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The cost of large numbers of hypothesis tests on power,
effect size and sample size
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Advances in high-throughput biology and computer science are driving an exponential
increase in the number of hypothesis tests in genomics and other scientific disciplines.
Studies using current genotyping platforms frequently include a million or more tests. In
addition to the monetary cost, this increase imposes a statistical cost owing to the multiple
testing corrections needed to avoid large numbers of false-positive results. To safeguard
against the resulting loss of power, some have suggested sample sizes on the order of tens of
thousands that can be impractical for many diseases or may lower the quality of phenotypic
measurements. This study examines the relationship between the number of tests on the one
hand and power, detectable effect size or required sample size on the other. We show that
once the number of tests is large, power can be maintained at a constant level, with
comparatively small increases in the effect size or sample size. For example at the 0.05
significance level, a 13% increase in sample size is needed to maintain 80% power for ten
million tests compared with one million tests, whereas a 70% increase in sample size is needed
for 10 tests compared with a single test. Relative costs are less when measured by increases in
the detectable effect size. We provide an interactive Excel calculator to compute power, effect
size or sample size when comparing study designs or genome platforms involving different
numbers of hypothesis tests. The results are reassuring in an era of extreme multiple testing.
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Introduction

The numbers of hypothesis tests in science and
genomics, in particular, are increasing at an ever-
expanding rate. Total studies and hypothesis tests per
study have both increased exponentially since the
1920s when the conventional 0.05 significance level
was first adopted.1,2 Simultaneously, as technological
advances have provided the means to easily measure,
store and manipulate huge quantities of data, the need
for stronger a priori testing of one hypothesis has
become more complex to justify. With almost inevi-
table large numbers of hypothesis tests in a single
experiment comes the well-recognized need to use
some type of statistical correction for multiple testing
to avoid generating ever-increasing numbers of false-
positive results.3,4,5 The more stringent level of
evidence required necessarily reduces the power to
identify a true-positive finding. As a consequence,
some experts now advocate larger and larger sample

sizes for genomic studies6,7 that are impractical for
many diseases and, even when practical, may require
broader, more heterogeneous phenotype definitions
and less costly, more imprecise phenotypic measure-
ments to accomplish.
Current genotype microarray technology is now

approaching a capacity of five million single-nucleo-
tide polymorphisms (SNPs) per study.8 As whole
genome sequencing becomes widely available, the
number of tests will continue to increase.9 Investiga-
tion of a variety of phenotype definitions, genetic
models and subsets of individuals also increases the
total number of hypothesis tests actually underlying
any reported finding. Other fields (for example,
neuroimaging or data mining of medical records) face
a similar burden of multiplicity of tests.10,11 Cross-
disciplinary studies, such as genomic analyses of
neuroimaging or other high-dimensional phenotypes,
will only further expand the problem. There are
reasonable arguments as to when it is appropriate to
statistically adjust for multiple tests and how best to
do so.12–14 The universe of tests subject to adjustment,
the level of stringency, underlying assumptions and
statistical methods are all subjects of debate.
Whatever adjustment is used, extensive multiple

testing inevitably leads to some loss of power or the
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need for a compensatory increase in the detectable
effect size and/or sample size. This study examines
the statistical ‘cost’ defined in terms of power,
targeted effect size or sample size imposed by large
and ever-increasing numbers of hypothesis tests, for
the broad class of tests based on statistical estimates
that follow a Normal distribution in large samples: (1)
We develop a novel formulation of this relationship
and (2) discuss its implications for genomic and other
studies in the era of high-throughput technology. (3)
Explicit numerical results and a user-friendly calcu-
lator for study design and comparison of alternative
high-throughput technologies are also provided.

Methods

This study extends and expands the basic principles
of power analysis found in introductory biostatistics
texts. We consider the class of hypothesis tests based
on a statistic, B, such that the standardized z-statistic,
Z ¼ ðB� bÞ=ðs

� ffiffiffiffiffi
N

p
Þ, has a standard Normal distribu-

tion in large samples, where b is the expected value of
B and s

� ffiffiffiffiffi
N

p
is its standard error in a sample of size

N. Owing to the Central Limit Theorem15 and its
extensions, this situation encompasses most com-
monly used statistical tests. For example, Bmight be a
coefficient in a regression model, a sample propor-
tion, a difference of two means, the log of an odds
ratio (OR) or another maximum likelihood estimate.
One-degree-of-freedom w2 tests are also covered owing

to the relationship between the Normal and w2

distributions.
Suppose we want to use B to test whether its

expected value b=0. Let a be the significance level or
Type I error probability and b be the Type II error
probability, the probability that the null hypothesis is
accepted for an alternative value of ba0. By defini-
tion, the power of the test is 1–b. A single two-sided
hypothesis test is illustrated in Figure 1a. The unit of
measurement for the x axis is the standard error for a
sample of size N. The curve on the left, centered at
zero, is the sampling distribution of B under the null
hypothesis in large samples (that is, B has a Normal
distribution with mean 0 and standard error s

� ffiffiffiffiffi
N

p
).

The critical values are ±C standard errors, where C
depends on a and is taken from the cumulative
Normal distribution. For a=0.05, C=1.96. The null
hypothesis will be rejected if B is more than 1.96
standard errors from zero (that is, in either shaded
region). The curve on the right centered at b is the
sampling distribution of B under the alternative
hypothesis that the expected value of B= b. (Through-
out, we use ‘effect size’ to refer to the expected value
of B under the alternative. Our results may not hold
for other definitions that are used in the literature.)
The power to reject the null hypothesis is the
percentage of area under the alternative distribution
inside the bold-outlined area above the upper critical
value C. The distance between the critical value C
and the effect size b, denoted by D, is also a multiple

Figure 1 Distribution of B under the null and alternative hypotheses illustrating the power analysis for a single test (a) and
two tests (b–d). (a) A single 0.05 significance test uses critical value 1.96 (circle on horizontal line). It has 80% power (area
outlined in bold) to detect an effect of size b=2.80. (b) For two tests, the critical value is increased by D=0.28 standard errors
to 2.24 (triangle on horizontal line). Distance, D, from the mean of the alternative distribution, is reduced by D and the power
(outlined in bold) is reduced to 71% at the original effect size. (c) To accommodate the increased critical value, the
alternative curve can also be shifted to the right by D standard errors to maintain 80% power at a larger effect size
b=1.96þ 0.28þ 0.84= 3.08. (d) Finally, the sample size can be increased to make the densities narrower and taller. This
reduces the overlap between the null and the alternative, maintaining 80% power at original effect size 2.80.
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of the standard error obtained from the Normal
distribution. For 80% power, D=0.84. Thus, 80%
power is reached for a 0.05 significance test when the
effect size is ð1:96þ 0:84Þ�ðs=

ffiffiffiffiffi
N

p
Þ or 2.80 standard

errors away from zero. For 90% power, D=1.28
and the effect size is 3.24 standard errors. Formally,
the effect size is ðC þ DÞ�ðs=

ffiffiffiffiffi
N

p
Þ, where C is the

ð1� a=2Þ� 100th percentile of the Normal distribu-
tion and D is the ð1� bÞ�100th percentile of the
Normal distribution.

To evaluate the statistical cost of multiple tests, we
extend the analysis to H>1 hypothesis tests with a
Bonferroni adjustment.16 This conservative approach
sets the per-test significance level to a/H, which
guarantees for an experiment comprised of H tests
that the probability of one or more false positives
(known as the family-wise error rate) is no more
than a. This is true for any possible relationship
among the tests. (See Discussion for implications for
other less conservative multiple-testing corrections.)
For a=0.05 and H=2, the Bonferroni critical value
is 2.24, measured in standard errors. Let D=2.24–
1.96 =0.28 denote the increase in the critical value.
Increasing the critical value reduces the bold-outlined
area under the alternative distribution, reducing
power from 80 to 71% (Figure 1b). Note that the cost
of going from a single test with 80% power to two
Bonferroni-adjusted tests is always a reduction of
power to 71% if the initial effect size and sample
size are maintained. The number does not depend
on the type of test, statistical model, effect size or
sample size.

The cost of multiple tests can also be quantified in
terms of the effect size that can be detected with the
original, single-test power and sample size. The new
detectable effect size is found by moving the alter-
native hypothesis to the left by D units (Figure 1c) to
accommodate the increase in the critical value. For
H=2, the minimum detectable effect size at 80%
power is therefore CþDþD=1.96þ 0.28þ 0.84=3.08
standard errors. In general, the detectable effect size
for H tests relative to that for a single test is

C þ Dþ D

C þ D
¼ 1þ D

C þ D
ð1Þ

which depends only on H, a and b and not other
aspects of the test, the sample size or the original
effect size. Note that the impact of H is only through
the critical value and not power, as power is
evaluated on a per-test basis.

A third way to quantify the cost of multiple tests is
the increase in sample size needed to maintain
the original level of power at the original effect size.
If the sample size is increased by a factor m, it has
the effect of dividing the standard error by

ffiffiffiffiffi
m

p
,

narrowing the widths of both the null and alternative
curves accordingly (Figure 1d). To offset the
addition of D, the distance between the two curves
expressed in terms of the new standard error
(s
� ffiffiffiffiffiffiffiffiffi

mN
p

) for the larger sample size and H tests should
equal the distance expressed in the original standard

errors (s
� ffiffiffiffiffi

N
p

) for a single test. Thus, m should satisfy

C þ Dþ Dð Þ� sffiffiffiffiffiffiffiffiffiffiffiffiffi
m�N

p ¼ C þ Dð Þ� sffiffiffiffiffi
N

p

or

m ¼ 1þ D
C þ D

� �2

: ð2Þ

For two tests, a=0.05 and 80% power, the sample size
should be multiplied by m=1.2 to maintain the
original power at the original effect size. Again, m
depends only on H, a and b and not the effect size or
original sample size. Note that the sample size
multiplier is the square of the effect size multiplier.
More generally, suppose a study design with H tests

at unadjusted significance level a and power 1�b is to
be compared to a second study design with H* tests at
unadjusted significance level a* and power 1�b*,
then the detectable effect size for the second design
relative to the effect size of the first design is

C� þ D� þ D�

C þ Dþ D
ð3Þ

where the numbers in the denominator are based on
the initial design and the numbers in the numerator
are based on the second. Furthermore, a sample size
multiplier for the second design relative to the first is
given by

C� þ D� þ D�

C þ Dþ D

� �2

ð4Þ

Numerical results were calculated using the Normal
distribution and expressions (1) and (2) in R.17 All
tests are two tailed and, if not otherwise specified, at
significance level a=0.05. Logs, unless otherwise
indicated, are base 10. A Cost of Multiple Tests
calculator that implements equations (1)–(4) in
Microsoft Excel 2003 for any choices of H, a and b
is also provided (Supplementary Table 1).

Results

For a fixed targeted effect size and fixed sample size,
power decreases as the number of tests and corre-
sponding critical value increase (Table 1, Figure 2a). If
the power for a single test is 80%, the power is
approximately 50% for 10; 10% for 1000; and 1% for
100 000 Bonferroni-adjusted tests. To avoid a drop in
nominal power without increasing sample size, an
investigator may target larger effect sizes (Table 1,
Figure 2b) using equation (1). For one million tests,
the effect size multiplier is 2.25 at 80% power and
2.08 at 90% power. Suppose it has been determined
that a sample of 100 yields 80% power to detect a
difference in group means when the mean in group 1
is 10 and the mean in group 2 is 12. The original
sample size of 100 would also yield 80% power to
detect a mean difference of 2.25� 2=4.50, with
Bonferroni adjustment for one million tests. The
effect size multiplier works on the scale of the
underlying Normally distributed test statistic. For
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example, effect size multiplication for an OR should
be carried out after conversion to the natural log
scale. Suppose 500 total cases and controls provide
90% power to detect an OR=1.2, the effect
size multiplier for 90% power and 1000 tests is
1.65. Since loge(1.2) = 0.18, the same sample of 500
yields 90% power in 1000 tests to detect a
loge(OR) = 1.65�0.18=0.30 or, equivalently, an OR=
exp(0.30) = 1.35.

To compensate for a greater number of tests, a more
realistic strategy may be to increase the sample size
(equation 2). Table 1 and Figure 2c give sample sizes
needed to maintain the original power at the original
targeted effect size. For one million tests, the sample
size multiplier is 5.06 for 80% power and 4.33 for
90% power, using equation (2). In the first example
above, 506 subjects would be sufficient to reach 80%
power to detect that the means differ by 2 in one
million Bonferroni-adjusted tests. Although it might
appear counterintuitive, the sample size multiplier is
smaller for 90% power because the initial sample size
is larger. In the same example, 132 subjects would be
needed to reach 90% power for one test. For 90%

power for one million tests, 4.33�132=572 subjects
are needed. Noting the nearly linear relationship in
Figure 2c, we also obtained an approximate rule-of-
thumb for the sample size multiplier by fitting zero-
intercept linear regression models to the results in
Figure 2c. The estimated slopes show that m is
approximately 1þ g� log10 H, where g=1.2 for 50%
power, 0.68 for 80% power, 0.55 for 90% power and
0.38 for 99% power.
The rate at which the critical value and, conse-

quently, the effect size and sample size multipliers
increase becomes slower and slower as the number of
tests becomes larger (Figure 2d), owing to the
exponential decline in the tails of the Normal density.
For example, effect size multipliers for one million vs
ten million tests at 80% power are 2.25 and 2.39,
respectively. Sample size multipliers are 5.06 and
5.71. At 80% power, ten million tests require only a
6% increase in the targeted effect size or a 13%
increase in the sample size when compared to one
million tests. In contrast, 10 tests require a 30%
increase in the targeted effect size or a 70% increase
in the sample size as compared with a single test. For

Table 1 Cost of multiple tests for 80 and 90% power and a=0.05

Number of tests (H) Critical value (CþD) Power for a single test

80% 90%

Multipliers Multipliers

Power (%) Effect size Sample size Power (%) Effect size Sample size

1 1.96 80.0 1.00 1.000 90.0 1.00 1.000
5 2.58 58.8 1.22 1.488 74.6 1.19 1.416
10 2.81 49.7 1.30 1.690 66.7 1.26 1.588
50 3.29 31.3 1.47 2.161 48.1 1.41 1.988
100 3.48 24.9 1.54 2.372 40.6 1.47 2.161
500 3.89 13.8 1.69 2.856 25.8 1.60 2.560
1K 4.06 10.4 1.75 3.062 20.7 1.65 2.722
5K 4.42 5.3 1.88 3.534 11.9 1.76 3.098
10Ka 4.56 3.9 1.93 3.725 9.4 1.80 3.240
50K 4.89 1.8 2.05 4.202 5.0 1.90 3.610
100K 5.03 1.3 2.10 4.410 3.7 1.95 3.802
300Ka 5.23 0.8 2.17 4.709 2.3 2.01 4.040
500K 5.33 0.6 2.20 4.840 1.8 2.04 4.162
560Ka 5.35 0.5 2.21 4.884 1.7 2.05 4.202
1M 5.45 0.4 2.25 5.062 1.4 2.08 4.326
1.2Ma 5.48 0.4 2.26 5.108 1.3 2.09 4.368
1.8Ma 5.55 0.3 2.28 5.198 1.0 2.11 4.452
2.5Ma 5.61 0.2 2.30 5.290 0.9 2.13 4.537
5Ma 5.73 0.2 2.35 5.523 0.6 2.16 4.666
10M 5.85 0.1 2.39 5.712 0.5 2.20 4.840
50M 6.11 0.0 2.48 6.150 0.2 2.28 5.198
100M 6.22 0.0 2.52 6.350 0.1 2.31 5.336
500M 6.47 0.0 2.61 6.812 0.1 2.39 5.712
1B 6.57 0.0 2.65 7.022 0.0 2.42 5.856
1T 7.53 0.0 2.99 8.940 0.0 2.72 7.398

Abbreviations: B, billion; K, thousand; M, million; T, trillion.
aExisting or proposed GWAS genotyping platform.
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80% power and one billion or one trillion tests, the
required sample sizes, respectively, are approxi-
mately 7 or 9 times that needed for a single test. See
Table 1 for some numerical results and the provided
Excel calculator (Supplementary Table 1) to explore
unreported results and specific study designs.

The sample size and effect size multipliers can be
used in other ways. For example, different numbers of
tests can be compared by taking the ratio of two
sample size multipliers or the effect size multipliers.
Consider alternatives to a genotyping platform with
1.2 million SNPs at 80% power. The detectable effect
size for a larger array with 2.5 million SNPs would
yield equivalent power for a 2% bigger effect size or,
alternatively, a 4% bigger sample size. A smaller array
with 560 000 SNPs would yield equivalent power for
a 2% smaller effect size or a 4% smaller sample size.
Following a data analysis involving multiple tests, the
sample size multiplier can also be used to find the
effective sample size for a single test post hoc. For
example, suppose 1000 hypothesis tests have been
carried out by permutation test in a sample of 120
subjects with negative results. The 1000 test sample
size multiplier at 80% power is 3.062. Thus, the
effective sample size is 120/3.062=39.

Discussion

The observation that the relationship between the
number of hypothesis tests and the detectable effect
size or required sample size depends only on the
choice of significance level and power covers most
commonly used statistical tests. This relationship is
independent of the original effect size and sample
size and other specific characteristics of the data, the

statistical model and test procedure. Our results show
that most of the cost of multiple testing is incurred
when the number of tests is relatively small. The
impact of multiple tests on the detectable effect size
or required sample size is surprisingly small when the
overall number of tests is large. When the number of
tests reaches extreme levels, on the order of a million,
doubling or tripling the number of tests has an almost
negligible effect. This is reassuring in light of
continuing developments in methods of high-
throughput data collection and the trend toward data
mining and exploration of a variety of statistical
models entailing greater numbers of tests and com-
parisons. In addition, we used our results to create a
power, effect size and sample size calculator to
facilitate the comparison of alternative large-scale
study designs.
Underlying the results is the fact that the critical

value in the context of extreme multiple testing is not
affected much by typical changes in the number of
tests. Thus, even a rigorous application of the
Bonferroni correction that accounts for every one of
a large number of tests is unlikely to change actual
hypothesis test results. Consequently, multiple ana-
lyses of alternative genetic or statistical models
impose minimal costs in a statistical sense in the
context of a one million SNP genome-wide associa-
tion study. Nonetheless, very large sample sizes are
still required for large numbers of tests if, as many
have proposed, it is necessary to target very small
effect sizes that would require a sizable sample even
for a single test.
Our results also show that, for the range of

contemporary genotyping platforms, there is little
difference with respect to detectable effect size or

Figure 2 Power (a), effect size multiplier (b) and sample size multiplier (c) as a function of the number of tests on the log
scale up to ten million tests, where power for a single test is 50, 80, 90 or 99%. The effect size multiplier is the number by
which the effect size for a single test must be multiplied to maintain the same power for the same sample size at the specified
number of tests. The sample size multiplier is the number by which the sample size for a single test must be multiplied to
maintain the same power for the same effect size at the specified number of tests and is nearly linear with respect to the log of
the number of tests. (d) Critical value, effect size multiplier and sample size multiplier for 80% power, with the number of
tests on the raw (unlogged) scale. As the number of tests increases, the rate of increase in all three decreases dramatically.
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required sample size. At 80% power, the detectable
effect size for a 2.5 million SNP platform is only 1.8%
bigger than for 1.2 million tests and 4.1% bigger than
for 560 000 tests. This relatively small increase is
potentially offset by the fact that, for any risk-related
variant in the genome, denser chips are more likely to
include a tagging SNP with a larger effect size. Thus,
consideration of alternative platforms should be
primarily based on monetary costs and not the
possibility of having ‘too many tests.’ Whole genome
sequencing theoretically provides data on approxi-
mately three billion base pairs, but might reasonably
be expected to generate no more than 100 million
variant sites. The sample size required to maintain
equivalent power for that many tests is only 30%
greater than that required for a 560K SNP chip.
Newer, denser SNP chips do include lower frequency
variants than older chips, whereas whole genome
sequencing theoretically enables identification of
variants appearing at any frequency in the sample.
The effect sizes of these lower frequency variants are
likely to differ on average from those of more common
polymorphisms, an issue that should also be con-
sidered when designing a study.

Our results also suggest that the Bonferroni correc-
tion may not be as conservative as sometimes thought,
when compared with multiple testing methods based
on the effective number of tests, either explicitly or
implicitly through permutation testing or other
means.5,18–23 In a one million SNP genome-wide
association study, a precise estimate of the ‘effective
number of independent tests’ as, say, 900 000 would
not much improve the detectable effect size over the
Bonferroni correction and significant findings are
likely to be the same. In practice, the effective number
of independent tests will usually be larger. In this
paper, we have not considered significance levels
other than 0.05. For a very large number of tests, it
may be appropriate to use a less stringent standard for
family-wise error. Such cases can be addressed using
Supplementary Table 1.

This study is limited in that the calculations are
based on the Normal approximation and rely on its
accuracy. Although this is usual for analytic discus-
sions of power, this caveat should be considered
before applying our formulae to small sample sizes.
Our results have also not been shown to apply to
hypothesis tests based on other statistical distribu-
tions, such as the F distribution or the w2 distribution
with more than one degree of freedom. We have also
followed common practice in ignoring any possible
dependence of the standard error on the true value of
b. Lastly, there is a practical limit to the size of data
set that can be conveniently analyzed and interpreted
even if samples can be generated that theoretically
provide adequate power.

Our theoretical results do not address problems that
can arise when conclusions are based on extremely
small P-values. Extreme results sometimes reflect rare
data errors, ascertainment biases, confounding or
other problems of study design or implementation.

Large sample sizes do not reduce bias; rather, large
samples increase the chance of a false positive finding
in the presence of bias.24 Furthermore, a P-value is a
random variable, subject to variation from sample to
sample. When tiny P-values are required, only one or
two differences in the sample data can change a result
from true positive to false negative or false negative to
true positive.
This study also assumes that samples are drawn

from the same population and effect sizes are the
same for different numbers of tests. These assump-
tions may not always be realistic. Larger samples may
require less expensive data collection protocols to
offset increased costs in time and money. Further-
more, subjects may be recruited from a wider variety
of sources and be examined at different sites in order
to increase their numbers. Broader inclusion/exclu-
sion criteria may also be used. Such strategies can
introduce greater heterogeneity and effectively reduce
the average effect size in larger samples. Choices
among alternative chip or sequencing technologies
can also implicitly correspond to different effect
sizes. For example, a denser SNP chip may have a
SNP closer to or in stronger linkage disequilibrium
with a causal variant. New, denser chips and sequen-
cing also permit the assessment of lower frequency
variants, which may individually account for less of
the population variance of a trait, although they also
can have stronger effects on individual risk if lower
frequencies are the end result of evolutionary selec-
tion. None of these limitations are unique to this
study.
In conclusion, we have shown that feasible sample

sizes can address surprisingly large numbers of
hypothesis tests, even when care is taken to control
the number of false positives by using an appro-
priately stringent statistical correction. In fact, it
might be theoretically possible to design a study that
achieved a ‘science-wide’ multiple test correction for,
say, one trillion tests. Despite this finding, large
samples are still needed to target the smaller effect
sizes that are often anticipated to be associated with
genetic variation.
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