Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Hierarchical temporal processing deficit model of reality distortion and psychoses

A Corrigendum to this article was published on 26 March 2012

Abstract

We posit in this article that hierarchical temporal processing deficit is the underlying basis of reality distortion and psychoses. Schizophrenia is a prototypical reality distortion disorder in which the patient manifests with auditory hallucinations, delusions, disorganized speech and thinking, cognitive impairment, avolition and social and occupational dysfunction. Reality distortion can be present in many other disorders including bipolar disorder, major depression and even dementia. Conceptually, schizophrenia is a heterogeneous entity likely to be because of numerous causes similar to dementia. Although no single symptom or set of symptoms is pathognomonic, a cardinal feature in all patients with schizophrenia is chronic distortion of reality. The model that we have proposed accounts for the varied manifestations of reality distortion including hallucinations and delusions. In this paper we consider the implications of this model for the underlying biology of psychoses and also for the neurobiology of schizophrenia and suggest potential targets to consider for the etiology and pathophysiology of reality distortion, especially in the context of schizophrenia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Oulis P, Lykouras L, Tomaras V, Stefanis C, Christodoulou GN . Clinical homogeneity of DSM-IV schizophrenic disorders. Psychopathology 1999; 32: 187–191.

    Article  CAS  PubMed  Google Scholar 

  2. Mulle JG . Genomic structural variation and schizophrenia. Curr Psychiatry Rep 2008; 10: 171–177.

    Article  PubMed  Google Scholar 

  3. Fruntes V, Limosin F . Schizophrenia and viral infection during neurodevelopment: a pathogenesis model? Med Sci Monit 2008; 14: RA71–RA77.

    PubMed  Google Scholar 

  4. Lewis DA, Hashimoto T, Volk DW . Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci 2005; 6: 312–324.

    Article  CAS  PubMed  Google Scholar 

  5. Duncan GE, Sheitman BB, Lieberman JA . An integrated view of pathophysiological models of schizophrenia. Brain Res Brain Res Rev 1999; 29: 250–264.

    Article  CAS  PubMed  Google Scholar 

  6. Kotrla KJ, Weinberger DR . Brain imaging in schizophrenia. Annu Rev Med 1995; 46: 113–122.

    Article  CAS  PubMed  Google Scholar 

  7. Krishnan RR, Keefe R, Kraus M . Schizophrenia is a disorder of higher order hierarchical processing. Medical Hypotheses 2009; 72: 740–744.

    Article  PubMed  Google Scholar 

  8. Helmholtz H . Handbuch Der Physiologischen Optik. Leopold Voss: Leipzig, Germany, 1866.

    Google Scholar 

  9. Purves D, Lotto RB, Williams SM, Nundy S, Yang Z . Why we see things the way we do: evidence for a wholly empirical strategy of vision. Philos Trans R Soc Lond B Biol Sci 2001; 356: 285–297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hawkins J, Blakeslee S . On Intelligence. Times Books New York: New York, USA, 2004.

    Google Scholar 

  11. Hirsch JA, Martinez LM . Laminar processing in the visual cortical column. Curr Opin Neurobiol 2006; 16: 377–384.

    Article  CAS  PubMed  Google Scholar 

  12. Douglas RJ, Martin KA . Recurrent neuronal circuits in the neocortex. Curr Biol 2007; 17: R496–R500.

    Article  CAS  PubMed  Google Scholar 

  13. Bliss TV, Lomo T . Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 1973; 232: 331–356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Deco G, Jirsa VK, Robinson PA, Breakspear M, Friston K . The dynamic brain: from spiking neurons to neural masses and cortical fields. PLoS Comput Biol 2008; 4: e1000092.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Aertsen A, Diesmann M, Gewaltig MO, Grun S, Rotter S . Neural dynamics in cortical networks—precision of joint-spiking events. Novartis Found Symp 2001; 239: 193–204; discussion 204–207, 234–240.

    CAS  PubMed  Google Scholar 

  16. Spruston N . Pyramidal neurons: dendritic structure and synaptic integration. Nat Rev Neurosci 2008; 9: 206–221.

    Article  CAS  PubMed  Google Scholar 

  17. Jirsa VK . Connectivity and dynamics of neural information processing. Neuroinformatics 2004; 2: 183–204.

    Article  PubMed  Google Scholar 

  18. Callaway EM . Feedforward, feedback and inhibitory connections in primate visual cortex. Neural Netw 2004; 17: 625–632.

    Article  PubMed  Google Scholar 

  19. Mumford D . On the computational architecture of the neocortex. I. The role of the thalamo-cortical loop. Biol Cybern 1991; 65: 135–145.

    Article  CAS  PubMed  Google Scholar 

  20. Siegel M, Kording KP, Konig P . Integrating top-down and bottom-up sensory processing by somato-dendritic interactions. J Comput Neurosci 2000; 8: 161–173.

    Article  CAS  PubMed  Google Scholar 

  21. Seeman P . Glutamate and dopamine components in schizophrenia. J Psychiatry Neurosci 2009; 34: 143–149.

    PubMed  PubMed Central  Google Scholar 

  22. Blundon JA, Zakharenko SS . Dissecting the components of long-term potentiation. Neuroscientist 2008; 14: 598–608.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Yashiro K, Philpot BD . Regulation of NMDA receptor subunit expression and its implications for LTD, LTP, and metaplasticity. Neuropharmacology 2008; 55: 1081–1094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Newpher TM, Ehlers MD . Glutamate receptor dynamics in dendritic microdomains. Neuron 2008; 58: 472–497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Raymond CR . LTP forms 1, 2 and 3: different mechanisms for the ‘long’ in long-term potentiation. Trends Neurosci 2007; 30: 167–175.

    Article  CAS  PubMed  Google Scholar 

  26. Wolf ME, Mangiavacchi S, Sun X . Mechanisms by which dopamine receptors may influence synaptic plasticity. Ann NY Acad Sci 2003; 1003: 241–249.

    Article  CAS  PubMed  Google Scholar 

  27. Sun X, Milovanovic M, Zhao Y, Wolf ME . Acute and chronic dopamine receptor stimulation modulates AMPA receptor trafficking in nucleus accumbens neurons cocultured with prefrontal cortex neurons. J Neurosci 2008; 28: 4216–4230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tseng KY, O'Donnell P . Dopamine modulation of prefrontal cortical interneurons changes during adolescence. Cereb Cortex 2007; 17: 1235–1240.

    Article  PubMed  Google Scholar 

  29. Sidman RL, Rakic P . Neuronal migration, with special reference to developing human brain: a review. Brain Res 1973; 62: 1–35.

    Article  CAS  PubMed  Google Scholar 

  30. Shirley A, Bayer JA . The Human Brain During the Second Trimester. 1st edn. CRC: New York, London, 2005.

    Google Scholar 

  31. Choi BH, Lapham LW . Radial glia in the human fetal cerebrum: a combined Golgi, immunofluorescent and electron microscopic study. Brain Res 1978; 148: 295–311.

    Article  CAS  PubMed  Google Scholar 

  32. Super H, Del Rio JA, Martinez A, Perez-Sust P, Soriano E . Disruption of neuronal migration and radial glia in the developing cerebral cortex following ablation of Cajal-Retzius cells. Cereb Cortex 2000; 10: 602–613.

    Article  CAS  PubMed  Google Scholar 

  33. Lois C, Alvarez-Buylla A . Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc Natl Acad Sci USA 1993; 90: 2074–2077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zecevic N, Chen Y, Filipovic R . Contributions of cortical subventricular zone to the development of the human cerebral cortex. J Comp Neurol 2005; 491: 109–122.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Rakic P . A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci 1995; 18: 383–388.

    Article  CAS  PubMed  Google Scholar 

  36. Chenn A, Walsh CA . Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science 2002; 297: 365–369.

    Article  CAS  PubMed  Google Scholar 

  37. Schmechel DE, Rakic P . Arrested proliferation of radial glial cells during midgestation in rhesus monkey. Nature 1979; 277: 303–305.

    Article  CAS  PubMed  Google Scholar 

  38. Tarabykin V, Stoykova A, Usman N, Gruss P . Cortical upper layer neurons derive from the subventricular zone as indicated by Svet1 gene expression. Development 2001; 128: 1983–1993.

    CAS  PubMed  Google Scholar 

  39. Rakic P . Developmental and evolutionary adaptations of cortical radial glia. Cereb Cortex 2003; 13: 541–549.

    Article  PubMed  Google Scholar 

  40. Zhong W . Diversifying neural cells through order of birth and asymmetry of division. Neuron 2003; 37: 11–14.

    Article  CAS  PubMed  Google Scholar 

  41. Shen Q, Wang Y, Dimos JT, Fasano CA, Phoenix TN, Lemischka IR et al. The timing of cortical neurogenesis is encoded within lineages of individual progenitor cells. Nat Neurosci 2006; 9: 743–751.

    Article  CAS  PubMed  Google Scholar 

  42. McConnell SK, Kaznowski CE . Cell cycle dependence of laminar determination in developing neocortex. Science 1991; 254: 282–285.

    Article  CAS  PubMed  Google Scholar 

  43. McConnell SK . The generation of neuronal diversity in the central nervous system. Annu Rev Neurosci 1991; 14: 269–300.

    Article  CAS  PubMed  Google Scholar 

  44. Desai AR, McConnell SK . Progressive restriction in fate potential by neural progenitors during cerebral cortical development. Development 2000; 127: 2863–2872.

    CAS  PubMed  Google Scholar 

  45. Gadisseux JF, Evrard P . Glial-neuronal relationship in the developing central nervous system. A histochemical-electron microscope study of radial glial cell particulate glycogen in normal and reeler mice and the human fetus. Dev Neurosci 1985; 7: 12–32.

    Article  CAS  PubMed  Google Scholar 

  46. Gotz M, Stoykova A, Gruss P . Pax6 controls radial glia differentiation in the cerebral cortex. Neuron 1998; 21: 1031–1044.

    Article  CAS  PubMed  Google Scholar 

  47. Zimmer C, Tiveron MC, Bodmer R, Cremer H . Dynamics of Cux2 expression suggests that an early pool of SVZ precursors is fated to become upper cortical layer neurons. Cereb Cortex 2004; 14: 1408–1420.

    Article  PubMed  Google Scholar 

  48. Sussel L, Marin O, Kimura S, Rubenstein JL . Loss of Nkx2.1 homeobox gene function results in a ventral to dorsal molecular respecification within the basal telencephalon: evidence for a transformation of the pallidum into the striatum. Development 1999; 126: 3359–3370.

    CAS  PubMed  Google Scholar 

  49. Anderson SA, Qiu M, Bulfone A, Eisenstat DD, Meneses J, Pedersen R et al. Mutations of the homeobox genes Dlx-1 and Dlx-2 disrupt the striatal subventricular zone and differentiation of late born striatal neurons. Neuron 1997; 19: 27–37.

    Article  CAS  PubMed  Google Scholar 

  50. Englund C, Fink A, Lau C, Pham D, Daza RA, Bulfone A et al. Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. J Neurosci 2005; 25: 247–251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Molyneaux BJ, Arlotta P, Hirata T, Hibi M, Macklis JD . Fezl is required for the birth and specification of corticospinal motor neurons. Neuron 2005; 47: 817–831.

    Article  CAS  PubMed  Google Scholar 

  52. Nieto M, Monuki ES, Tang H, Imitola J, Haubst N, Khoury SJ et al. Expression of Cux-1 and Cux-2 in the subventricular zone and upper layers II-IV of the cerebral cortex. J Comp Neurol 2004; 479: 168–180.

    Article  CAS  PubMed  Google Scholar 

  53. Gleeson JG, Walsh CA . Neuronal migration disorders: from genetic diseases to developmental mechanisms. Trends Neurosci 2000; 23: 352–359.

    Article  CAS  PubMed  Google Scholar 

  54. Britanova O, de Juan Romero C, Cheung A, Kwan KY, Schwark M, Gyorgy A et al. Satb2 is a postmitotic determinant for upper-layer neuron specification in the neocortex. Neuron 2008; 57: 378–392.

    Article  CAS  PubMed  Google Scholar 

  55. Katsuyama Y, Terashima T . Developmental anatomy of reeler mutant mouse. Dev Growth Differ 2009; 51: 271–286.

    Article  CAS  PubMed  Google Scholar 

  56. Chang BS, Duzcan F, Kim S, Cinbis M, Aggarwal A, Apse KA et al. The role of RELN in lissencephaly and neuropsychiatric disease. Am J Med Genet B Neuropsychiatr Genet 2007; 144B: 58–63.

    Article  CAS  PubMed  Google Scholar 

  57. Pisante A, Bronstein M, Yakir B, Darvasi A . A variant in the reelin gene increases the risk of schizophrenia and schizoaffective disorder but not bipolar disorder. Psychiatr Genet 2009; 19: 212.

    Article  PubMed  Google Scholar 

  58. Hanashima C, Li SC, Shen L, Lai E, Fishell G . Foxg1 suppresses early cortical cell fate. Science 2004; 303: 56–59.

    Article  CAS  PubMed  Google Scholar 

  59. Ariani F, Hayek G, Rondinella D, Artuso R, Mencarelli MA, Spanhol-Rosseto A et al. FOXG1 is responsible for the congenital variant of Rett syndrome. Am J Hum Genet 2008; 83: 89–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mangale VS, Hirokawa KE, Satyaki PR, Gokulchandran N, Chikbire S, Subramanian L et al. Lhx2 selector activity specifies cortical identity and suppresses hippocampal organizer fate. Science 2008; 319: 304–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Brunelli S, Faiella A, Capra V, Nigro V, Simeone A, Cama A et al. Germline mutations in the homeobox gene EMX2 in patients with severe schizencephaly. Nat Genet 1996; 12: 94–96.

    Article  CAS  PubMed  Google Scholar 

  62. Davis LK, Meyer KJ, Rudd DS, Librant AL, Epping EA, Sheffield VC et al. Pax6 3′ deletion results in aniridia, autism and mental retardation. Hum Genet 2008; 123: 371–378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chen B, Wang SS, Hattox AM, Rayburn H, Nelson SB, McConnell SK . The Fezf2-Ctip2 genetic pathway regulates the fate choice of subcortical projection neurons in the developing cerebral cortex. Proc Natl Acad Sci USA 2008; 105: 11382–11387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lai T, Jabaudon D, Molyneaux BJ, Azim E, Arlotta P, Menezes JR et al. SOX5 controls the sequential generation of distinct corticofugal neuron subtypes. Neuron 2008; 57: 232–247.

    Article  CAS  PubMed  Google Scholar 

  65. Heng JI, Nguyen L, Castro DS, Zimmer C, Wildner H, Armant O et al. Neurogenin 2 controls cortical neuron migration through regulation of Rnd2. Nature 2008; 455: 114–118.

    Article  CAS  PubMed  Google Scholar 

  66. Lan L, Liu M, Liu Y, Zhang W, Xue J, Xue Z et al. Expression of qBrn-1, a new member of the POU gene family, in the early developing nervous system and embryonic kidney. Dev Dyn 2006; 235: 1107–1114.

    Article  CAS  PubMed  Google Scholar 

  67. Lavdas AA, Grigoriou M, Pachnis V, Parnavelas JG . The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. J Neurosci 1999; 19: 7881–7888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Letinic K, Zoncu R, Rakic P . Origin of GABAergic neurons in the human neocortex. Nature 2002; 417: 645–649.

    Article  CAS  PubMed  Google Scholar 

  69. Anderson SA, Eisenstat DD, Shi L, Rubenstein JL . Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Science 1997; 278: 474–476.

    Article  CAS  PubMed  Google Scholar 

  70. Kato M, Das S, Petras K, Kitamura K, Morohashi K, Abuelo DN et al. Mutations of ARX are associated with striking pleiotropy and consistent genotype-phenotype correlation. Hum Mutat 2004; 23: 147–159.

    Article  CAS  PubMed  Google Scholar 

  71. Ferrara AM, De Michele G, Salvatore E, Di Maio L, Zampella E, Capuano S et al. A novel NKX2.1 mutation in a family with hypothyroidism and benign hereditary chorea. Thyroid 2008; 18: 1005–1009.

    Article  CAS  PubMed  Google Scholar 

  72. LoTurco JJ, Owens DF, Heath MJ, Davis MB, Kriegstein AR . GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron 1995; 15: 1287–1298.

    Article  CAS  PubMed  Google Scholar 

  73. Cherubini E, Gaiarsa JL, Ben-Ari Y . GABA: an excitatory transmitter in early postnatal life. Trends Neurosci 1991; 14: 515–519.

    Article  CAS  PubMed  Google Scholar 

  74. Ben-Ari Y . Excitatory actions of GABA during development: the nature of the nurture. Nat Rev Neurosci 2002; 3: 728–739.

    Article  CAS  PubMed  Google Scholar 

  75. Bortone D, Polleux F . KCC2 expression promotes the termination of cortical interneuron migration in a voltage-sensitive calcium-dependent manner. Neuron 2009; 62: 53–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Behar TN, Li YX, Tran HT, Ma W, Dunlap V, Scott C et al. GABA stimulates chemotaxis and chemokinesis of embryonic cortical neurons via calcium-dependent mechanisms. J Neurosci 1996; 16: 1808–1818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Behar TN, Schaffner AE, Scott CA, O'Connell C, Barker JL . Differential response of cortical plate and ventricular zone cells to GABA as a migration stimulus. J Neurosci 1998; 18: 6378–6387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Behar TN, Schaffner AE, Scott CA, Greene CL, Barker JL . GABA receptor antagonists modulate postmitotic cell migration in slice cultures of embryonic rat cortex. Cereb Cortex 2000; 10: 899–909.

    Article  CAS  PubMed  Google Scholar 

  79. Ji F, Kanbara N, Obata K . GABA and histogenesis in fetal and neonatal mouse brain lacking both the isoforms of glutamic acid decarboxylase. Neurosci Res 1999; 33: 187–194.

    Article  CAS  PubMed  Google Scholar 

  80. Rabinowicz T, de Courten-Myers GM, Petetot JM, Xi G, de los Reyes E . Human cortex development: estimates of neuronal numbers indicate major loss late during gestation. J Neuropathol Exp Neurol 1996; 55: 320–328.

    Article  CAS  PubMed  Google Scholar 

  81. Bourgeois JP, Goldman-Rakic PS, Rakic P . Synaptogenesis in the prefrontal cortex of rhesus monkeys. Cereb Cortex 1994; 4: 78–96.

    Article  CAS  PubMed  Google Scholar 

  82. Giedd JN, Snell JW, Lange N, Rajapakse JC, Casey BJ, Kozuch PL et al. Quantitative magnetic resonance imaging of human brain development: ages 4–18. Cereb Cortex 1996; 6: 551–560.

    Article  CAS  PubMed  Google Scholar 

  83. Gogtay N, Giedd JN, Lusk L, Hayashi KM, Greenstein D, Vaituzis AC et al. Dynamic mapping of human cortical development during childhood through early adulthood. Proc Natl Acad Sci USA 2004; 101: 8174–8179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Prasad KM, Keshavan MS . Structural cerebral variations as useful endophenotypes in schizophrenia: do they help construct ‘extended endophenotypes’? Schizophr Bull 2008; 34: 774–790.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Sweet RA, Bergen SE, Sun Z, Sampson AR, Pierri JN, Lewis DA . Pyramidal cell size reduction in schizophrenia: evidence for involvement of auditory feedforward circuits. Biol Psychiatry 2004; 55: 1128–1137.

    Article  PubMed  Google Scholar 

  86. Sweet RA, Henteleff RA, Zhang W, Sampson AR, Lewis DA . Reduced dendritic spine density in auditory cortex of subjects with schizophrenia. Neuropsychopharmacology 2009; 34: 374–389.

    Article  PubMed  Google Scholar 

  87. Kveraga K, Boshyan J, Bar M . Magnocellular projections as the trigger of top-down facilitation in recognition. J Neurosci 2007; 27: 13232–13240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Martinez A, Hillyard SA, Dias EC, Hagler Jr DJ, Butler PD, Guilfoyle DN et al. Magnocellular pathway impairment in schizophrenia: evidence from functional magnetic resonance imaging. J Neurosci 2008; 28: 7492–7500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Maldonado-Aviles JG, Wu Q, Sampson AR, Lewis DA . Somal size of immunolabeled pyramidal cells in the prefrontal cortex of subjects with schizophrenia. Biol Psychiatry 2006; 60: 226–234.

    Article  PubMed  Google Scholar 

  90. Lewis DA, Hashimoto T, Morris HM . Cell and receptor type-specific alterations in markers of GABA neurotransmission in the prefrontal cortex of subjects with schizophrenia. Neurotox Res 2008; 14: 237–248.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Kolluri N, Sun Z, Sampson AR, Lewis DA . Lamina-specific reductions in dendritic spine density in the prefrontal cortex of subjects with schizophrenia. Am J Psychiatry 2005; 162: 1200–1202.

    Article  PubMed  Google Scholar 

  92. Javitt DC . When doors of perception close: bottom-up models of disrupted cognition in schizophrenia. Annu Rev Clin Psychol 2009; 5: 249–275.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Keri S, Kelemen O, Janka Z, Benedek G . Visual-perceptual dysfunctions are possible endophenotypes of schizophrenia: evidence from the psychophysical investigation of magnocellular and parvocellular pathways. Neuropsychology 2005; 19: 649–656.

    Article  PubMed  Google Scholar 

  94. Keri S, Kiss I, Kelemen O, Benedek G, Janka Z . Anomalous visual experiences, negative symptoms, perceptual organization and the magnocellular pathway in schizophrenia: a shared construct? Psychol Med 2005; 35: 1445–1455.

    Article  PubMed  Google Scholar 

  95. Butler PD, Zemon V, Schechter I, Saperstein AM, Hoptman MJ, Lim KO et al. Early-stage visual processing and cortical amplification deficits in schizophrenia. Arch Gen Psychiatry 2005; 62: 495–504.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Doniger GM, Silipo G, Rabinowicz EF, Snodgrass JG, Javitt DC . Impaired sensory processing as a basis for object-recognition deficits in schizophrenia. Am J Psychiatry 2001; 158: 1818–1826.

    Article  CAS  PubMed  Google Scholar 

  97. Cavezian C, Danckert J, Lerond J, Dalery J, d'Amato T, Saoud M . Visual-perceptual abilities in healthy controls, depressed patients, and schizophrenia patients. Brain Cogn 2007; 64: 257–264.

    Article  PubMed  Google Scholar 

  98. Snyder S . Perceptual closure in acute paranoid schizophrenics. Arch Gen Psychiatry 1961; 5: 406–410.

    Article  CAS  PubMed  Google Scholar 

  99. Chambon V, Baudouin JY, Franck N . The role of configural information in facial emotion recognition in schizophrenia. Neuropsychologia 2006; 44: 2437–2444.

    Article  PubMed  Google Scholar 

  100. Uhlhaas PJ, Linden DE, Singer W, Haenschel C, Lindner M, Maurer K et al. Dysfunctional long-range coordination of neural activity during Gestalt perception in schizophrenia. J Neurosci 2006; 26: 8168–8175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Umbricht D, Krljes S . Mismatch negativity in schizophrenia: a meta-analysis. Schizophr Res 2005; 76: 1–23.

    Article  PubMed  Google Scholar 

  102. Friston K . A theory of cortical responses. Philos Trans R Soc Lond B Biol Sci 2005; 360: 815–836.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Kiang M, Kutas M, Light GA, Braff DL . An event-related brain potential study of direct and indirect semantic priming in schizophrenia. Am J Psychiatry 2008; 165: 74–81.

    Article  PubMed  Google Scholar 

  104. Lisman J . The theta/gamma discrete phase code occuring during the hippocampal phase precession may be a more general brain coding scheme. Hippocampus 2005; 15: 913–922.

    Article  PubMed  Google Scholar 

  105. Lewis DA, Levitt P . Schizophrenia as a disorder of neurodevelopment. Annu Rev Neurosci 2002; 25: 409–432.

    Article  CAS  PubMed  Google Scholar 

  106. Huttenlocher PR, Dabholkar AS . Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol 1997; 387: 167–178.

    Article  CAS  PubMed  Google Scholar 

  107. Weinberger DR . Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 1987; 44: 660–669.

    Article  CAS  PubMed  Google Scholar 

  108. Patterson PH . Immune involvement in schizophrenia and autism: etiology, pathology and animal models. Behav Brain Res 2009; 204: 313–321.

    Article  CAS  PubMed  Google Scholar 

  109. Susser ES, Lin SP . Schizophrenia after prenatal exposure to the Dutch Hunger Winter of 1944–1945. Arch Gen Psychiatry 1992; 49: 983–988.

    Article  CAS  PubMed  Google Scholar 

  110. Susser E, Neugebauer R, Hoek HW, Brown AS, Lin S, Labovitz D et al. Schizophrenia after prenatal famine. Further evidence. Arch Gen Psychiatry 1996; 53: 25–31.

    Article  CAS  PubMed  Google Scholar 

  111. Song S, Wang W, Hu P . Famine, death, and madness: schizophrenia in early adulthood after prenatal exposure to the Chinese Great Leap Forward Famine. Soc Sci Med 2009; 68: 1315–1321.

    Article  PubMed  Google Scholar 

  112. Millar JK, Wilson-Annan JC, Anderson S, Christie S, Taylor MS, Semple CA et al. Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum Mol Genet 2000; 9: 1415–1423.

    Article  CAS  PubMed  Google Scholar 

  113. Kamiya A, Kubo K, Tomoda T, Takaki M, Youn R, Ozeki Y et al. A schizophrenia-associated mutation of DISC1 perturbs cerebral cortex development. Nat Cell Biol 2005; 7: 1167–1178.

    Article  PubMed  CAS  Google Scholar 

  114. Ozeki Y, Tomoda T, Kleiderlein J, Kamiya A, Bord L, Fujii K et al. Disrupted-in-Schizophrenia-1 (DISC-1): mutant truncation prevents binding to NudE-like (NUDEL) and inhibits neurite outgrowth. Proc Natl Acad Sci USA 2003; 100: 289–294.

    Article  CAS  PubMed  Google Scholar 

  115. Kamiya A, Tomoda T, Chang J, Takaki M, Zhan C, Morita M et al. DISC1-NDEL1/NUDEL protein interaction, an essential component for neurite outgrowth, is modulated by genetic variations of DISC1. Hum Mol Genet 2006; 15: 3313–3323.

    Article  CAS  PubMed  Google Scholar 

  116. Duan X, Chang JH, Ge S, Faulkner RL, Kim JY, Kitabatake Y et al. Disrupted-In-Schizophrenia 1 regulates integration of newly generated neurons in the adult brain. Cell 2007; 130: 1146–1158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH . Functional neurogenesis in the adult hippocampus. Nature 2002; 415: 1030–1034.

    Article  CAS  PubMed  Google Scholar 

  118. Lauer M, Beckmann H, Senitz D . Increased frequency of dentate granule cells with basal dendrites in the hippocampal formation of schizophrenics. Psychiatry Res 2003; 122: 89–97.

    Article  PubMed  Google Scholar 

  119. Kobayashi K . Targeting the hippocampal mossy fiber synapse for the treatment of psychiatric disorders. Mol Neurobiol 2009; 39: 24–36.

    Article  CAS  PubMed  Google Scholar 

  120. Leutgeb JK, Leutgeb S, Moser MB, Moser EI . Pattern separation in the dentate gyrus and CA3 of the hippocampus. Science 2007; 315: 961–966.

    Article  CAS  PubMed  Google Scholar 

  121. Kamnasaran D, Muir WJ, Ferguson-Smith MA, Cox DW . Disruption of the neuronal PAS3 gene in a family affected with schizophrenia. J Med Genet 2003; 40: 325–332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Pieper AA, Wu X, Han TW, Estill SJ, Dang Q, Wu LC et al. The neuronal PAS domain protein 3 transcription factor controls FGF-mediated adult hippocampal neurogenesis in mice. Proc Natl Acad Sci USA 2005; 102: 14052–14057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Harrison PJ, Law AJ . Neuregulin 1 and schizophrenia: genetics, gene expression, and neurobiology. Biol Psychiatry 2006; 60: 132–140.

    Article  CAS  PubMed  Google Scholar 

  124. Corfas G, Roy K, Buxbaum JD . Neuregulin 1-erbB signaling and the molecular/cellular basis of schizophrenia. Nat Neurosci 2004; 7: 575–580.

    Article  CAS  PubMed  Google Scholar 

  125. Mei L, Xiong WC . Neuregulin 1 in neural development, synaptic plasticity and schizophrenia. Nat Rev Neurosci 2008; 9: 437–452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Walsh T, McClellan JM, McCarthy SE, Addington AM, Pierce SB, Cooper GM et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 2008; 320: 539–543.

    Article  CAS  PubMed  Google Scholar 

  127. Shi J, Levinson DF, Duan J, Sanders AR, Zheng Y, Pe'er I et al. Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature 2009; 460: 753–757.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Woo TU, Whitehead RE, Melchitzky DS, Lewis DA . A subclass of prefrontal gamma-aminobutyric acid axon terminals are selectively altered in schizophrenia. Proc Natl Acad Sci USA 1998; 95: 5341–5346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, Rujescu D et al. Common variants conferring risk of schizophrenia. Nature 2009; 460: 744–747.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Purcell SM, Wray NR, Stone JL, Visscher PM, O'Donovan MC, Sullivan PF et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 2009; 460: 748–752.

    CAS  PubMed  Google Scholar 

  131. Goddard CA, Butts DA, Shatz CJ . Regulation of CNS synapses by neuronal MHC class I. Proc Natl Acad Sci USA 2007; 104: 6828–6833.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Burbach JP, van der Zwaag B . Contact in the genetics of autism and schizophrenia. Trends Neurosci 2009; 32: 69–72.

    Article  CAS  PubMed  Google Scholar 

  133. Kilpinen H, Ylisaukko-Oja T, Hennah W, Palo OM, Varilo T, Vanhala R et al. Association of DISC1 with autism and Asperger syndrome. Mol Psychiatry 2008; 13: 187–196.

    Article  CAS  PubMed  Google Scholar 

  134. Fatemi SH . Reelin glycoprotein in autism and schizophrenia. Int Rev Neurobiol 2005; 71: 179–187.

    Article  CAS  PubMed  Google Scholar 

  135. Kraus MS, Keefe RS, Krishnan RK . Memory-prediction errors and their consequences in schizophrenia. Neuropsychol Rev 2009; 19: 336–352.

    Article  PubMed  Google Scholar 

  136. Dima D, Roiser JP, Dietrich DE, Bonnemann C, Lanfermann H, Emrich HM et al. Understanding why patients with schizophrenia do not perceive the hollow-mask illusion using dynamic causal modelling. Neuroimage 2009; 46: 1180–1186.

    Article  PubMed  Google Scholar 

  137. Koethe D, Kranaster L, Hoyer C, Gross S, Neatby MA, Schultze-Lutter F et al. Binocular depth inversion as a paradigm of reduced visual information processing in prodromal state, antipsychotic-naive and treated schizophrenia. Eur Arch Psychiatry Clin Neurosci 2009; 259: 195–202.

    Article  PubMed  Google Scholar 

  138. Hoffman RE, Woods SW, Hawkins KA, Pittman B, Tohen M, Preda A et al. Extracting spurious messages from noise and risk of schizophrenia-spectrum disorders in a prodromal population. Br J Psychiatry 2007; 191: 355–356.

    Article  PubMed  Google Scholar 

  139. Sorkin A, Weinshall D, Peled A . The distortion of reality perception in schizophrenia patients, as measured in virtual reality. Stud Health Technol Inform 2008; 132: 475–480.

    PubMed  Google Scholar 

  140. Baala L, Briault S, Etchevers HC, Laumonnier F, Natiq A, Amiel J et al. Homozygous silencing of T-box transcription factor EOMES leads to microcephaly with polymicrogyria and corpus callosum agenesis. Nat Genet 2007; 39: 454–456.

    Article  CAS  PubMed  Google Scholar 

  141. Hourihane JO, Bennett CP, Chaudhuri R, Robb SA, Martin ND . A sibship with a neuronal migration defect, cerebellar hypoplasia and congenital lymphedema. Neuropediatrics 1993; 24: 43–46.

    Article  CAS  PubMed  Google Scholar 

  142. Chong SS, Pack SD, Roschke AV, Tanigami A, Carrozzo R, Smith AC et al. A revision of the lissencephaly and Miller-Dieker syndrome critical regions in chromosome 17p13.3. Hum Mol Genet 1997; 6: 147–155.

    Article  CAS  PubMed  Google Scholar 

  143. Reiner O, Sapoznik S, Sapir T . Lissencephaly 1 linking to multiple diseases: mental retardation, neurodegeneration, schizophrenia, male sterility, and more. Neuromolecular Med 2006; 8: 547–565.

    Article  CAS  PubMed  Google Scholar 

  144. Ikeda M, Hikita T, Taya S, Uraguchi-Asaki J, Toyo-oka K, Wynshaw-Boris A et al. Identification of YWHAE, a gene encoding 14-3-3epsilon, as a possible susceptibility gene for schizophrenia. Hum Mol Genet 2008; 17: 3212–3222.

    Article  CAS  PubMed  Google Scholar 

  145. Alarcon M, Abrahams BS, Stone JL, Duvall JA, Perederiy JV, Bomar JM et al. Linkage, association, and gene-expression analyses identify CNTNAP2 as an autism-susceptibility gene. Am J Hum Genet 2008; 82: 150–159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Rossi E, Verri AP, Patricelli MG, Destefani V, Ricca I, Vetro A et al. A 12Mb deletion at 7q33-q35 associated with autism spectrum disorders and primary amenorrhea. Eur J Med Genet 2008; 51: 631–638.

    Article  PubMed  Google Scholar 

  147. Liu X, Novosedlik N, Wang A, Hudson ML, Cohen IL, Chudley AE et al. The DLX1and DLX2 genes and susceptibility to autism spectrum disorders. Eur J Hum Genet 2009; 17: 228–235.

    Article  CAS  PubMed  Google Scholar 

  148. Cobos I, Calcagnotto ME, Vilaythong AJ, Thwin MT, Noebels JL, Baraban SC et al. Mice lacking Dlx1 show subtype-specific loss of interneurons, reduced inhibition and epilepsy. Nat Neurosci 2005; 8: 1059–1068.

    Article  CAS  PubMed  Google Scholar 

  149. Qiu M, Bulfone A, Martinez S, Meneses JJ, Shimamura K, Pedersen RA et al. Null mutation of Dlx-2 results in abnormal morphogenesis of proximal first and second branchial arch derivatives and abnormal differentiation in the forebrain. Genes Dev 1995; 9: 2523–2538.

    Article  CAS  PubMed  Google Scholar 

  150. Kimura S, Hara Y, Pineau T, Fernandez-Salguero P, Fox CH, Ward JM et al. The T/ebp null mouse: thyroid-specific enhancer-binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, and pituitary. Genes Dev 1996; 10: 60–69.

    Article  CAS  PubMed  Google Scholar 

  151. Murdoch JN, Doudney K, Paternotte C, Copp AJ, Stanier P . Severe neural tube defects in the loop-tail mouse result from mutation of Lpp1, a novel gene involved in floor plate specification. Hum Mol Genet 2001; 10: 2593–2601.

    Article  CAS  PubMed  Google Scholar 

  152. Wallis DE, Roessler E, Hehr U, Nanni L, Wiltshire T, Richieri-Costa A et al. Mutations in the homeodomain of the human SIX3 gene cause holoprosencephaly. Nat Genet 1999; 22: 196–198.

    Article  CAS  PubMed  Google Scholar 

  153. Liao GY, Xu B . Cre recombinase-mediated gene deletion in layer 4 of murine sensory cortical areas. Genesis 2008; 46: 289–293.

    Article  PubMed  PubMed Central  Google Scholar 

  154. de Pontual L, Nepote V, Attie-Bitach T, Al Halabiah H, Trang H, Elghouzzi V et al. Noradrenergic neuronal development is impaired by mutation of the proneural HASH-1 gene in congenital central hypoventilation syndrome (Ondine's curse). Hum Mol Genet 2003; 12: 3173–3180.

    Article  CAS  PubMed  Google Scholar 

  155. Marin O, Anderson SA, Rubenstein JL . Origin and molecular specification of striatal interneurons. J Neurosci 2000; 20: 6063–6076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Zhao Y, Flandin P, Long JE, Cuesta MD, Westphal H, Rubenstein JL . Distinct molecular pathways for development of telencephalic interneuron subtypes revealed through analysis of Lhx6 mutants. J Comp Neurol 2008; 510: 79–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Roy K, Thiels E, Monaghan AP . Loss of the tailless gene affects forebrain development and emotional behavior. Physiol Behav 2002; 77: 595–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R R Krishnan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krishnan, R., Fivaz, M., Kraus, M. et al. Hierarchical temporal processing deficit model of reality distortion and psychoses. Mol Psychiatry 16, 129–144 (2011). https://doi.org/10.1038/mp.2010.63

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2010.63

Keywords

This article is cited by

Search

Quick links