaging and neuropathology findings. Prog Neuropsychopharmacol Biol Psychiatry 2004; 28: 943–960.

    Article  Google Scholar 

  19. Raznahan A, Toro R, Daly E, Robertson D, Murphy C, Deeley Q et al. Cortical anatomy in autism spectrum disorder: an in vivo MRI study on the effect of age. Cereb Cortex, 2009/10/13 ed, 2009 [e-pub ahead of print].

  20. Giedd JN, Lenroot RK, Shaw P, Lalonde F, Celano M, White S et al. Trajectories of anatomic brain development as a phenotype. Novartis Found Symp 2008; 289: 101–112; discussion 112-108, 193-105.

    Article  CAS  Google Scholar 

  21. Gogtay N, Giedd JN, Lusk L, Hayashi KM, Greenstein D, Vaituzis AC et al. Dynamic mapping of human cortical development during childhood through early adulthood. Proc Natl Acad Sci USA 2004; 101: 8174–8179.

    Article  CAS  Google Scholar 

  22. Shaw P, Kabani NJ, Lerch JP, Eckstrand K, Lenroot R, Gogtay N et al. Neurodevelopmental trajectories of the human cerebral cortex. J Neurosci 2008; 28: 3586–3594.

    Article  CAS  Google Scholar 

  23. Huttenlocher PR . Morphometric study of human cerebral cortex development. Neuropsychologia 1990; 28: 517–527.

    Article  CAS  Google Scholar 

  24. Duan X, Chang JH, Ge S, Faulkner RL, Kim JY, Kitabatake Y et al. Disrupted-in-schizophrenia 1 regulates integration of newly generated neurons in the adult brain. Cell 2007; 130: 1146–1158.

    Article  CAS  Google Scholar 

  25. Mao Y, Ge X, Frank CL, Madison JM, Koehler AN, Doud MK et al. Disrupted in schizophrenia 1 regulates neuronal progenitor proliferation via modulation of GSK3beta/beta-catenin signaling. Cell 2009; 136: 1017–1031.

    Article  CAS  Google Scholar 

  26. Shen S, Lang B, Nakamoto C, Zhang F, Pu J, Kuan SL et al. Schizophrenia-related neural and behavioral phenotypes in transgenic mice expressing truncated Disc1. J Neurosci 2008; 28: 10893–10904.

    Article  CAS  Google Scholar 

  27. Kendler KS . Reflections on the relationship between psychiatric genetics and psychiatric nosology. Am J Psychiatry 2006; 163: 1138–1146.

    Article  Google Scholar 

  28. Rastogi A, Zai C, Likhodi O, Kennedy JL, Wong AH . Genetic association and post-mortem brain mRNA analysis of DISC1 and related genes in schizophrenia. Schizophr Res 2009; 114: 39–49.

    Article  Google Scholar 

  29. Hennah W, Varilo T, Kestila M, Paunio T, Arajarvi R, Haukka J et al. Haplotype transmission analysis provides evidence of association for DISC1 to schizophrenia and suggests sex-dependent effects. Hum Mol Genet 2003; 12: 3151–3159.

    Article  CAS  Google Scholar 

  30. Szeszko PR, Hodgkinson CA, Robinson DG, Derosse P, Bilder RM, Lencz T et al. DISC1 is associated with prefrontal cortical gray matter and positive symptoms in schizophrenia. Biol Psychol 2008; 79: 103–110.

    Article  Google Scholar 

  31. Schosser A, Gaysina D, Cohen-Woods S, Chow PC, Martucci L, Craddock N et al. Association of DISC1 and TSNAX genes and affective disorders in the depression case-control (DeCC) and bipolar affective case-control (BACCS) studies. Mol Psychiatry 2009/03/04 ed, 2009 [e-pub ahead of print].

  32. Kamiya A, Tan PL, Kubo K, Engelhard C, Ishizuka K, Kubo A et al. Recruitment of PCM1 to the centrosome by the cooperative action of DISC1 and BBS4: a candidate for psychiatric illnesses. Arch Gen Psychiatry 2008; 65: 996–1006.

    Article  CAS  Google Scholar 

  33. Eastwood S, Hodgkinson CA, Harrison PJ . DISC-1 Leu607Phe alleles differentially affect centrosomal PCM1 localization and neurotransmitter release. Mol Psychiatry 2009; 14: 556–557.

    Article  CAS  Google Scholar 

  34. Nakata K, Lipska BK, Hyde TM, Ye T, Newburn EN, Morita Y et al. DISC1 splice variants are upregulated in schizophrenia and associated with risk polymorphisms. Proc Natl Acad Sci USA 2009; 106: 15873–15878.

    Article  CAS  Google Scholar 

  35. Kim HJ, Park HJ, Jung KH, Ban JY, Ra J, Kim JW et al. Association study of polymorphisms between DISC1 and schizophrenia in a Korean population. Neurosci Lett 2008; 430: 60–63.

    Article  CAS  Google Scholar 

  36. Hashimoto R, Numakawa T, Ohnishi T, Kumamaru E, Yagasaki Y, Ishimoto T et al. Impact of the DISC1 Ser704Cys polymorphism on risk for major depression, brain morphology and ERK signaling. Hum Mol Genet 2006; 15: 3024–3033.

    Article  CAS  Google Scholar 

  37. Palo OM, Antila M, Silander K, Hennah W, Kilpinen H, Soronen P et al. Association of distinct allelic haplotypes of DISC1 with psychotic and bipolar spectrum disorders and with underlying cognitive impairments. Hum Mol Genet 2007; 16: 2517–2528.

    Article  CAS  Google Scholar 

  38. Leliveld SR, Hendriks P, Michel M, Sajnani G, Bader V, Trossbach S et al. Oligomer assembly of the C-terminal DISC1 domain (640-854) is controlled by self-association motifs and disease-associated polymorphism S704C. Biochemistry (Mosc) 2009; 48: 7746–7755.

    Article  CAS  Google Scholar 

  39. Leliveld SR, Bader V, Hendriks P, Prikulis I, Sajnani G, Requena JR et al. Insolubility of disrupted-in-schizophrenia 1 disrupts oligomer-dependent interactions with nuclear distribution element 1 and is associated with sporadic mental disease. J Neurosci 2008; 28: 3839–3845.

    Article  CAS  Google Scholar 

  40. Ozeki Y, Tomoda T, Kleiderlein J, Kamiya A, Bord L, Fujii K et al. Disrupted-in-Schizophrenia-1 (DISC-1): mutant truncation prevents binding to NudE-like (NUDEL) and inhibits neurite outgrowth. Proc Natl Acad Sci USA 2003; 100: 289–294.

    Article  CAS  Google Scholar 

  41. Takahashi T, Suzuki M, Tsunoda M, Maeno N, Kawasaki Y, Zhou SY et al. The Disrupted-in-schizophrenia-1 Ser704Cys polymorphism and brain morphology in schizophrenia. Psychiatry Res 2009; 172: 128–135.

    Article  CAS  Google Scholar 

  42. Di Giorgio A, Blasi G, Sambataro F, Rampino A, Papazacharias A, Gambi F et al. Association of the SerCys DISC1 polymorphism with human hippocampal formation gray matter and function during memory encoding. Eur J Neurosci 2008; 28: 2129–2136.

    Article  Google Scholar 

  43. Prata DP, Mechelli A, Fu CH, Picchioni M, Kane F, Kalidindi S et al. The DISC1 Ser704Cys polymorphism is associated with prefrontal function in healthy individuals. Mol Psychiatry 2008; 13: 909.

    Article  CAS  Google Scholar 

  44. Hariri AR, Weinberger DR . Imaging genomics. Br Med Bull 2003; 65: 259–270.

    Article  CAS  Google Scholar 

  45. Lenroot RK, Schmitt JE, Ordaz SJ, Wallace GL, Neale MC, Lerch JP et al. Differences in genetic and environmental influences on the human cerebral cortex associated with development during childhood and adolescence. Hum Brain Mapp 2009; 30: 163–174.

    Article  Google Scholar 

  46. Greenstein D, Lerch J, Shaw P, Clasen L, Giedd J, Gochman P et al. Childhood onset schizophrenia: cortical brain abnormalities as young adults. J Child Psychol Psychiatry 2006; 47: 1003–1012.

    Article  Google Scholar 

  47. Goldman AL, Pezawas L, Mattay VS, Fischl B, Verchinski BA, Chen Q et al. Widespread reductions of cortical thickness in schizophrenia and spectrum disorders and evidence of heritability. Arch Gen Psychiatry 2009; 66: 467–477.

    Article  Google Scholar 

  48. Shaw P, Gornick M, Lerch J, Addington A, Seal J, Greenstein D et al. Polymorphisms of the dopamine d4 receptor, clinical outcome, and cortical structure in attention-deficit/hyperactivity disorder. Arch Gen Psychiatry 2007; 64: 921–931.

    Article  Google Scholar 

  49. Kabani N, Le GG, MacDonald D, Evans AC . Measurement of cortical thickness using an automated 3-D algorithm: a validation study. Neuroimage 2001; 13: 375–380.

    Article  CAS  Google Scholar 

  50. Raznahan A, Cutter W, Lalonde F, Robertson D, Daly E, Conway GS et al. Cortical anatomy in human X monosomy. Neuroimage 2010; 49: 2915–2923.

    Article  Google Scholar 

  51. Giedd JN, Blumenthal J, Jeffries NO, Castellanos FX, Liu H, Zijdenbos A et al. Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci 1999; 2: 861–863.

    Article  CAS  Google Scholar 

  52. Shaw P, Greenstein D, Lerch J, Clasen L, Lenroot R, Gogtay N et al. Intellectual ability and cortical development in children and adolescents. Nature 2006; 440: 676–679.

    Article  CAS  Google Scholar 

  53. Hollingshead AB . Four-Factor Index for Social Status. Yale UP: New Haven, 1975.

    Google Scholar 

  54. Herbeck JT, Gottlieb GS, Wong K, Detels R, Phair JP, Rinaldo CR et al. Fidelity of SNP array genotyping using Epstein Barr virus-transformed B-lymphocyte cell lines: implications for genome-wide association studies. PLoS One 2009; 4: e6915.

    Article  Google Scholar 

  55. Hawkins JR, Khripin Y, Valdes AM, Weaver TA . Miniaturized sealed-tube allele-specific PCR. Hum Mutat 2002; 19: 543–553.

    Article  CAS  Google Scholar 

  56. Giedd JN, Clasen LS, Wallace GL, Lenroot RK, Lerch JP, Wells EM et al. XXY (Klinefelter syndrome): a pediatric quantitative brain magnetic resonance imaging case-control study. Pediatrics 2007; 119: e232–e240.

    Article  Google Scholar 

  57. Zijdenbos AP, Forghani R, Evans AC . Automatic ‘pipeline’ analysis of 3-D MRI data for clinical trials: application to multiple sclerosis. IEEE Trans Med Imaging 2002; 21: 1280–1291.

    Article  Google Scholar 

  58. MacDonald D, Kabani N, Avis D, Evans A . Automated 3-D extraction of inner and outer surfaces of cerebral cortex from MRI. Neuroimage 2000; 12: 340–356.

    Article  CAS  Google Scholar 

  59. Lerch JP, Evans AC . Cortical thickness analysis examined through power analysis and a population simulation. Neuroimage 2005; 24: 163–173.

    Article  Google Scholar 

  60. Pinheiro J, DM B . Mixed-Effects Models in S and S-PLUS. Springer: New York, 2000.

    Book  Google Scholar 

  61. Genovese CR, Lazar NA, Nichols T . Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 2002; 15: 870–878.

    Article  Google Scholar 

  62. Gogtay N, Ordonez A, Herman DH, Hayashi KM, Greenstein D, Vaituzis C et al. Dynamic mapping of cortical development before and after the onset of pediatric bipolar illness. J Child Psychol Psychiatry 2007; 48: 852–862.

    Article  Google Scholar 

  63. Gogtay N, Greenstein D, Lenane M, Clasen L, Sharp W, Gochman P et al. Cortical brain development in nonpsychotic siblings of patients with childhood-onset schizophrenia. Arch Gen Psychiatry 2007; 64: 772–780.

    Article  Google Scholar 

  64. Peterson BS, Warner V, Bansal R, Zhu H, Hao X, Liu J et al. Cortical thinning in persons at increased familial risk for major depression. Proc Natl Acad Sci USA 2009; 106: 6273–6278.

    Article  CAS  Google Scholar 

  65. Brandon NJ, Millar JK, Korth C, Sive H, Singh KK, Sawa A . Understanding the role of DISC1 in psychiatric disease and during normal development. J Neurosci 2009; 29: 12768–12775.

    Article  CAS  Google Scholar 

  66. Manji HK, Quiroz JA, Sporn J, Payne JL, Denicoff K, Gray NA et al. Enhancing neuronal plasticity and cellular resilience to develop novel, improved therapeutics for difficult-to-treat depression. Biol Psychiatry 2003; 53: 707–742.

    Article  CAS  Google Scholar 

  67. Burdick KE, Kamiya A, Hodgkinson CA, Lencz T, DeRosse P, Ishizuka K et al. Elucidating the relationship between DISC1, NDEL1 and NDE1 and the risk for schizophrenia: evidence of epistasis and competitive binding. Hum Mol Genet 2008; 17: 2462–2473.

    Article  CAS  Google Scholar 

  68. Hennah W, Porteous D . The DISC1 pathway modulates expression of neurodevelopmental, synaptogenic and sensory perception genes. PLoS One 2009; 4: e4906.

    Article  Google Scholar 

  69. Camargo LM, Collura V, Rain JC, Mizuguchi K, Hermjakob H, Kerrien S et al. Disrupted in schizophrenia 1 interactome: evidence for the close connectivity of risk genes and a potential synaptic basis for schizophrenia. Mol Psychiatry 2007; 12: 74–86.

    Article  CAS  Google Scholar 

  70. Huttenlocher PR, Dabholkar A . Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol 1997; 387: 167–178.

    Article  CAS  Google Scholar 

  71. Sowell ER, Thompson PM, Leonard CM, Welcome SE, Kan E, Toga AW . Longitudinal mapping of cortical thickness and brain growth in normal children. J Neurosci 2004; 24: 8223–8231.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded through the National Institutes of Health, National Institute of Health Intramural Research, and a UK Medical Research Council Clinical Research Training Fellowship (author AR—G0701370). We thank the participants who took part in this study. We are also grateful to the reviewers of this paper for their helpful comments. Dr Raznahan would like to thank Ms Shirley V Rojas for her tireless support on both sides of the laboratory door.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Raznahan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raznahan, A., Lee, Y., Long, R. et al. Common functional polymorphisms of DISC1 and cortical maturation in typically developing children and adolescents. Mol Psychiatry 16, 917–926 (2011). https://doi.org/10.1038/mp.2010.72

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2010.72

Keywords

This article is cited by

Search

Quick links