Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Macrophage migration inhibitory factor is critically involved in basal and fluoxetine-stimulated adult hippocampal cell proliferation and in anxiety, depression, and memory-related behaviors

Abstract

Intensive research is devoted to unravel the neurobiological mechanisms mediating adult hippocampal neurogenesis, its regulation by antidepressants, and its behavioral consequences. Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine that is expressed in the CNS, where its function is unknown. Here, we show, for the first time, the relevance of MIF expression for adult hippocampal neurogenesis. We identify MIF expression in neurogenic cells (in stem cells, cells undergoing proliferation, and in newly proliferated cells undergoing maturation) in the subgranular zone of the rodent dentate gyrus. A causal function for MIF in cell proliferation was shown using genetic (MIF gene deletion) and pharmacological (treatment with the MIF antagonist Iso-1) approaches. Behaviorally, genetic deletion of MIF resulted in increased anxiety- and depression-like behaviors, as well as of impaired hippocampus-dependent memory. Together, our studies provide evidence supporting a pivotal function for MIF in both basal and antidepressant-stimulated adult hippocampal cell proliferation. Moreover, loss of MIF results in a behavioral phenotype that, to a large extent, corresponds with alterations predicted to arise from reduced hippocampal neurogenesis. These findings underscore MIF as a potentially relevant molecular target for the development of treatments linked to deficits in neurogenesis, as well as to problems related to anxiety, depression, and cognition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Bloom BR, Bennett B . Mechanism of a reaction in vitro associated with delayed-type hypersensitivity. Science 1966; 153: 80–82.

    Article  CAS  PubMed  Google Scholar 

  2. David JR . Delayed hypersensitivity in vitro: its mediation by cell-free substances formed by lymphoid cell-antigen interaction. Proc Natl Acad Sci USA 1966; 56: 72–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bernhagen J, Calandra T, Mitchell RA, Martin SB, Tracey KJ, Voelter W et al. MIF is a pituitary-derived cytokine that potentiates lethal endotoxaemia. Nature 1993; 365: 756–759.

    Article  CAS  PubMed  Google Scholar 

  4. Calandra T, Bernhagen J, Metz CN, Spiegel LA, Bacher M, Donnelly T et al. MIF as a glucocorticoid-induced modulator of cytokine production. Nature 1995; 377: 68–71.

    Article  CAS  PubMed  Google Scholar 

  5. Calandra T, Bernhagen J, Mitchell RA, Bucala R . The macrophage is an important and previously unrecognized source of macrophage migration inhibitory factor. J Exp Med 1994; 179: 1895–1902.

    Article  CAS  PubMed  Google Scholar 

  6. Calandra T, Roger T . Macrophage migration inhibitory factor: a regulator of innate immunity. Nat Rev Immunol 2003; 3: 791–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Flaster H, Bernhagen J, Calandra T, Bucala R . The macrophage migration inhibitory factor-glucocorticoid dyad: regulation of inflammation and immunity. Mol Endocrinol 2007; 21: 1267–1280.

    Article  CAS  PubMed  Google Scholar 

  8. Hudson JD, Shoaibi MA, Maestro R, Carnero A, Hannon GJ, Beach DH . A proinflammatory cytokine inhibits p53 tumor suppressor activity. J Exp Med 1999; 190: 1375–1382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mitchell RA, Liao H, Chesney J, Fingerle-Rowson G, Baugh J, David J et al. Macrophage migration inhibitory factor (MIF) sustains macrophage proinflammatory function by inhibiting p53: regulatory role in the innate immune response. Proc Natl Acad Sci USA 2002; 99: 345–350.

    Article  CAS  PubMed  Google Scholar 

  10. Swant JD, Rendon BE, Symons M, Mitchell RA . Rho GTPase-dependent signaling is required for macrophage migration inhibitory factor-mediated expression of cyclin D1. J Biol Chem 2005; 280: 23066–23072.

    Article  CAS  PubMed  Google Scholar 

  11. Ito K, Yoshiura Y, Ototake M, Nakanishi T . Macrophage migration inhibitory factor (MIF) is essential for development of zebrafish. Dev Comp Immunol 2008; 32: 664–672.

    Article  CAS  PubMed  Google Scholar 

  12. Nishibori M, Nakaya N, Tahara A, Kawabata M, Mori S, Saeki K . Presence of macrophage migration inhibitory factor (MIF) in ependyma, astrocytes and neurons in the bovine brain. Neurosci Lett 1996; 213: 193–196.

    Article  CAS  PubMed  Google Scholar 

  13. Ogata A, Nishihira J, Suzuki T, Nagashima K, Tashiro K . Identification of macrophage migration inhibitory factor mRNA expression in neural cells of the rat brain by in situ hybridization. Neurosci Lett 1998; 246: 173–177.

    Article  CAS  PubMed  Google Scholar 

  14. Garcia-Verdugo JM, Doetsch F, Wichterle H, Lim DA, Alvarez-Buylla A . Architecture and cell types of the adult subventricular zone: in search of the stem cells. J Neurobiol 1998; 36: 234–248.

    Article  CAS  PubMed  Google Scholar 

  15. Gould E, Gross CG . Neurogenesis in adult mammals: some progress and problems. J Neurosci 2002; 22: 619–623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH . Functional neurogenesis in the adult hippocampus. Nature 2002; 415: 1030–1034.

    Article  CAS  PubMed  Google Scholar 

  17. Ming GL, Song H . Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci 2005; 28: 223–250.

    Article  CAS  PubMed  Google Scholar 

  18. Toni N, Laplagne DA, Zhao C, Lombardi G, Ribak CE, Gage FH et al. Neurons born in the adult dentate gyrus form functional synapses with target cells. Nat Neurosci 2008; 11: 901–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bozza M, Satoskar AR, Lin G, Lu B, Humbles AA, Gerard C et al. Targeted disruption of migration inhibitory factor gene reveals its critical role in sepsis. J Exp Med 1999; 189: 341–346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. West MJ, Slomianka L, Gundersen HJ . Unbiased stereological estimation of the total number of neurons in thesubdivisions of the rat hippocampus using the optical fractionator. Anat Rec 1991; 231: 482–497.

    Article  CAS  PubMed  Google Scholar 

  21. Nacher J, Gomez-Climent MA, McEwen B . Chronic non-invasive glucocorticoid administration decreases polysialylated neural cell adhesion molecule expression in the adult rat dentate gyrus. Neurosci Lett 2004; 370: 40–44.

    Article  CAS  PubMed  Google Scholar 

  22. Magarinos AM, Deslandes A, McEwen BS . Effects of antidepressants and benzodiazepine treatments on the dendritic structure of CA3 pyramidal neurons after chronic stress. Eur J Pharmacol 1999; 371: 113–122.

    Article  CAS  PubMed  Google Scholar 

  23. Jakobsson J, Cordero MI, Bisaz R, Groner AC, Busskamp V, Bensadoun JC et al. KAP1-mediated epigenetic repression in the forebrain modulates behavioral vulnerability to stress. Neuron 2008; 60: 818–831.

    Article  CAS  PubMed  Google Scholar 

  24. Markram K, Gerardy-Schahn R, Sandi C . Selective learning and memory impairments in mice deficient for polysialylated NCAM in adulthood. Neuroscience 2007; 144: 788–796.

    Article  CAS  PubMed  Google Scholar 

  25. Shapiro LA, Ribak CE . Integration of newly born dentate granule cells into adult brains: hypotheses based on normal and epileptic rodents. Brain Res Brain Res Rev 2005; 48: 43–56.

    Article  PubMed  Google Scholar 

  26. Malberg JE, Eisch AJ, Nestler EJ, Duman RS . Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 2000; 20: 9104–9110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 2003; 301: 805–809.

    Article  CAS  PubMed  Google Scholar 

  28. Joels M, Karst H, Krugers HJ, Lucassen PJ . Chronic stress: implications for neuronal morphology, function and neurogenesis. Front Neuroendocrinol 2007; 28: 72–96.

    Article  PubMed  Google Scholar 

  29. De Kloet ER, Vreugdenhil E, Oitzl MS, Joels M . Brain corticosteroid receptor balance in health and disease. Endocr Rev 1998; 19: 269–301.

    CAS  PubMed  Google Scholar 

  30. Revest JM, Dupret D, Koehl M, Funk-Reiter C, Grosjean N, Piazza PV et al. Adult hippocampal neurogenesis is involved in anxiety-related behaviors. Mol Psychiatry 2009; 14: 959–967.

    Article  PubMed  Google Scholar 

  31. Sahay A, Hen R . Adult hippocampal neurogenesis in depression. Nat Neurosci 2007; 10: 1110–1115.

    Article  CAS  PubMed  Google Scholar 

  32. Saxe MD, Battaglia F, Wang JW, Malleret G, David DJ, Monckton JE et al. Ablation of hippocampal neurogenesis impairs contextual fear conditioning and synaptic plasticity in the dentate gyrus. Proc Natl Acad Sci USA 2006; 103: 17501–17506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Winocur G, Wojtowicz JM, Sekeres M, Snyder JS, Wang S . Inhibition of neurogenesis interferes with hippocampus-dependent memory function. Hippocampus 2006; 16: 296–304.

    Article  PubMed  Google Scholar 

  34. Morris RG, Garrud P, Rawlins JN, O’Keefe J . Place navigation impaired in rats with hippocampal lesions. Nature 1982; 297: 681–683.

    Article  CAS  PubMed  Google Scholar 

  35. Morris RG, Schenk F, Tweedie F, Jarrard LE . Ibotenate lesions of hippocampus and/or subiculum: dissociating components of allocentric spatial learning. Eur J Neurosci 1990; 2: 1016–1028.

    Article  PubMed  Google Scholar 

  36. Nishibori M, Nakaya N, Mori S, Saeki K . Immunohistochemical localization of macrophage migration inhibitory factor (MIF) in tanycytes, subcommissural organ and choroid plexus in the rat brain. Brain Res 1997; 758: 259–262.

    Article  CAS  PubMed  Google Scholar 

  37. Petrenko O, Moll UM . Macrophage migration inhibitory factor MIF interferes with the Rb-E2F pathway. Mol Cell 2005; 17: 225–236.

    Article  CAS  PubMed  Google Scholar 

  38. Kowalczyk A, Filipkowski RK, Rylski M, Wilczynski GM, Konopacki FA, Jaworski J et al. The critical role of cyclin D2 in adult neurogenesis. J Cell Biol 2004; 167: 209–213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tanapat P, Galea LA, Gould E . Stress inhibits the proliferation of granule cell precursors in the developing dentate gyrus. Int J Dev Neurosci 1998; 16: 235–239.

    Article  CAS  PubMed  Google Scholar 

  40. Gould E, Tanapat P, McEwen BS, Flugge G, Fuchs E . Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress. Proc Natl Acad Sci USA 1998; 95: 3168–3171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cameron HA, Gould E . Adult neurogenesis is regulated by adrenal steroids in the dentate gyrus. Neuroscience 1994; 61: 203–209.

    Article  CAS  PubMed  Google Scholar 

  42. Ambrogini P, Orsini L, Mancini C, Ferri P, Barbanti I, Cuppini R . Persistently high corticosterone levels but not normal circadian fluctuations of the hormone affect cell proliferation in the adult rat dentate gyrus. Neuroendocrinology 2002; 76: 366–372.

    Article  CAS  PubMed  Google Scholar 

  43. Joels M . Role of corticosteroid hormones in the dentate gyrus. Prog Brain Res 2007; 163: 355–370.

    Article  CAS  PubMed  Google Scholar 

  44. Vollmayr B, Simonis C, Weber S, Gass P, Henn F . Reduced cell proliferation in the dentate gyrus is not correlated with the development of learned helplessness. Biol Psychiatry 2003; 54: 1035–1040.

    Article  PubMed  Google Scholar 

  45. Zhang CL, Zou Y, He W, Gage FH, Evans RM . A role for adult TLX-positive neural stem cells in learning and behaviour. Nature 2008; 451: 1004–1007.

    Article  CAS  PubMed  Google Scholar 

  46. Shors TJ, Townsend DA, Zhao M, Kozorovitskiy Y, Gould E . Neurogenesis may relate to some but not all types of hippocampal-dependent learning. Hippocampus 2002; 12: 578–584.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Surget A, Saxe M, Leman S, Ibarguen-Vargas Y, Chalon S, Griebel G et al. Drug-dependent requirement of hippocampal neurogenesis in a model of depression and of antidepressant reversal. Biol Psychiatry 2008; 64: 293–301.

    Article  CAS  PubMed  Google Scholar 

  48. Pollak DD, Monje FJ, Zuckerman L, Denny CA, Drew MR, Kandel ER . An animal model of a behavioral intervention for depression. Neuron 2008; 60: 149–161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. David DJ, Samuels BA, Rainer Q, Wang JW, Marsteller D, Mendez I et al. Neurogenesis-dependent and -independent effects of fluoxetine in an animal model of anxiety/depression. Neuron 2009; 62: 479–493.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Holick KA, Lee DC, Hen R, Dulawa SC . Behavioral effects of chronic fluoxetine in BALB/cJ mice do not require adult hippocampal neurogenesis or the serotonin 1A receptor. Neuropsychopharmacology 2008; 33: 406–417.

    Article  CAS  PubMed  Google Scholar 

  51. Bessa JM, Mesquita AR, Oliveira M, Pego JM, Cerqueira JJ, Palha JA et al. A trans-dimensional approach to the behavioral aspects of depression. Front Behav Neurosci 2009; 3: 1.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ageta H, Murayama A, Migishima R, Kida S, Tsuchida K, Yokoyama M et al. Activin in the brain modulates anxiety-related behavior and adult neurogenesis. PLoS One 2008; 3: e1869.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Bergami M, Rimondini R, Santi S, Blum R, Gotz M, Canossa M . Deletion of TrkB in adult progenitors alters newborn neuron integration into hippocampal circuits and increases anxiety-like behavior. Proc Natl Acad Sci USA 2008; 105: 15570–15575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sandi C . Understanding the neurobiological basis of behavior: a good way to go. Front Neurosci 2008; 2: 129–130.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Castro JE VE, Márquez C, Cordero MI, Poirier G, Sandi C . Amygdala in antidepressant effects on hippocampal cell proliferation and survival and on depression-like behavior in the rat. PLoS One 2010; 5: e8618.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Sandi C, Richter-Levin G . From high anxiety trait to depression: a neurocognitive hypothesis. Trends Neurosci 2009; 32: 312–320.

    Article  CAS  PubMed  Google Scholar 

  57. Havik B, Rokke H, Dagyte G, Stavrum AK, Bramham CR, Steen VM . Synaptic activity-induced global gene expression patterns in the dentate gyrus of adult behaving rats: induction of immunity-linked genes. Neuroscience 2007; 148: 925–936.

    Article  CAS  PubMed  Google Scholar 

  58. Bryan KJ, Zhu X, Harris PL, Perry G, Castellani RJ, Smith MA . et al. Expression of CD74 is increased in neurofibrillary tangles in Alzheimer's disease. Mol Neurodegener 2008; 3: 13.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Chun SK, Sun W, Park JJ, Jung MW . Enhanced proliferation of progenitor cells following long-term potentiation induction in the rat dentate gyrus. Neurobiol Learn Mem 2006; 86: 322–329.

    Article  PubMed  Google Scholar 

  60. Bruel-Jungerman E, Davis S, Rampon C, Laroche S . Long-term potentiation enhances neurogenesis in the adult dentate gyrus. J Neurosci 2006; 26: 5888–5893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kempermann G, Gage FH . Genetic determinants of adult hippocampal neurogenesis correlate with acquisition, but not probe trial performance, in the water maze task. Eur J Neurosci 2002; 16: 129–136.

    Article  CAS  PubMed  Google Scholar 

  62. Drapeau E, Mayo W, Aurousseau C, Le Moal M, Piazza PV, Abrous DN . Spatial memory performances of aged rats in the water maze predict levels of hippocampal neurogenesis. Proc Natl Acad Sci USA 2003; 100: 14385–14390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Snyder JS, Hong NS, McDonald RJ, Wojtowicz JM . A role for adult neurogenesis in spatial long-term memory. Neuroscience 2005; 130: 843–852.

    Article  CAS  PubMed  Google Scholar 

  64. Gould E, Beylin A, Tanapat P, Reeves A, Shors TJ . Learning enhances adult neurogenesis in the hippocampal formation. Nat Neurosci 1999; 2: 260–265.

    Article  CAS  PubMed  Google Scholar 

  65. Ambrogini P, Cuppini R, Cuppini C, Ciaroni S, Cecchini T, Ferri P et al. Spatial learning affects immature granule cell survival in adult rat dentate gyrus. Neurosci Lett 2000; 286: 21–24.

    Article  CAS  PubMed  Google Scholar 

  66. Leuner B, Gould E, Shors TJ . Is there a link between adult neurogenesis and learning? Hippocampus 2006; 16: 216–224.

    Article  PubMed  Google Scholar 

  67. Dupret D, Fabre A, Dobrossy MD, Panatier A, Rodriguez JJ, Lamarque S et al. Spatial learning depends on both the addition and removal of new hippocampal neurons. PLoS Biol 2007; 5: e214.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Dobrossy MD, Drapeau E, Aurousseau C, Le Moal M, Piazza PV, Abrous DN . Differential effects of learning on neurogenesis: learning increases or decreases the number of newly born cells depending on their birth date. Mol Psychiatry 2003; 8: 974–982.

    Article  CAS  PubMed  Google Scholar 

  69. Meshi D, Drew MR, Saxe M, Ansorge MS, David D, Santarelli L et al. Hippocampal neurogenesis is not required for behavioral effects of environmental enrichment. Nat Neurosci 2006; 9: 729–731.

    Article  CAS  PubMed  Google Scholar 

  70. Jaholkowski P, Kiryk A, Jedynak P, Ben Abdallah NM, Knapska E, Kowalczyk A et al. New hippocampal neurons are not obligatory for memory formation; cyclin D2 knockout mice with no adult brain neurogenesis show learning. Learn Mem 2009; 16: 439–451.

    Article  PubMed  Google Scholar 

  71. Clelland CD, Choi M, Romberg C, Clemenson Jr GD, Fragniere A, Tyers P et al. A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science 2009; 325: 210–213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Grigorenko EL, Han SS, Yrigollen CM, Leng L, Mizue Y, Anderson GM et al. Macrophage migration inhibitory factor and autism spectrum disorders. Pediatrics 2008; 122: e438–e445.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the EU 6th (FP6-2003-LIFESCIHEALTH-II-512012; PROMEMORIA) and 7th (FP7- HEALTH-F2M-2007-201600; MemStick) FP, and from the Swiss National Science Foundation (3100A0-108102) to CS. We thank Coralie Siegmund, Angelique Vaucher, Gregoire Parchet, Clara Rossetti, Alex Procter, and Samuel Hernández for technical assistance, Didier Le Roy for help with the MIF−/− transgenic mice, and Loay Awad for synthesizing Iso-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Sandi.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website (http://www.nature.com/mp)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conboy, L., Varea, E., Castro, J. et al. Macrophage migration inhibitory factor is critically involved in basal and fluoxetine-stimulated adult hippocampal cell proliferation and in anxiety, depression, and memory-related behaviors. Mol Psychiatry 16, 533–547 (2011). https://doi.org/10.1038/mp.2010.15

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2010.15

Keywords

This article is cited by

Search

Quick links