Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Feature Review
  • Published:

Differential contribution of genetic variation in multiple brain nicotinic cholinergic receptors to nicotine dependence: recent progress and emerging open questions

Abstract

Nicotine dependence (ND), a major public health challenge, is a complex, multifactorial behavior, in which both genetic and environmental factors have a role. Brain nicotinic acetylcholine receptor (nAChR)-encoding genes are among the most prominent candidate genes studied in the context of ND, because of their biological relevance as binding sites for nicotine. Until recently, most research on the role of nAChRs in ND has focused on two of these genes (encoding the α4- and β2-subunits) and not much attention has been paid to the possible contribution of the other nine brain nAChR subunit genes (α2–α3, α5–α7, α9–α10, β3–β4) to the pathophysiology and genetics of ND. This situation has changed dramatically in the last 2 years during which intensive research had addressed the issue, mainly from the genetics perspective, and has shown the importance of the CHRNA5-CHRNA3-CHRNB4 and CHRNA6-CHRNB3 loci in ND-related phenotypes. In this review, we highlight recent findings regarding the contribution of non-α4/β2-subunit containing nAChRs to ND, based on several lines of evidence: (1) human genetics studies (including linkage analysis, candidate-gene association studies and whole-genome association studies) of several ND-related phenotypes; (2) differential pharmacological and biochemical properties of receptors containing these subunits; (3) evidence from genetically manipulated mice; and (4) the contribution of nAChR genes to ND-related personality traits and neurocognitive profiles. Combining neurobiological genetic and behavioral perspectives, we suggest that genetic susceptibility to ND is not linked to one or two specific nAChR subtype genes but to several. In particular, the α3, α5–6 and β3–4 nAChR subunit-encoding genes may play a much more pivotal role in the neurobiology and genetics of ND than was appreciated earlier. At the functional level, variants in these subunit genes (most likely regulatory) may have independent as well as interactive contributions to the ND phenotype spectrum. We address methodological challenges in the field, highlight open questions and suggest possible pathways for future research.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Annual smoking-attributable mortality, years of potential life lost, and productivity losses—United States, 1997–2001. MMWR Morb Mortal Wkly Rep 2005; 54: 625–628.

  2. Benowitz NL . Neurobiology of nicotine addiction: implications for smoking cessation treatment. Am J Med 2008; 121 (4 Suppl 1): S3–10.

    Article  CAS  PubMed  Google Scholar 

  3. Li MD . Identifying susceptibility loci for nicotine dependence: 2008 update based on recent genome-wide linkage analyses. Hum Genet 2008; 123: 119–131.

    Article  CAS  PubMed  Google Scholar 

  4. State-specific prevalence of current cigarette smoking among adults and secondhand smoke rules and policies in homes and workplaces—United States, 2005. MMWR Morb Mortal Wkly Rep 2006; 55: 1148–1151.

  5. Benowitz NL . Clinical pharmacology of nicotine: implications for understanding, preventing, and treating tobacco addiction. Clin Pharmacol Ther 2008; 83: 531–541.

    CAS  PubMed  Google Scholar 

  6. Carmines EL . Evaluation of the potential effects of ingredients added to cigarettes. Part 1: cigarette design, testing approach, and review of results. Food Chem Toxicol 2002; 40: 77–91.

    Article  CAS  PubMed  Google Scholar 

  7. Baker RR, Pereira da Silva JR, Smith G . The effect of tobacco ingredients on smoke chemistry. Part I: Flavourings and additives. Food Chem Toxicol 2004; 42 (Suppl): S3–37.

    Article  CAS  PubMed  Google Scholar 

  8. Benowitz NL . Nicotine addiction. Prim Care 1999; 26: 611–631.

    Article  CAS  PubMed  Google Scholar 

  9. Dani JA, Harris RA . Nicotine addiction and comorbidity with alcohol abuse and mental illness. Nat Neurosci 2005; 8: 1465–1470.

    Article  CAS  PubMed  Google Scholar 

  10. Hukkanen J, Jacob III P, Benowitz NL . Metabolism and disposition kinetics of nicotine. Pharmacol Rev 2005; 57: 79–115.

    Article  CAS  PubMed  Google Scholar 

  11. Batra V, Patkar AA, Berrettini WH, Weinstein SP, Leone FT . The genetic determinants of smoking. Chest 2003; 123: 1730–1739.

    Article  CAS  PubMed  Google Scholar 

  12. Sullivan PF, Kendler KS . The genetic epidemiology of smoking. Nicotine Tob Res 1999; 1 (Suppl 2): S51–S57;, discussion S69–70.

    Article  PubMed  Google Scholar 

  13. Li MD, Cheng R, Ma JZ, Swan GE . A meta-analysis of estimated genetic and environmental effects on smoking behavior in male and female adult twins. Addiction 2003; 98: 23–31.

    Article  PubMed  Google Scholar 

  14. Lessov-Schlaggar CN, Pergadia ML, Khroyan TV, Swan GE . Genetics of nicotine dependence and pharmacotherapy. Biochem Pharmacol 2008; 75: 178–195.

    Article  CAS  PubMed  Google Scholar 

  15. Uhl GR, Liu QR, Drgon T, Johnson C, Walther D, Rose JE . Molecular genetics of nicotine dependence and abstinence: whole genome association using 520,000 SNPs. BMC Genet 2007; 8: 10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Rose JE . Multiple brain pathways and receptors underlying tobacco addiction. Biochem Pharmacol 2007; 74: 1263–1270.

    Article  CAS  PubMed  Google Scholar 

  17. Jorenby DE, Hays JT, Rigotti NA, Azoulay S, Watsky EJ, Williams KE et al. Efficacy of varenicline, an alpha4beta2 nicotinic acetylcholine receptor partial agonist, vs placebo or sustained-release bupropion for smoking cessation: a randomized controlled trial. JAMA 2006; 296: 56–63.

    Article  CAS  PubMed  Google Scholar 

  18. Gotti C, Zoli M, Clementi F . Brain nicotinic acetylcholine receptors: native subtypes and their relevance. Trends Pharmacol Sci 2006; 27: 482–491.

    Article  CAS  PubMed  Google Scholar 

  19. Kalamida D, Poulas K, Avramopoulou V, Fostieri E, Lagoumintzis G, Lazaridis K et al. Muscle and neuronal nicotinic acetylcholine receptors. Structure, function and pathogenicity. FEBS J 2007; 274: 3799–3845.

    Article  CAS  PubMed  Google Scholar 

  20. Wilens TE, Decker MW . Neuronal nicotinic receptor agonists for the treatment of attention-deficit/hyperactivity disorder: focus on cognition. Biochem Pharmacol 2007; 74: 1212–1223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ochoa EL, Lasalde-Dominicci J . Cognitive deficits in schizophrenia: focus on neuronal nicotinic acetylcholine receptors and smoking. Cell Mol Neurobiol 2007; 27: 609–639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hogg RC, Raggenbass M, Bertrand D . Nicotinic acetylcholine receptors: from structure to brain function. Rev Physiol Biochem Pharmacol 2003; 147: 1–46.

    Article  CAS  PubMed  Google Scholar 

  23. Solda G, Boi S, Duga S, Fornasari D, Benfante R, Malcovati M et al. In vivo RNA–RNA duplexes from human alpha3 and alpha5 nicotinic receptor subunit mRNAs. Gene 2005; 345: 155–164.

    Article  CAS  PubMed  Google Scholar 

  24. Gault J, Robinson M, Berger R, Drebing C, Logel J, Hopkins J et al. Genomic organization and partial duplication of the human alpha7 neuronal nicotinic acetylcholine receptor gene (CHRNA7). Genomics 1998; 52: 173–185.

    Article  CAS  PubMed  Google Scholar 

  25. Gotti C, Clementi F . Neuronal nicotinic receptors: from structure to pathology. Prog Neurobiol 2004; 74: 363–396.

    Article  CAS  PubMed  Google Scholar 

  26. Gaimarri A, Moretti M, Riganti L, Zanardi A, Clementi F, Gotti C . Regulation of neuronal nicotinic receptor traffic and expression. Brain Res Rev 2007; 55: 134–143.

    Article  CAS  PubMed  Google Scholar 

  27. Kuryatov A, Onksen J, Lindstrom J . Roles of accessory subunits in alpha4beta2(*) nicotinic receptors. Mol Pharmacol 2008; 74: 132–143.

    Article  CAS  PubMed  Google Scholar 

  28. Arneric SP, Holladay M, Williams M . Neuronal nicotinic receptors: a perspective on two decades of drug discovery research. Biochem Pharmacol 2007; 74: 1092–1101.

    Article  CAS  PubMed  Google Scholar 

  29. Briggs CA, Gubbins EJ, Marks MJ, Putman CB, Thimmapaya R, Meyer MD et al. Untranslated region-dependent exclusive expression of high-sensitivity subforms of alpha4beta2 and alpha3beta2 nicotinic acetylcholine receptors. Mol Pharmacol 2006; 70: 227–240.

    CAS  PubMed  Google Scholar 

  30. Drenan RM, Nashmi R, Imoukhuede P, Just H, McKinney S, Lester HA . Subcellular trafficking, pentameric assembly, and subunit stoichiometry of neuronal nicotinic acetylcholine receptors containing fluorescently labeled alpha6 and beta3 subunits. Mol Pharmacol 2008; 73: 27–41.

    Article  CAS  PubMed  Google Scholar 

  31. Le Novere N, Corringer PJ, Changeux JP . The diversity of subunit composition in nAChRs: evolutionary origins, physiologic and pharmacologic consequences. J Neurobiol 2002; 53: 447–456.

    Article  CAS  PubMed  Google Scholar 

  32. Gotti C, Moretti M, Clementi F, Riganti L, McIntosh JM, Collins AC et al. Expression of nigrostriatal alpha 6-containing nicotinic acetylcholine receptors is selectively reduced, but not eliminated, by beta 3 subunit gene deletion. Mol Pharmacol 2005; 67: 2007–2015.

    Article  CAS  PubMed  Google Scholar 

  33. Laviolette SR, van der Kooy D . The neurobiology of nicotine addiction: bridging the gap from molecules to behaviour. Nat Rev Neurosci 2004; 5: 55–65.

    Article  CAS  PubMed  Google Scholar 

  34. Buisson B, Bertrand D . Nicotine addiction: the possible role of functional upregulation. Trends Pharmacol Sci 2002; 23: 130–136.

    Article  CAS  PubMed  Google Scholar 

  35. Helbig I, Mefford HC, Sharp AJ, Guipponi M, Fichera M, Franke A et al. 15q13.3 microdeletions increase risk of idiopathic generalized epilepsy. Nat Genet 2009; 41: 160–162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Martin-Ruiz CM, Haroutunian VH, Long P, Young AH, Davis KL, Perry EK et al. Dementia rating and nicotinic receptor expression in the prefrontal cortex in schizophrenia. Biol Psychiatry 2003; 54: 1222–1233.

    Article  CAS  PubMed  Google Scholar 

  37. Court J, Martin-Ruiz C, Piggott M, Spurden D, Griffiths M, Perry E . Nicotinic receptor abnormalities in Alzheimer's disease. Biol Psychiatry 2001; 49: 175–184.

    Article  CAS  PubMed  Google Scholar 

  38. Lee M, Martin-Ruiz C, Graham A, Court J, Jaros E, Perry R et al. Nicotinic receptor abnormalities in the cerebellar cortex in autism. Brain 2002; 125 (Part 7): 1483–1495.

    Article  CAS  PubMed  Google Scholar 

  39. Gotti C, Moretti M, Bohr I, Ziabreva I, Vailati S, Longhi R et al. Selective nicotinic acetylcholine receptor subunit deficits identified in Alzheimer's disease, Parkinson's disease and dementia with Lewy bodies by immunoprecipitation. Neurobiol Dis 2006; 23: 481–489.

    Article  CAS  PubMed  Google Scholar 

  40. Olincy A, Stevens KE . Treating schizophrenia symptoms with an alpha7 nicotinic agonist, from mice to men. Biochem Pharmacol 2007; 74: 1192–1201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nestler EJ . Is there a common molecular pathway for addiction? Nat Neurosci 2005; 8: 1445–1449.

    Article  CAS  PubMed  Google Scholar 

  42. Mansvelder HD, McGehee DS . Cellular and synaptic mechanisms of nicotine addiction. J Neurobiol 2002; 53: 606–617.

    Article  CAS  PubMed  Google Scholar 

  43. Klink R, de Kerchove d’Exaerde A, Zoli M, Changeux JP . Molecular and physiological diversity of nicotinic acetylcholine receptors in the midbrain dopaminergic nuclei. J Neurosci 2001; 21: 1452–1463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Azam L, Winzer-Serhan UH, Chen Y, Leslie FM . Expression of neuronal nicotinic acetylcholine receptor subunit mRNAs within midbrain dopamine neurons. J Comp Neurol 2002; 444: 260–274.

    Article  CAS  PubMed  Google Scholar 

  45. Everitt BJ, Robbins TW . Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci 2005; 8: 1481–1489.

    Article  CAS  PubMed  Google Scholar 

  46. Wang H, Sun X . Desensitized nicotinic receptors in brain. Brain Res Brain Res Rev 2005; 48: 420–437.

    Article  CAS  PubMed  Google Scholar 

  47. Brody AL, Mandelkern MA, London ED, Olmstead RE, Farahi J, Scheibal D et al. Cigarette smoking saturates brain alpha 4 beta 2 nicotinic acetylcholine receptors. Arch Gen Psychiatry 2006; 63: 907–915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Quik M, Polonskaya Y, Gillespie A, Jakowec M, Lloyd GK, Langston JW . Localization of nicotinic receptor subunit mRNAs in monkey brain by in situ hybridization. J Comp Neurol 2000; 425: 58–69.

    Article  CAS  PubMed  Google Scholar 

  49. Conejero-Goldberg C, Davies P, Ulloa L . Alpha7 nicotinic acetylcholine receptor: a link between inflammation and neurodegeneration. Neurosci Biobehav Rev 2008; 32: 693–706.

    Article  CAS  PubMed  Google Scholar 

  50. Palma E, Maggi L, Barabino B, Eusebi F, Ballivet M . Nicotinic acetylcholine receptors assembled from the alpha7 and beta3 subunits. J Biol Chem 1999; 274: 18335–18340.

    Article  CAS  PubMed  Google Scholar 

  51. Charpantier E, Barneoud P, Moser P, Besnard F, Sgard F . Nicotinic acetylcholine subunit mRNA expression in dopaminergic neurons of the rat substantia nigra and ventral tegmental area. Neuroreport 1998; 9: 3097–3101.

    Article  CAS  PubMed  Google Scholar 

  52. Elliott KJ, Jones JM, Sacaan AI, Lloyd GK, Corey-Naeve J . 6-hydroxydopamine lesion of rat nigrostriatal dopaminergic neurons differentially affects nicotinic acetylcholine receptor subunit mRNA expression. J Mol Neurosci 1998; 10: 251–260.

    Article  CAS  PubMed  Google Scholar 

  53. Ishii K, Wong JK, Sumikawa K . Comparison of alpha2 nicotinic acetylcholine receptor subunit mRNA expression in the central nervous system of rats and mice. J Comp Neurol 2005; 493: 241–260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Quik M, Vailati S, Bordia T, Kulak JM, Fan H, McIntosh JM et al. Subunit composition of nicotinic receptors in monkey striatum: effect of treatments with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine or L-DOPA. Mol Pharmacol 2005; 67: 32–41.

    Article  CAS  PubMed  Google Scholar 

  55. Xu W, Gelber S, Orr-Urtreger A, Armstrong D, Lewis RA, Ou CN et al. Megacystis, mydriasis, and ion channel defect in mice lacking the alpha3 neuronal nicotinic acetylcholine receptor. Proc Natl Acad Sci USA 1999; 96: 5746–5751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Perry DC, Xiao Y, Nguyen HN, Musachio JL, Davila-Garcia MI, Kellar KJ . Measuring nicotinic receptors with characteristics of alpha4beta2, alpha3beta2 and alpha3beta4 subtypes in rat tissues by autoradiography. J Neurochem 2002; 82: 468–481.

    Article  CAS  PubMed  Google Scholar 

  57. Gahring LC, Persiyanov K, Dunn D, Weiss R, Meyer EL, Rogers SW . Mouse strain-specific nicotinic acetylcholine receptor expression by inhibitory interneurons and astrocytes in the dorsal hippocampus. J Comp Neurol 2004; 468: 334–346.

    Article  CAS  PubMed  Google Scholar 

  58. Turner JR, Kellar KJ . Nicotinic cholinergic receptors in the rat cerebellum: multiple heteromeric subtypes. J Neurosci 2005; 25: 9258–9265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Flora A, Schulz R, Benfante R, Battaglioli E, Terzano S, Clementi F et al. Neuronal and extraneuronal expression and regulation of the human alpha5 nicotinic receptor subunit gene. J Neurochem 2000; 75: 18–27.

    Article  CAS  PubMed  Google Scholar 

  60. Zoli M, Moretti M, Zanardi A, McIntosh JM, Clementi F, Gotti C . Identification of the nicotinic receptor subtypes expressed on dopaminergic terminals in the rat striatum. J Neurosci 2002; 22: 8785–8789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Salminen O, Murphy KL, McIntosh JM, Drago J, Marks MJ, Collins AC et al. Subunit composition and pharmacology of two classes of striatal presynaptic nicotinic acetylcholine receptors mediating dopamine release in mice. Mol Pharmacol 2004; 65: 1526–1535.

    Article  CAS  PubMed  Google Scholar 

  62. Champtiaux N, Han ZY, Bessis A, Rossi FM, Zoli M, Marubio L et al. Distribution and pharmacology of alpha 6-containing nicotinic acetylcholine receptors analyzed with mutant mice. J Neurosci 2002; 22: 1208–1217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Moretti M, Vailati S, Zoli M, Lippi G, Riganti L, Longhi R et al. Nicotinic acetylcholine receptor subtypes expression during rat retina development and their regulation by visual experience. Mol Pharmacol 2004; 66: 85–96.

    Article  CAS  PubMed  Google Scholar 

  64. Champtiaux N, Gotti C, Cordero-Erausquin M, David DJ, Przybylski C, Lena C et al. Subunit composition of functional nicotinic receptors in dopaminergic neurons investigated with knock-out mice. J Neurosci 2003; 23: 7820–7829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gotti C, Moretti M, Gaimarri A, Zanardi A, Clementi F, Zoli M . Heterogeneity and complexity of native brain nicotinic receptors. Biochem Pharmacol 2007; 74: 1102–1111.

    Article  CAS  PubMed  Google Scholar 

  66. Salminen O, Drapeau JA, McIntosh JM, Collins AC, Marks MJ, Grady SR . Pharmacology of alpha-conotoxin MII-sensitive subtypes of nicotinic acetylcholine receptors isolated by breeding of null mutant mice. Mol Pharmacol 2007; 71: 1563–1571.

    Article  CAS  PubMed  Google Scholar 

  67. Le Novere N, Zoli M, Changeux JP . Neuronal nicotinic receptor alpha 6 subunit mRNA is selectively concentrated in catecholaminergic nuclei of the rat brain. Eur J Neurosci 1996; 8: 2428–2439.

    Article  CAS  PubMed  Google Scholar 

  68. Cui C, Booker TK, Allen RS, Grady SR, Whiteaker P, Marks MJ et al. The beta3 nicotinic receptor subunit: a component of alpha-conotoxin MII-binding nicotinic acetylcholine receptors that modulate dopamine release and related behaviors. J Neurosci 2003; 23: 11045–11053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gotti C, Moretti M, Zanardi A, Gaimarri A, Champtiaux N, Changeux JP et al. Heterogeneity and selective targeting of neuronal nicotinic acetylcholine receptor (nAChR) subtypes expressed on retinal afferents of the superior colliculus and lateral geniculate nucleus: identification of a new native nAChR subtype alpha3beta2(alpha5 or beta3) enriched in retinocollicular afferents. Mol Pharmacol 2005; 68: 1162–1171.

    Article  CAS  PubMed  Google Scholar 

  70. Salas R, Pieri F, Fung B, Dani JA, De Biasi M . Altered anxiety-related responses in mutant mice lacking the beta4 subunit of the nicotinic receptor. J Neurosci 2003; Jul: 16, ; 23: 6255-6263.

    Google Scholar 

  71. Quick MW, Ceballos RM, Kasten M, McIntosh JM, Lester RA . Alpha3beta4 subunit-containing nicotinic receptors dominate function in rat medial habenula neurons. Neuropharmacology 1999; 38: 769–783.

    Article  CAS  PubMed  Google Scholar 

  72. Salas R, Pieri F, De Biasi M . Decreased signs of nicotine withdrawal in mice null for the beta4 nicotinic acetylcholine receptor subunit. J Neurosci 2004; 24: 10035–10039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gomez-Casati ME, Fuchs PA, Elgoyhen AB, Katz E . Biophysical and pharmacological characterization of nicotinic cholinergic receptors in rat cochlear inner hair cells. J Physiol 2005; 566 (Part 1): 103–118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lips KS, Pfeil U, Kummer W . Coexpression of alpha 9 and alpha 10 nicotinic acetylcholine receptors in rat dorsal root ganglion neurons. Neuroscience 2002; 115: 1–5.

    Article  CAS  PubMed  Google Scholar 

  75. Feng Y, Niu T, Xing H, Xu X, Chen C, Peng S et al. A common haplotype of the nicotine acetylcholine receptor alpha 4 subunit gene is associated with vulnerability to nicotine addiction in men. Am J Hum Genet 2004; 75: 112–121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Saccone SF, Hinrichs AL, Saccone NL, Chase GA, Konvicka K, Madden PA et al. Cholinergic nicotinic receptor genes implicated in a nicotine dependence association study targeting 348 candidate genes with 3713 SNPs. Hum Mol Genet 2007; 16: 36–49.

    Article  CAS  PubMed  Google Scholar 

  77. Portugal GS, Gould TJ . Genetic variability in nicotinic acetylcholine receptors and nicotine addiction: converging evidence from human and animal research. Behav Brain Res 2008; 193: 1–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bierut LJ, Madden PA, Breslau N, Johnson EO, Hatsukami D, Pomerleau OF et al. Novel genes identified in a high-density genome wide association study for nicotine dependence. Hum Mol Genet 2007; 16: 24–35.

    Article  CAS  PubMed  Google Scholar 

  79. Berrettini W, Yuan X, Tozzi F, Song K, Francks C, Chilcoat H et al. Alpha-5/alpha-3 nicotinic receptor subunit alleles increase risk for heavy smoking. Mol Psychiatry 2008; 13: 368–373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Thorgeirsson TE, Geller F, Sulem P, Rafnar T, Wiste A, Magnusson KP et al. A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature 2008; 452: 638–642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Greenbaum L, Kanyas K, Karni O, Merbl Y, Olender T, Horowitz A et al. Why do young women smoke? I. Direct and interactive effects of environment, psychological characteristics and nicotinic cholinergic receptor genes. Mol Psychiatry 2006; 11: 312–322, 223.

    Article  CAS  PubMed  Google Scholar 

  82. Weiss RB, Baker TB, Cannon DS, von Niederhausern A, Dunn DM, Matsunami N et al. A candidate gene approach identifies the CHRNA5-A3-B4 region as a risk factor for age-dependent nicotine addiction. PLoS Genet 2008; Jul: 4, : e1000125.

    Google Scholar 

  83. Schlaepfer IR, Hoft NR, Collins AC, Corley RP, Hewitt JK, Hopfer CJ et al. The CHRNA5/A3/B4 gene cluster variability as an important determinant of early alcohol and tobacco initiation in young adults. Biol Psychiatry 2008; 63: 1039–1046.

    Article  CAS  PubMed  Google Scholar 

  84. Fagerstrom KO . Measuring degree of physical dependence to tobacco smoking with reference to individualization of treatment. Addict Behav 1978; 3: 235–241.

    Article  CAS  PubMed  Google Scholar 

  85. Heatherton TF, Kozlowski LT, Frecker RC, Fagerstrom KO . The Fagerstrom Test for Nicotine Dependence: a revision of the Fagerstrom Tolerance Questionnaire. Br J Addict 1991; 86: 1119–1127.

    Article  CAS  PubMed  Google Scholar 

  86. Rustin TA . Assessing nicotine dependence. Am Fam Physician 2000; 62: 579–584, 591–572.

    CAS  PubMed  Google Scholar 

  87. Li MD, Beuten J, Ma JZ, Payne TJ, Lou XY, Garcia V et al. Ethnic- and gender-specific association of the nicotinic acetylcholine receptor alpha4 subunit gene (CHRNA4) with nicotine dependence. Hum Mol Genet 2005; 14: 1211–1219.

    Article  CAS  PubMed  Google Scholar 

  88. Bierut LJ, Stitzel JA, Wang JC, Hinrichs AL, Grucza RA, Xuei X et al. Variants in nicotinic receptors and risk for nicotine dependence. Am J Psychiatry 2008; 165: 1163–1171.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Sherva R, Wilhelmsen K, Pomerleau CS, Chasse SA, Rice JP, Snedecor SM et al. Association of a single nucleotide polymorphism in neuronal acetylcholine receptor subunit alpha 5 (CHRNA5) with smoking status and with ‘pleasurable buzz’ during early experimentation with smoking. Addiction 2008; 103: 1544–1552.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Stevens VL, Bierut LJ, Talbot JT, Wang JC, Sun J, Hinrichs AL et al. Nicotinic receptor gene variants influence susceptibility to heavy smoking. Cancer Epidemiol Biomarkers Prev 2008; 17: 3517–3525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Breitling LP, Dahmen N, Mittelstrass K, Illig T, Rujescu D, Raum E et al. Smoking cessation and variations in nicotinic acetylcholine receptor subunits alpha-5, alpha-3, and beta-4 genes. Biol Psychiatry 2009; 65: 691–695.

    Article  CAS  PubMed  Google Scholar 

  92. Chassin L, Presson CC, Rose JS, Sherman SJ . The natural history of cigarette smoking from adolescence to adulthood: demographic predictors of continuity and change. Health Psychol 1996; 15: 478–484.

    Article  CAS  PubMed  Google Scholar 

  93. Lando HA, Thai DT, Murray DM, Robinson LA, Jeffery RW, Sherwood NE et al. Age of initiation, smoking patterns, and risk in a population of working adults. Prev Med 1999; 29 (6 Part 1): 590–598.

    Article  CAS  PubMed  Google Scholar 

  94. Wang JC, Grucza R, Cruchaga C, Hinrichs AL, Bertelsen S, Budde JP et al. Genetic variation in the CHRNA5 gene affects mRNA levels and is associated with risk for alcohol dependence. Mol Psychiatry 2008; 14: 501–510.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Joslyn G, Brush G, Robertson M, Smith TL, Kalmijn J, Schuckit M et al. Chromosome 15q25.1 genetic markers associated with level of response to alcohol in humans. Proc Natl Acad Sci USA 2008; 105: 20368–20373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Chen X, Chen J, Williamson VS, An SS, Hettema JM, Aggen SH et al. Variants in nicotinic acetylcholine receptors alpha5 and alpha3 increase risks to nicotine dependence. Am J Med Genet B Neuropsychiatr Genet, e-pub ahead of print; 8 January 2009.

  97. Grucza RA, Wang JC, Stitzel JA, Hinrichs AL, Saccone SF, Saccone NL et al. A risk allele for nicotine dependence in CHRNA5 is a protective allele for cocaine dependence. Biol Psychiatry 2008; 64: 922–929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Toh CK . The changing epidemiology of lung cancer. Methods Mol Biol 2009; 472: 397–411.

    Article  PubMed  Google Scholar 

  99. Witschi H . A short history of lung cancer. Toxicol Sci 2001; Nov: 64, : 4-6.

    Google Scholar 

  100. Hung RJ, McKay JD, Gaborieau V, Boffetta P, Hashibe M, Zaridze D et al. A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature 2008; 452: 633–637.

    Article  CAS  PubMed  Google Scholar 

  101. Amos CI, Wu X, Broderick P, Gorlov IP, Gu J, Eisen T et al. Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1. Nat Genet 2008; 40: 616–622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Liu P, Vikis HG, Wang D, Lu Y, Wang Y, Schwartz AG et al. Familial aggregation of common sequence variants on 15q24-25.1 in lung cancer. J Natl Cancer Inst 2008; 100: 1326–1330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Spitz MR, Amos CI, Dong Q, Lin J, Wu X . The CHRNA5-A3 region on chromosome 15q24-25.1 is a risk factor both for nicotine dependence and for lung cancer. J Natl Cancer Inst 2008; 100: 1552–1556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Maus AD, Pereira EF, Karachunski PI, Horton RM, Navaneetham D, Macklin K et al. Human and rodent bronchial epithelial cells express functional nicotinic acetylcholine receptors. Mol Pharmacol 1998; 54: 779–788.

    Article  CAS  PubMed  Google Scholar 

  105. Lam DC, Girard L, Ramirez R, Chau WS, Suen WS, Sheridan S et al. Expression of nicotinic acetylcholine receptor subunit genes in non-small-cell lung cancer reveals differences between smokers and nonsmokers. Cancer Res 2007; 67: 4638–4647.

    Article  CAS  PubMed  Google Scholar 

  106. Volkow N, Rutter J, Pollock JD, Shurtleff D, Baler R . One SNP linked to two diseases-addiction and cancer: a double whammy? Nicotine addiction and lung cancer susceptibility. Mol Psychiatry 2008; 13: 990–992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wacholder S, Chatterjee N, Caporaso N . Intermediacy and gene-environment interaction: the example of CHRNA5-A3 region, smoking, nicotine dependence, and lung cancer. J Natl Cancer Inst 2008; 100: 1488–1491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zeiger JS, Haberstick BC, Schlaepfer I, Collins AC, Corley RP, Crowley TJ et al. The neuronal nicotinic receptor subunit genes (CHRNA6 and CHRNB3) are associated with subjective responses to tobacco. Hum Mol Genet 2008; 17: 724–734.

    Article  CAS  PubMed  Google Scholar 

  109. Hoft NR, Corley RP, McQueen MB, Schlaepfer IR, Huizinga D, Ehringer MA . Genetic association of the CHRNA6 and CHRNB3 genes with tobacco dependence in a nationally representative sample. Neuropsychopharmacology 2009; 34: 698–706.

    Article  CAS  PubMed  Google Scholar 

  110. Saccone SF, Pergadia ML, Loukola A, Broms U, Montgomery GW, Wang JC et al. Genetic linkage to chromosome 22q12 for a heavy-smoking quantitative trait in two independent samples. Am J Hum Genet 2007; 80: 856–866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wang D, Ma JZ, Li MD . Mapping and verification of susceptibility loci for smoking quantity using permutation linkage analysis. Pharmacogenomics J 2005; 5: 166–172.

    Article  PubMed  CAS  Google Scholar 

  112. Hutchison KE, Allen DL, Filbey FM, Jepson C, Lerman C, Benowitz NL et al. CHRNA4 and tobacco dependence: from gene regulation to treatment outcome. Arch Gen Psychiatry 2007; 64: 1078–1086.

    Article  CAS  PubMed  Google Scholar 

  113. Voineskos S, De Luca V, Mensah A, Vincent JB, Potapova N, Kennedy JL . Association of alpha4beta2 nicotinic receptor and heavy smoking in schizophrenia. J Psychiatry Neurosci 2007; 32: 412–416.

    PubMed  PubMed Central  Google Scholar 

  114. Adler LE, Olincy A, Waldo M, Harris JG, Griffith J, Stevens K et al. Schizophrenia, sensory gating, and nicotinic receptors. Schizophr Bull 1998; 24: 189–202.

    Article  CAS  PubMed  Google Scholar 

  115. Ehringer MA, Clegg HV, Collins AC, Corley RP, Crowley T, Hewitt JK et al. Association of the neuronal nicotinic receptor beta2 subunit gene (CHRNB2) with subjective responses to alcohol and nicotine. Am J Med Genet B Neuropsychiatr Genet 2007; 144B: 596–604.

    Article  CAS  PubMed  Google Scholar 

  116. Conti DV, Lee W, Li D, Liu J, Van Den Berg D, Thomas PD et al. Nicotinic acetylcholine receptor beta2 subunit gene implicated in a systems-based candidate gene study of smoking cessation. Hum Mol Genet 2008; 17: 2834–2848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Silverman MA, Neale MC, Sullivan PF, Harris-Kerr C, Wormley B, Sadek H et al. Haplotypes of four novel single nucleotide polymorphisms in the nicotinic acetylcholine receptor beta2-subunit (CHRNB2) gene show no association with smoking initiation or nicotine dependence. Am J Med Genet 2000; 96: 646–653.

    Article  CAS  PubMed  Google Scholar 

  118. Lueders KK, Hu S, McHugh L, Myakishev MV, Sirota LA, Hamer DH . Genetic and functional analysis of single nucleotide polymorphisms in the beta2-neuronal nicotinic acetylcholine receptor gene (CHRNB2). Nicotine Tob Res 2002; 4: 115–125.

    Article  CAS  PubMed  Google Scholar 

  119. Li MD, Lou XY, Chen G, Ma JZ, Elston RC . Gene-gene interactions among CHRNA4, CHRNB2, BDNF, and NTRK2 in nicotine dependence. Biol Psychiatry 2008; 64: 951–957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Swan GE, Hops H, Wilhelmsen KC, Lessov-Schlaggar CN, Cheng LS, Hudmon KS et al. A genome-wide screen for nicotine dependence susceptibility loci. Am J Med Genet B Neuropsychiatr Genet 2006; 141B: 354–360.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Bergen AW, Korczak JF, Weissbecker KA, Goldstein AM . A genome-wide search for loci contributing to smoking and alcoholism. Genet Epidemiol 1999; 17 (Suppl 1): S55–S60.

    Article  PubMed  Google Scholar 

  122. Faraone SV, Su J, Taylor L, Wilcox M, Van Eerdewegh P, Tsuang MT . A novel permutation testing method implicates sixteen nicotinic acetylcholine receptor genes as risk factors for smoking in schizophrenia families. Hum Hered 2004; 57: 59–68.

    Article  CAS  PubMed  Google Scholar 

  123. Corley RP, Zeiger JS, Crowley T, Ehringer MA, Hewitt JK, Hopfer CJ et al. Association of candidate genes with antisocial drug dependence in adolescents. Drug Alcohol Depend 2008; 96: 90–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Heitjan DF, Guo M, Ray R, Wileyto EP, Epstein LH, Lerman C . Identification of pharmacogenetic markers in smoking cessation therapy. Am J Med Genet B Neuropsychiatr Genet 2008; 147B: 712–719.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Stassen HH, Bridler R, Hell D, Weisbrod M, Scharfetter C . Ethnicity-independent genetic basis of functional psychoses: a genotype-to-phenotype approach. Am J Med Genet B Neuropsychiatr Genet 2004; 124B: 101–112.

    Article  CAS  PubMed  Google Scholar 

  126. Sanders AR, Duan J, Levinson DF, Shi J, He D, Hou C et al. No significant association of 14 candidate genes with schizophrenia in a large European ancestry sample: implications for psychiatric genetics. Am J Psychiatry 2008; 165: 497–506.

    Article  PubMed  Google Scholar 

  127. De Luca V, Wang H, Squassina A, Wong GW, Yeomans J, Kennedy JL . Linkage of M5 muscarinic and alpha7-nicotinic receptor genes on 15q13 to schizophrenia. Neuropsychobiology 2004; 50: 124–127.

    Article  CAS  PubMed  Google Scholar 

  128. Zammit S, Spurlock G, Williams H, Norton N, Williams N, O’Donovan MC et al. Genotype effects of CHRNA7, CNR1 and COMT in schizophrenia: interactions with tobacco and cannabis use. Br J Psychiatry 2007; 191: 402–407.

    Article  PubMed  Google Scholar 

  129. Gelernter J, Liu X, Hesselbrock V, Page GP, Goddard A, Zhang H . Results of a genomewide linkage scan: support for chromosomes 9 and 11 loci increasing risk for cigarette smoking. Am J Med Genet B Neuropsychiatr Genet 2004; 128B: 94–101.

    Article  PubMed  Google Scholar 

  130. Loukola A, Broms U, Maunu H, Widen E, Heikkila K, Siivola M et al. Linkage of nicotine dependence and smoking behavior on 10q, 7q and 11p in twins with homogeneous genetic background. Pharmacogenomics J 2008; 8: 209–219.

    Article  CAS  PubMed  Google Scholar 

  131. Mineur YS, Picciotto MR . Genetics of nicotinic acetylcholine receptors: Relevance to nicotine addiction. Biochem Pharmacol 2008; 75: 323–333.

    Article  CAS  PubMed  Google Scholar 

  132. Drenan RM, Grady SR, Whiteaker P, McClure-Begley T, McKinney S, Miwa JM et al. In vivo activation of midbrain dopamine neurons via sensitized, high-affinity alpha 6 nicotinic acetylcholine receptors. Neuron 2008; 60: 123–136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Fowler CD, Arends MA, Kenny PJ . Subtypes of nicotinic acetylcholine receptors in nicotine reward, dependence, and withdrawal: evidence from genetically modified mice. Behav Pharmacol 2008; 19: 461–484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Picciotto MR, Zoli M, Rimondini R, Lena C, Marubio LM, Pich EM et al. Acetylcholine receptors containing the beta2 subunit are involved in the reinforcing properties of nicotine. Nature 1998; 391: 173–177.

    Article  CAS  PubMed  Google Scholar 

  135. Maskos U, Molles BE, Pons S, Besson M, Guiard BP, Guilloux JP et al. Nicotine reinforcement and cognition restored by targeted expression of nicotinic receptors. Nature 2005; 436: 103–107.

    Article  CAS  PubMed  Google Scholar 

  136. Avale ME, Faure P, Pons S, Robledo P, Deltheil T, David DJ et al. Interplay of beta2* nicotinic receptors and dopamine pathways in the control of spontaneous locomotion. Proc Natl Acad Sci USA 2008; 105: 15991–15996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Mameli-Engvall M, Evrard A, Pons S, Maskos U, Svensson TH, Changeux JP et al. Hierarchical control of dopamine neuron-firing patterns by nicotinic receptors. Neuron 2006; 50: 911–921.

    Article  CAS  PubMed  Google Scholar 

  138. King SL, Caldarone BJ, Picciotto MR . Beta2-subunit-containing nicotinic acetylcholine receptors are critical for dopamine-dependent locomotor activation following repeated nicotine administration. Neuropharmacology 2004; 47 (Suppl 1): 132–139.

    Article  CAS  PubMed  Google Scholar 

  139. Shoaib M, Gommans J, Morley A, Stolerman IP, Grailhe R, Changeux JP . The role of nicotinic receptor beta-2 subunits in nicotine discrimination and conditioned taste aversion. Neuropharmacology 2002; 42: 530–539.

    Article  CAS  PubMed  Google Scholar 

  140. Walters CL, Brown S, Changeux JP, Martin B, Damaj MI . The beta2 but not alpha7 subunit of the nicotinic acetylcholine receptor is required for nicotine-conditioned place preference in mice. Psychopharmacology (Berl) 2006; 184: 339–344.

    Article  CAS  Google Scholar 

  141. Owens JC, Balogh SA, McClure-Begley TD, Butt CM, Labarca C, Lester HA et al. Alpha 4 beta 2* nicotinic acetylcholine receptors modulate the effects of ethanol and nicotine on the acoustic startle response. Alcohol Clin Exp Res 2003; 27: 1867–1875.

    Article  CAS  PubMed  Google Scholar 

  142. Besson M, David V, Suarez S, Cormier A, Cazala P, Changeux JP et al. Genetic dissociation of two behaviors associated with nicotine addiction: beta-2 containing nicotinic receptors are involved in nicotine reinforcement but not in withdrawal syndrome. Psychopharmacology (Berl) 2006; 187: 189–199.

    Article  CAS  Google Scholar 

  143. Jackson KJ, Martin BR, Changeux JP, Damaj MI . Differential role of nicotinic acetylcholine receptor subunits in physical and affective nicotine withdrawal signs. J Pharmacol Exp Ther 2008; 325: 302–312.

    Article  CAS  PubMed  Google Scholar 

  144. Kulak JM, Nguyen TA, Olivera BM, McIntosh JM . Alpha-conotoxin MII blocks nicotine-stimulated dopamine release in rat striatal synaptosomes. J Neurosci 1997; 17: 5263–5270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Pons S, Fattore L, Cossu G, Tolu S, Porcu E, McIntosh JM et al. Crucial role of alpha4 and alpha6 nicotinic acetylcholine receptor subunits from ventral tegmental area in systemic nicotine self-administration. J Neurosci 2008; 28: 12318–12327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Tapper AR, McKinney SL, Nashmi R, Schwarz J, Deshpande P, Labarca C et al. Nicotine activation of alpha4* receptors: sufficient for reward, tolerance, and sensitization. Science 2004; 306: 1029–1032.

    Article  CAS  PubMed  Google Scholar 

  147. Marubio LM, Gardier AM, Durier S, David D, Klink R, Arroyo-Jimenez MM et al. Effects of nicotine in the dopaminergic system of mice lacking the alpha4 subunit of neuronal nicotinic acetylcholine receptors. Eur J Neurosci 2003; 17: 1329–1337.

    Article  CAS  PubMed  Google Scholar 

  148. Parish CL, Nunan J, Finkelstein DI, McNamara FN, Wong JY, Waddington JL et al. Mice lacking the alpha4 nicotinic receptor subunit fail to modulate dopaminergic neuronal arbors and possess impaired dopamine transporter function. Mol Pharmacol 2005; 68: 1376–1386.

    Article  CAS  PubMed  Google Scholar 

  149. Dobelis P, Marks MJ, Whiteaker P, Balogh SA, Collins AC, Stitzel JA . A polymorphism in the mouse neuronal alpha4 nicotinic receptor subunit results in an alteration in receptor function. Mol Pharmacol 2002; 62: 334–342.

    Article  CAS  PubMed  Google Scholar 

  150. Butt CM, King NM, Hutton SR, Collins AC, Stitzel JA . Modulation of nicotine but not ethanol preference by the mouse Chrna4 A529T polymorphism. Behav Neurosci 2005; 119: 26–37.

    Article  CAS  PubMed  Google Scholar 

  151. Kim H, Flanagin BA, Qin C, Macdonald RL, Stitzel JA . The mouse Chrna4 A529T polymorphism alters the ratio of high to low affinity alpha 4 beta 2 nAChRs. Neuropharmacology 2003; 45: 345–354.

    Article  CAS  PubMed  Google Scholar 

  152. Stolerman IP, Chamberlain S, Bizarro L, Fernandes C, Schalkwyk L . The role of nicotinic receptor alpha 7 subunits in nicotine discrimination. Neuropharmacology 2004; 46: 363–371.

    Article  CAS  PubMed  Google Scholar 

  153. Tritto T, McCallum SE, Waddle SA, Hutton SR, Paylor R, Collins AC et al. Null mutant analysis of responses to nicotine: deletion of beta2 nicotinic acetylcholine receptor subunit but not alpha7 subunit reduces sensitivity to nicotine-induced locomotor depression and hypothermia. Nicotine Tob Res 2004; 6: 145–158.

    Article  CAS  PubMed  Google Scholar 

  154. Naylor C, Quarta D, Fernandes C, Stolerman IP . Tolerance to nicotine in mice lacking alpha7 nicotinic receptors. Psychopharmacology (Berl) 2005; 180: 558–563.

    Article  CAS  Google Scholar 

  155. Salas R, Main A, Gangitano D, De Biasi M . Decreased withdrawal symptoms but normal tolerance to nicotine in mice null for the alpha7 nicotinic acetylcholine receptor subunit. Neuropharmacology 2007; 53: 863–869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Grabus SD, Martin BR, Imad Damaj M . Nicotine physical dependence in the mouse: involvement of the alpha7 nicotinic receptor subtype. Eur J Pharmacol 2005; 515: 90–93.

    Article  CAS  PubMed  Google Scholar 

  157. Salas R, Cook KD, Bassetto L, De Biasi M . The alpha3 and beta4 nicotinic acetylcholine receptor subunits are necessary for nicotine-induced seizures and hypolocomotion in mice. Neuropharmacology 2004; 47: 401–407.

    Article  CAS  PubMed  Google Scholar 

  158. Salas R, Orr-Urtreger A, Broide RS, Beaudet A, Paylor R, De Biasi M . The nicotinic acetylcholine receptor subunit alpha 5 mediates short-term effects of nicotine in vivo. Mol Pharmacol 2003; 63: 1059–1066.

    Article  CAS  PubMed  Google Scholar 

  159. Picciotto MR, Addy NA, Mineur YS, Brunzell DH . It is not ‘either/or’: activation and desensitization of nicotinic acetylcholine receptors both contribute to behaviors related to nicotine addiction and mood. Prog Neurobiol 2008; 84: 329–342.

    Article  CAS  PubMed  Google Scholar 

  160. Fenster CP, Rains MF, Noerager B, Quick MW, Lester RA . Influence of subunit composition on desensitization of neuronal acetylcholine receptors at low concentrations of nicotine. J Neurosci 1997; 17: 5747–5759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Fenster CP, Hicks JH, Beckman ML, Covernton PJ, Quick MW, Lester RA . Desensitization of nicotinic receptors in the central nervous system. Ann NY Acad Sci 1999; 868: 620–623.

    Article  CAS  PubMed  Google Scholar 

  162. Corringer PJ, Bertrand S, Bohler S, Edelstein SJ, Changeux JP, Bertrand D . Critical elements determining diversity in agonist binding and desensitization of neuronal nicotinic acetylcholine receptors. J Neurosci 1998; 18: 648–657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Katz B, Thesleff S . A study of the desensitization produced by acetylcholine at the motor end-plate. J Physiol 1957; 138: 63–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Giniatullin R, Nistri A, Yakel JL . Desensitization of nicotinic ACh receptors: shaping cholinergic signaling. Trends Neurosci 2005; 28: 371–378.

    Article  CAS  PubMed  Google Scholar 

  165. Walsh H, Govind AP, Mastro R, Hoda JC, Bertrand D, Vallejo Y et al. Up-regulation of nicotinic receptors by nicotine varies with receptor subtype. J Biol Chem 2008; 283: 6022–6032.

    Article  CAS  PubMed  Google Scholar 

  166. Breese CR, Marks MJ, Logel J, Adams CE, Sullivan B, Collins AC et al. Effect of smoking history on [3H]nicotine binding in human postmortem brain. J Pharmacol Exp Ther 1997; 282: 7–13.

    CAS  PubMed  Google Scholar 

  167. Perry DC, Davila-Garcia MI, Stockmeier CA, Kellar KJ . Increased nicotinic receptors in brains from smokers: membrane binding and autoradiography studies. J Pharmacol Exp Ther 1999; 289: 1545–1552.

    CAS  PubMed  Google Scholar 

  168. Vezina P, McGehee DS, Green WN . Exposure to nicotine and sensitization of nicotine-induced behaviors. Prog Neuropsychopharmacol Biol Psychiatry 2007; 31: 1625–1638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Buisson B, Bertrand D . Chronic exposure to nicotine upregulates the human (alpha)4((beta)2 nicotinic acetylcholine receptor function. J Neurosci 2001; 21: 1819–1829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Darsow T, Booker TK, Pina-Crespo JC, Heinemann SF . Exocytic trafficking is required for nicotine-induced up-regulation of alpha 4 beta 2 nicotinic acetylcholine receptors. J Biol Chem 2005; 280: 18311–18320.

    Article  CAS  PubMed  Google Scholar 

  171. Wooltorton JR, Pidoplichko VI, Broide RS, Dani JA . Differential desensitization and distribution of nicotinic acetylcholine receptor subtypes in midbrain dopamine areas. J Neurosci 2003; 23: 3176–3185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Mao D, Perry DC, Yasuda RP, Wolfe BB, Kellar KJ . The alpha4beta2alpha5 nicotinic cholinergic receptor in rat brain is resistant to up-regulation by nicotine in vivo. J Neurochem 2008; 104: 446–456.

    CAS  PubMed  Google Scholar 

  173. Vincler MA, Eisenach JC . Immunocytochemical localization of the alpha3, alpha4, alpha5, alpha7, beta2, beta3 and beta4 nicotinic acetylcholine receptor subunits in the locus coeruleus of the rat. Brain Res 2003; 974: 25–36.

    Article  CAS  PubMed  Google Scholar 

  174. Xiao Y, Kellar KJ . The comparative pharmacology and up-regulation of rat neuronal nicotinic receptor subtype binding sites stably expressed in transfected mammalian cells. J Pharmacol Exp Ther 2004; 310: 98–107.

    Article  CAS  PubMed  Google Scholar 

  175. Olale F, Gerzanich V, Kuryatov A, Wang F, Lindstrom J . Chronic nicotine exposure differentially affects the function of human alpha3, alpha4, and alpha7 neuronal nicotinic receptor subtypes. J Pharmacol Exp Ther 1997; 283: 675–683.

    CAS  PubMed  Google Scholar 

  176. Wullner U, Gundisch D, Herzog H, Minnerop M, Joe A, Warnecke M et al. Smoking upregulates alpha4beta2* nicotinic acetylcholine receptors in the human brain. Neurosci Lett 2008; 430: 34–37.

    Article  PubMed  CAS  Google Scholar 

  177. Staley JK, Krishnan-Sarin S, Cosgrove KP, Krantzler E, Frohlich E, Perry E et al. Human tobacco smokers in early abstinence have higher levels of beta2* nicotinic acetylcholine receptors than nonsmokers. J Neurosci 2006; 26: 8707–8714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Mamede M, Ishizu K, Ueda M, Mukai T, Iida Y, Kawashima H et al. Temporal change in human nicotinic acetylcholine receptor after smoking cessation: 5IA SPECT study. J Nucl Med 2007; 48: 1829–1835.

    Article  CAS  PubMed  Google Scholar 

  179. Schwartz RD, Kellar KJ . In vivo regulation of [3H]acetylcholine recognition sites in brain by nicotinic cholinergic drugs. J Neurochem 1985; 45: 427–433.

    Article  CAS  PubMed  Google Scholar 

  180. Pakkanen JS, Jokitalo E, Tuominen RK . Up-regulation of beta2 and alpha7 subunit containing nicotinic acetylcholine receptors in mouse striatum at cellular level. Eur J Neurosci 2005; 21: 2681–2691.

    Article  PubMed  Google Scholar 

  181. Nuutinen S, Ahtee L, Tuominen RK . Time and brain region specific up-regulation of low affinity neuronal nicotinic receptors during chronic nicotine administration in mice. Eur J Pharmacol 2005; 515: 83–89.

    Article  CAS  PubMed  Google Scholar 

  182. Molinari EJ, Delbono O, Messi ML, Renganathan M, Arneric SP, Sullivan JP et al. Up-regulation of human alpha7 nicotinic receptors by chronic treatment with activator and antagonist ligands. Eur J Pharmacol 1998; 347: 131–139.

    Article  CAS  PubMed  Google Scholar 

  183. Parker SL, Fu Y, McAllen K, Luo J, McIntosh JM, Lindstrom JM et al. Up-regulation of brain nicotinic acetylcholine receptors in the rat during long-term self-administration of nicotine: disproportionate increase of the alpha6 subunit. Mol Pharmacol 2004; 65: 611–622.

    Article  CAS  PubMed  Google Scholar 

  184. McCallum SE, Parameswaran N, Bordia T, Fan H, McIntosh JM, Quik M . Differential regulation of mesolimbic alpha 3/alpha 6 beta 2 and alpha 4 beta 2 nicotinic acetylcholine receptor sites and function after long-term oral nicotine to monkeys. J Pharmacol Exp Ther 2006; 318: 381–388.

    Article  CAS  PubMed  Google Scholar 

  185. Perry DC, Mao D, Gold AB, McIntosh JM, Pezzullo JC, Kellar KJ . Chronic nicotine differentially regulates alpha6- and beta3-containing nicotinic cholinergic receptors in rat brain. J Pharmacol Exp Ther 2007; 322: 306–315.

    Article  CAS  PubMed  Google Scholar 

  186. Exley R, Clements MA, Hartung H, McIntosh JM, Cragg SJ . Alpha6-containing nicotinic acetylcholine receptors dominate the nicotine control of dopamine neurotransmission in nucleus accumbens. Neuropsychopharmacology 2008; 33: 2158–2166.

    Article  CAS  PubMed  Google Scholar 

  187. Meyer EL, Yoshikami D, McIntosh JM . The neuronal nicotinic acetylcholine receptors alpha 4* and alpha 6* differentially modulate dopamine release in mouse striatal slices. J Neurochem 2008; 105: 1761–1769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Kendler KS, Neale MC, Sullivan P, Corey LA, Gardner CO, Prescott CA . A population-based twin study in women of smoking initiation and nicotine dependence. Psychol Med 1999; 29: 299–308.

    Article  CAS  PubMed  Google Scholar 

  189. Rigbi A, Kanyas K, Yakir A, Greenbaum L, Pollak Y, Ben-Asher E et al. Why do young women smoke? V. Role of direct and interactive effects of nicotinic cholinergic receptor gene variation on neurocognitive function. Genes Brain Behav 2008; 7: 164–172.

    Article  CAS  PubMed  Google Scholar 

  190. Ebstein RP . The molecular genetic architecture of human personality: beyond self-report questionnaires. Mol Psychiatry 2006; 11: 427–445.

    Article  CAS  PubMed  Google Scholar 

  191. Kreek MJ, Nielsen DA, Butelman ER, LaForge KS . Genetic influences on impulsivity, risk taking, stress responsivity and vulnerability to drug abuse and addiction. Nat Neurosci 2005; 8: 1450–1457.

    Article  CAS  PubMed  Google Scholar 

  192. Pomerleau CS, Pomerleau OF, Flessland KA, Basson SM . Relationship of Tridimensional Personality Questionnaire scores and smoking variables in female and male smokers. J Subst Abuse 1992; 4: 143–154.

    Article  CAS  PubMed  Google Scholar 

  193. Lipkus IM, Barefoot JC, Williams RB, Siegler IC . Personality measures as predictors of smoking initiation and cessation in the UNC Alumni Heart Study. Health Psychol 1994; 13: 149–155.

    Article  CAS  PubMed  Google Scholar 

  194. Patton D, Barnes GE, Murray RP . A personality typology of smokers. Addict Behav 1997; 22: 269–273.

    Article  CAS  PubMed  Google Scholar 

  195. Etter JF, Pelissolo A, Pomerleau C, De Saint-Hilaire Z . Associations between smoking and heritable temperament traits. Nicotine Tob Res 2003; 5: 401–409.

    Article  PubMed  Google Scholar 

  196. Reif A, Lesch KP . Toward a molecular architecture of personality. Behav Brain Res 2003; 139: 1–20.

    Article  CAS  PubMed  Google Scholar 

  197. Ebstein RP, Novick O, Umansky R, Priel B, Osher Y, Blaine D et al. Dopamine D4 receptor (D4DR) exon III polymorphism associated with the human personality trait of Novelty Seeking. Nat Genet 1996; 12: 78–80.

    Article  CAS  PubMed  Google Scholar 

  198. Benjamin J, Li L, Patterson C, Greenberg BD, Murphy DL, Hamer DH . Population and familial association between the D4 dopamine receptor gene and measures of Novelty Seeking. Nat Genet 1996; 12: 81–84.

    Article  CAS  PubMed  Google Scholar 

  199. Osher Y, Hamer D, Benjamin J . Association and linkage of anxiety-related traits with a functional polymorphism of the serotonin transporter gene regulatory region in Israeli sibling pairs. Mol Psychiatry 2000; 5: 216–219.

    Article  CAS  PubMed  Google Scholar 

  200. van den Oord EJ, Kuo PH, Hartmann AM, Webb BT, Moller HJ, Hettema JM et al. Genomewide association analysis followed by a replication study implicates a novel candidate gene for neuroticism. Arch Gen Psychiatry 2008; 65: 1062–1071.

    Article  PubMed  Google Scholar 

  201. Goodwin R, Hamilton SP . Cigarette smoking and panic: the role of neuroticism. Am J Psychiatry 2002; 159: 1208–1213.

    Article  PubMed  Google Scholar 

  202. Lerman C, Caporaso NE, Audrain J, Main D, Boyd NR, Shields PG . Interacting effects of the serotonin transporter gene and neuroticism in smoking practices and nicotine dependence. Mol Psychiatry 2000; 5: 189–192.

    Article  CAS  PubMed  Google Scholar 

  203. Hu S, Brody CL, Fisher C, Gunzerath L, Nelson ML, Sabol SZ et al. Interaction between the serotonin transporter gene and neuroticism in cigarette smoking behavior. Mol Psychiatry 2000; 5: 181–188.

    Article  CAS  PubMed  Google Scholar 

  204. Lerer E, Kanyas K, Karni O, Ebstein RP, Lerer B . Why do young women smoke? II. Role of traumatic life experience, psychological characteristics and serotonergic genes. Mol Psychiatry 2006; 11: 771–781.

    Article  CAS  PubMed  Google Scholar 

  205. Segman RH, Kanyas K, Karni O, Lerer E, Goltser-Dubner T, Pavlov V et al. Why do young women smoke? IV. Role of genetic variation in the dopamine transporter and lifetime traumatic experience. Am J Med Genet B Neuropsychiatr Genet 2007; 144B: 533–540.

    Article  CAS  PubMed  Google Scholar 

  206. Rezvani AH, Levin ED . Cognitive effects of nicotine. Biol Psychiatry 2001; 49: 258–267.

    Article  CAS  PubMed  Google Scholar 

  207. Newhouse PA, Potter A, Singh A . Effects of nicotinic stimulation on cognitive performance. Curr Opin Pharmacol 2004; 4: 36–46.

    Article  CAS  PubMed  Google Scholar 

  208. Dinn WM, Aycicegi A, Harris CL . Cigarette smoking in a student sample: neurocognitive and clinical correlates. Addict Behav 2004; 29: 107–126.

    Article  PubMed  Google Scholar 

  209. Yakir A, Rigbi A, Kanyas K, Pollak Y, Kahana G, Karni O et al. Why do young women smoke? III. Attention and impulsivity as neurocognitive predisposing factors. Eur Neuropsychopharmacol 2007; 17: 339–351.

    Article  CAS  PubMed  Google Scholar 

  210. Lambert NM, Hartsough CS . Prospective study of tobacco smoking and substance dependencies among samples of ADHD and non-ADHD participants. J Learn Disabil 1998; 31: 533–544.

    Article  CAS  PubMed  Google Scholar 

  211. Lee J, Laurin N, Crosbie J, Ickowicz A, Pathare T, Malone M et al. Association study of the nicotinic acetylcholine receptor alpha4 subunit gene, CHRNA4, in attention-deficit hyperactivity disorder. Genes Brain Behav 2008; 7: 53–60.

    Article  CAS  PubMed  Google Scholar 

  212. Potter AS, Newhouse PA, Bucci DJ . Central nicotinic cholinergic systems: a role in the cognitive dysfunction in attention-deficit/hyperactivity disorder? Behav Brain Res 2006; 175: 201–211.

    Article  CAS  PubMed  Google Scholar 

  213. Brookes K, Xu X, Chen W, Zhou K, Neale B, Lowe N et al. The analysis of 51 genes in DSM-IV combined type attention deficit hyperactivity disorder: association signals in DRD4, DAT1 and 16 other genes. Mol Psychiatry 2006; 11: 934–953.

    Article  CAS  PubMed  Google Scholar 

  214. Todd RD, Lobos EA, Sun LW, Neuman RJ . Mutational analysis of the nicotinic acetylcholine receptor alpha 4 subunit gene in attention deficit/hyperactivity disorder: evidence for association of an intronic polymorphism with attention problems. Mol Psychiatry 2003; 8: 103–108.

    Article  CAS  PubMed  Google Scholar 

  215. Comings DE, Gade-Andavolu R, Gonzalez N, Wu S, Muhleman D, Blake H et al. Multivariate analysis of associations of 42 genes in ADHD, ODD and conduct disorder. Clin Genet 2000; 58: 31–40.

    Article  CAS  PubMed  Google Scholar 

  216. Bobb AJ, Addington AM, Sidransky E, Gornick MC, Lerch JP, Greenstein DK et al. Support for association between ADHD and two candidate genes: NET1 and DRD1. Am J Med Genet B Neuropsychiatr Genet 2005; 134B: 67–72.

    Article  PubMed  Google Scholar 

  217. Greenwood PM, Fossella JA, Parasuraman R . Specificity of the effect of a nicotinic receptor polymorphism on individual differences in visuospatial attention. J Cogn Neurosci 2005; 17: 1611–1620.

    Article  PubMed  PubMed Central  Google Scholar 

  218. Greenwood PM, Sundararajan R, Lin MK, Kumar R, Fryxell KJ, Parasuraman R . Both a Nicotinic SNP and a Noradrenergic SNP Modulate Working Memory Performance when Attention is Manipulated. J Cogn Neurosci 2008; e-pub ahead of print 18 November 2008.

  219. Byrne DG, Byrne AE, Reinhart MI . Personality, stress and the decision to commence cigarette smoking in adolescence. J Psychosom Res 1995; 39: 53–62.

    Article  CAS  PubMed  Google Scholar 

  220. Middeldorp CM, Cath DC, Van Dyck R, Boomsma DI . The co-morbidity of anxiety and depression in the perspective of genetic epidemiology. A review of twin and family studies. Psychol Med 2005; 35: 611–624.

    Article  CAS  PubMed  Google Scholar 

  221. Kassel JD, Unrod M . Smoking, anxiety, and attention: support for the role of nicotine in attentionally mediated anxiolysis. J Abnorm Psychol 2000; 109: 161–166.

    Article  CAS  PubMed  Google Scholar 

  222. Labarca C, Schwarz J, Deshpande P, Schwarz S, Nowak MW, Fonck C et al. Point mutant mice with hypersensitive alpha 4 nicotinic receptors show dopaminergic deficits and increased anxiety. Proc Natl Acad Sci USA 2001; 98: 2786–2791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Ross SA, Wong JY, Clifford JJ, Kinsella A, Massalas JS, Horne MK et al. Phenotypic characterization of an alpha 4 neuronal nicotinic acetylcholine receptor subunit knock-out mouse. J Neurosci 2000; 20: 6431–6441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Booker TK, Butt CM, Wehner JM, Heinemann SF, Collins AC . Decreased anxiety-like behavior in beta3 nicotinic receptor subunit knockout mice. Pharmacol Biochem Behav 2007; 87: 146–157.

    Article  CAS  PubMed  Google Scholar 

  225. Kawai H, Berg DK . Nicotinic acetylcholine receptors containing alpha 7 subunits on rat cortical neurons do not undergo long-lasting inactivation even when up-regulated by chronic nicotine exposure. J Neurochem 2001; 78: 1367–1378.

    Article  CAS  PubMed  Google Scholar 

  226. Grady SR, Salminen O, Laverty DC, Whiteaker P, McIntosh JM, Collins AC et al. The subtypes of nicotinic acetylcholine receptors on dopaminergic terminals of mouse striatum. Biochem Pharmacol 2007; 74: 1235–1246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Ramirez-Latorre J, Yu CR, Qu X, Perin F, Karlin A, Role L . Functional contributions of alpha5 subunit to neuronal acetylcholine receptor channels. Nature 1996; 380: 347–351.

    Article  CAS  PubMed  Google Scholar 

  228. Gerzanich V, Wang F, Kuryatov A, Lindstrom J . alpha 5 Subunit alters desensitization, pharmacology, Ca++ permeability and Ca++ modulation of human neuronal alpha 3 nicotinic receptors. J Pharmacol Exp Ther 1998; 286: 311–320.

    CAS  PubMed  Google Scholar 

  229. Kedmi M, Beaudet AL, Orr-Urtreger A . Mice lacking neuronal nicotinic acetylcholine receptor beta4-subunit and mice lacking both alpha5- and beta4-subunits are highly resistant to nicotine-induced seizures. Physiol Genomics 2004; 17: 221–229.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Lerer.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website (http://www.nature.com/mp)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greenbaum, L., Lerer, B. Differential contribution of genetic variation in multiple brain nicotinic cholinergic receptors to nicotine dependence: recent progress and emerging open questions. Mol Psychiatry 14, 912–945 (2009). https://doi.org/10.1038/mp.2009.59

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2009.59

Keywords

This article is cited by

Search

Quick links