Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Association of common copy number variants at the glutathione S-transferase genes and rare novel genomic changes with schizophrenia

Abstract

Copy number variants (CNVs) are a substantial source of human genetic diversity, influencing the variable susceptibility to multifactorial disorders. Schizophrenia is a complex illness thought to be caused by a number of genetic and environmental effects, few of which have been clearly defined. Recent reports have found several low prevalent CNVs associated with the disease. We have used a multiplex ligation-dependent probe amplification-based (MLPA) method to target 140 previously reported and putatively relevant gene-containing CNV regions in 654 schizophrenic patients and 604 controls for association studies. Most genotyped CNVs (95%) showed very low (<1%) population frequency. A few novel rare variants were only present in patients suggesting a possible pathogenic involvement, including 1.39 Mb overlapping duplications at 22q11.23 found in two unrelated patients, and duplications of the somatostatin receptor 5 gene (SSTR5) at 16p13.3 in three unrelated patients. Furthermore, among the few relatively common CNVs observed in patients and controls, the combined analysis of gene copy number genotypes at two glutathione S-transferase (GST) genes, GSTM1 (glutathione S-transferase mu 1) (1p13.3) and GSTT2 (glutathione S-transferase theta 2) (22q11.23), showed a statistically significant association of non-null genotypes at both loci with an additive effect for increased vulnerability to schizophrenia (odds ratio of 1.92; P=0.0008). Our data provide complementary evidences for low prevalent, but highly penetrant chromosomal variants associated with schizophrenia, as well as for common CNVs that may act as susceptibility factors by disturbing glutathione metabolism.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Sharp AJ, Cheng Z, Eichler EE . Structural variation of the human genome. Annu Rev Genomics Hum Genet 2006; 7: 407–442.

    Article  CAS  PubMed  Google Scholar 

  2. Inoue K, Lupski JR . Molecular mechanisms for genomic disorders. Annu Rev Genomics Hum Genet 2002; 3: 199–242.

    Article  CAS  PubMed  Google Scholar 

  3. Feuk L, Carson AR, Scherer SW . Structural variation in the human genome. Nat Rev Genet 2006; 7: 85–97.

    Article  CAS  PubMed  Google Scholar 

  4. Cooper GM, Nickerson DA, Eichler EE . Mutational and selective effects on copy-number variants in the human genome. Nat Genet 2007; 39 (7 Suppl): S22–S29.

    Article  CAS  PubMed  Google Scholar 

  5. Hebbring SJ, Adjei AA, Baer JL, Jenkins GD, Zhang J, Cunningham JM et al. Human SULT1A1 gene: copy number differences and functional implications. Hum Mol Genet 2007; 16: 463–470.

    Article  CAS  PubMed  Google Scholar 

  6. Ouahchi K, Lindeman N, Lee C . Copy number variants and pharmacogenomics. Pharmacogenomics 2006; 7: 25–29.

    Article  CAS  PubMed  Google Scholar 

  7. Aitman TJ, Dong R, Vyse TJ, Norsworthy PJ, Johnson MD, Smith J et al. Copy number polymorphism in Fcgr3 predisposes to glomerulonephritis in rats and humans. Nature 2006; 439: 851–855.

    Article  CAS  PubMed  Google Scholar 

  8. Fellermann K, Stange DE, Schaeffeler E, Schmalzl H, Wehkamp J, Bevins CL et al. A chromosome 8 gene-cluster polymorphism with low human beta-defensin 2 gene copy number predisposes to Crohn disease of the colon. Am J Hum Genet 2006; 79: 439–448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gonzalez E, Kulkarni H, Bolivar H, Mangano A, Sanchez R, Catano G et al. The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility. Science (New York, NY) 2005; 307: 1434–1440.

    Article  CAS  Google Scholar 

  10. Cook Jr EH, Scherer SW . Copy-number variations associated with neuropsychiatric conditions. Nature 2008; 455: 919–923.

    Article  CAS  PubMed  Google Scholar 

  11. Carlson C, Papolos D, Pandita RK, Faedda GL, Veit S, Goldberg R et al. Molecular analysis of velo-cardio-facial syndrome patients with psychiatric disorders. Am J Hum Genet 1997; 60: 851–859.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Murphy KC, Jones LA, Owen MJ . High rates of schizophrenia in adults with velo-cardio-facial syndrome. Arch Gen Psychiatry 1999; 56: 940–945.

    Article  CAS  PubMed  Google Scholar 

  13. Shprintzen RJ, Goldberg R, Golding-Kushner KJ, Marion RW . Late-onset psychosis in the velo-cardio-facial syndrome. Am J Med Genet 1992; 42: 141–142.

    Article  CAS  PubMed  Google Scholar 

  14. MacIntyre DJ, Blackwood DH, Porteous DJ, Pickard BS, Muir WJ . Chromosomal abnormalities and mental illness. Mol Psychiatry 2003; 8: 275–287.

    Article  CAS  PubMed  Google Scholar 

  15. Millar JK, Pickard BS, Mackie S, James R, Christie S, Buchanan SR et al. DISC1 and PDE4B are interacting genetic factors in schizophrenia that regulate cAMP signaling. Science (New York, NY) 2005; 310: 1187–1191.

    Article  CAS  Google Scholar 

  16. Kamnasaran D, Muir WJ, Ferguson-Smith MA, Cox DW . Disruption of the neuronal PAS3 gene in a family affected with schizophrenia. J Med Genet 2003; 40: 325–332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wilson GM, Flibotte S, Chopra V, Melnyk BL, Honer WG, Holt RA . DNA copy-number analysis in bipolar disorder and schizophrenia reveals aberrations in genes involved in glutamate signaling. Hum Mol Genet 2006; 15: 743–749.

    Article  CAS  PubMed  Google Scholar 

  18. Sutrala SR, Goossens D, Williams NM, Heyrman L, Adolfsson R, Norton N et al. Gene copy number variation in schizophrenia. Schizophr Res 2007; 96: 93–99.

    Article  PubMed  Google Scholar 

  19. Moon HJ, Yim SV, Lee WK, Jeon YW, Kim YH, Ko YJ et al. Identification of DNA copy-number aberrations by array-comparative genomic hybridization in patients with schizophrenia. Biochem Biophys Res Commun 2006; 344: 531–539.

    Article  CAS  PubMed  Google Scholar 

  20. Friedman JI, Vrijenhoek T, Markx S, Janssen IM, van der Vliet WA, Faas BH et al. CNTNAP2 gene dosage variation is associated with schizophrenia and epilepsy. Mol Psychiatry 2008; 13: 261–266.

    Article  CAS  PubMed  Google Scholar 

  21. Kirov G, Gumus D, Chen W, Norton N, Georgieva L, Sari M et al. Comparative genome hybridization suggests a role for NRXN1 and APBA2 in schizophrenia. Hum Mol Genet 2008; 17: 458–465.

    Article  CAS  PubMed  Google Scholar 

  22. Xu B, Roos JL, Levy S, van Rensburg EJ, Gogos JA, Karayiorgou M . Strong association of de novo copy number mutations with sporadic schizophrenia. Nat Genet 2008; 40: 880–885.

    Article  CAS  PubMed  Google Scholar 

  23. Stone JL, O'Donovan MC, Gurling H, Kirov GK, Blackwood DH, Corvin A et al. Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 2008; 455: 237–241.

    Article  CAS  Google Scholar 

  24. Stefansson H, Rujescu D, Cichon S, Pietilainen OP, Ingason A, Steinberg S et al. Large recurrent microdeletions associated with schizophrenia. Nature 2008; 455: 232–236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Walsh T, McClellan JM, McCarthy SE, Addington AM, Pierce SB, Cooper GM et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science (New York, NY) 2008; 320: 539–543.

    Article  CAS  Google Scholar 

  26. Gratacos M, Costas J, de Cid R, Bayes M, Gonzalez JR, Baca-Garcia E et al. Identification of new putative susceptibility genes for several psychiatric disorders by association analysis of regulatory and non-synonymous SNPs of 306 genes involved in neurotransmission and neurodevelopment. Am J Med Genet B Neuropsychiatr Genet 2008; e-Pub ahead of print, PMID: 19086053.

  27. Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y qet al. Detection of large-scale variation in the human genome. Nat Genet 2004; 36: 949–951.

    Article  CAS  PubMed  Google Scholar 

  28. Cusco I, Corominas R, Bayes M, Flores R, Rivera-Brugues N, Campuzano V et al. Copy number variation at the 7q11.23 segmental duplications is a susceptibility factor for the Williams-Beuren syndrome deletion. Genome Res 2008; 18: 683–694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. White SJ, Vink GR, Kriek M, Wuyts W, Schouten J, Bakker B et al. Two-color multiplex ligation-dependent probe amplification: detecting genomic rearrangements in hereditary multiple exostoses. Hum Mutat 2004; 24: 86–92.

    Article  CAS  PubMed  Google Scholar 

  30. Schouten JP, McElgunn CJ, Waaijer R, Zwijnenburg D, Diepvens F, Pals G . Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res 2002; 30: e57.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Slater H, Bruno D, Ren H, La P, Burgess T, Hills L et al. Improved testing for CMT1A and HNPP using multiplex ligation-dependent probe amplification (MLPA) with rapid DNA preparations: comparison with the interphase FISH method. Hum Mutat 2004; 24: 164–171.

    Article  CAS  PubMed  Google Scholar 

  32. Slater HR, Bruno DL, Ren H, Pertile M, Schouten JP, Choo KH . Rapid, high throughput prenatal detection of aneuploidy using a novel quantitative method (MLPA). J Med Genet 2003; 40: 907–912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cusco I, Del Campo M, Vilardell M, Gonzalez E, Gener B, Galan E et al. Array-CGH in patients with Kabuki-like phenotype: Identification of two patients with complex rearrangements including 2q37 deletions and no other recurrent aberration. BMC Med Genet 2008; 9: 27.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wang K, Li M, Hadley D, Liu R, Glessner J, Grant SF et al. PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res 2007; 17: 1665–1674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD et al. Global variation in copy number in the human genome. Nature 2006; 444: 444–454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sullivan PF . Schizophrenia genetics: the search for a hard lead. Curr Opin Psychiatry 2008; 21: 157–160.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lai MM, Luo HR, Burnett PE, Hong JJ, Snyder SH . The calcineurin-binding protein cain is a negative regulator of synaptic vesicle endocytosis. J Biol Chem 2000; 275: 34017–34020.

    Article  CAS  PubMed  Google Scholar 

  38. Gimenez-Llort L, Schiffmann SN, Shmidt T, Canela L, Camon L, Wassholm M et al. Working memory deficits in transgenic rats overexpressing human adenosine A2A receptors in the brain. Neurobiol Learn Mem 2007; 87: 42–56.

    Article  CAS  PubMed  Google Scholar 

  39. Ferre S, Ciruela F, Canals M, Marcellino D, Burgueno J, Casado V et al. Adenosine A2A-dopamine D2 receptor-receptor heteromers. Targets for neuro-psychiatric disorders. Parkinsonism Relat Disord 2004; 10: 265–271.

    Article  PubMed  Google Scholar 

  40. Fuxe K, Ferre S, Canals M, Torvinen M, Terasmaa A, Marcellino D et al. Adenosine A2A and dopamine D2 heteromeric receptor complexes and their function. J Mol Neurosci 2005; 26: 209–220.

    Article  CAS  PubMed  Google Scholar 

  41. Torvinen M, Marcellino D, Canals M, Agnati LF, Lluis C, Franco R et al. Adenosine A2A receptor and dopamine D3 receptor interactions: evidence of functional A2A/D3 heteromeric complexes. Mol Pharmacol 2005; 67: 400–407.

    Article  CAS  PubMed  Google Scholar 

  42. Deckert J, Brenner M, Durany N, Zochling R, Paulus W, Ransmayr G et al. Up-regulation of striatal adenosine A(2A) receptors in schizophrenia. Neuroreport 2003; 14: 313–316.

    Article  CAS  PubMed  Google Scholar 

  43. Saito T, Guan F, Papolos DF, Rajouria N, Fann CS, Lachman HM . Polymorphism in SNAP29 gene promoter region associated with schizophrenia. Mol Psychiatry 2001; 6: 193–201.

    Article  CAS  PubMed  Google Scholar 

  44. Wonodi I, Hong LE, Avila MT, Buchanan RW, Carpenter Jr WT, Stine OC et al. Association between polymorphism of the SNAP29 gene promoter region and schizophrenia. Schizophr Res 2005; 78: 339–341.

    Article  PubMed  Google Scholar 

  45. Agnati LF, Ferre S, Lluis C, Franco R, Fuxe K . Molecular mechanisms and therapeutical implications of intramembrane receptor/receptor interactions among heptahelical receptors with examples from the striatopallidal GABA neurons. Pharmacol Rev 2003; 55: 509–550.

    Article  CAS  PubMed  Google Scholar 

  46. Nyegaard M, Borglum AD, Bruun TG, Collier DA, Russ C, Mors O et al. Novel polymorphisms in the somatostatin receptor 5 (SSTR5) gene associated with bipolar affective disorder. Mol Psychiatry 2002; 7: 745–754.

    Article  CAS  PubMed  Google Scholar 

  47. Glatt SJ, Jonsson EG . The Cys allele of the DRD2 Ser311Cys polymorphism has a dominant effect on risk for schizophrenia: evidence from fixed- and random-effects meta-analyses. Am J Med Genet B Neuropsychiatr Genet 2006; 141B: 149–154.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lencz T, Robinson DG, Xu K, Ekholm J, Sevy S, Gunduz-Bruce H et al. DRD2 promoter region variation as a predictor of sustained response to antipsychotic medication in first-episode schizophrenia patients. Am J Psychiatry 2006; 163: 529–531.

    Article  PubMed  Google Scholar 

  49. Sharp AJ, Hansen S, Selzer RR, Cheng Z, Regan R, Hurst JA et al. Discovery of previously unidentified genomic disorders from the duplication architecture of the human genome. Nat Genet 2006; 38: 1038–1042.

    Article  CAS  PubMed  Google Scholar 

  50. Sutcliffe JS, Han MK, Amin T, Kesterson RA, Nurmi EL . Partial duplication of the APBA2 gene in chromosome 15q13 corresponds to duplicon structures. BMC Genomics 2003; 4: 15.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Yin Z, Haynie J, Williams BR, Yang YC . C114 is a novel IL-11-inducible nuclear double-stranded RNA-binding protein that inhibits protein kinase R. J Biol Chem 2003; 278: 22838–22845.

    Article  CAS  PubMed  Google Scholar 

  52. Hashimoto T, Hashimoto K, Miyatake R, Matsuzawa D, Sekine Y, Shimizu E et al. Association study between the genetic polymorphisms of glutathione-related enzymes and schizophrenia in a Japanese population. Am J Med Genet B Neuropsychiatr Genet 2008; 147B: 1040–1046.

    Article  CAS  PubMed  Google Scholar 

  53. Harada S, Tachikawa H, Kawanishi Y . Glutathione S-transferase M1 gene deletion may be associated with susceptibility to certain forms of schizophrenia. Biochem Biophys Res Commun 2001; 281: 267–271.

    Article  CAS  PubMed  Google Scholar 

  54. Pae CU, Yu HS, Kim JJ, Kim W, Lee CU, Lee SJ et al. Glutathione S-transferase M1 polymorphism may contribute to schizophrenia in the Korean population. Psychiatr Genet 2004; 14: 147–150.

    Article  PubMed  Google Scholar 

  55. Matsuzawa D, Obata T, Shirayama Y, Nonaka H, Kanazawa Y, Yoshitome E et al. Negative correlation between brain glutathione level and negative symptoms in schizophrenia: a 3T 1H-MRS study. PLoS ONE 2008; 3: e1944.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Saadat M, Mobayen F, Farrashbandi H . Genetic polymorphism of glutathione S-transferase T1: a candidate genetic modifier of individual susceptibility to schizophrenia. Psychiatry Res 2007; 153: 87–91.

    Article  CAS  PubMed  Google Scholar 

  57. Tosic M, Ott J, Barral S, Bovet P, Deppen P, Gheorghita F et al. Schizophrenia and oxidative stress: glutamate cysteine ligase modifier as a susceptibility gene. Am J Hum Genet 2006; 79: 586–592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Janaky R, Dohovics R, Saransaari P, Oja SS . Modulation of [3H]dopamine release by glutathione in mouse striatal slices. Neurochem Res 2007; 32: 1357–1364.

    Article  CAS  PubMed  Google Scholar 

  59. Do KQ, Trabesinger AH, Kirsten-Kruger M, Lauer CJ, Dydak U, Hell D et al. Schizophrenia: glutathione deficit in cerebrospinal fluid and prefrontal cortex in vivo. Eur J Neurosci 2000; 12: 3721–3728.

    Article  CAS  PubMed  Google Scholar 

  60. Janaky R, Ogita K, Pasqualotto BA, Bains JS, Oja SS, Yoneda Y et al. Glutathione and signal transduction in the mammalian CNS. J Neurochem 1999; 73: 889–902.

    Article  CAS  PubMed  Google Scholar 

  61. Shaw C . Multiple roles of glutathione in the nervous system. In: Shaw C (ed) Glutathione in the Nervous System. Taylor & Francis: Washington DC, 1998, pp 3–23.

    Google Scholar 

  62. Lewis CM, Levinson DF, Wise LH, DeLisi LE, Straub RE, Hovatta I et al. Genome scan meta-analysis of schizophrenia and bipolar disorder, part II: schizophrenia. Am J Hum Genet 2003; 73: 34–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bray NJ, Buckland PR, Williams NM, Williams HJ, Norton N, Owen MJ et al. A haplotype implicated in schizophrenia susceptibility is associated with reduced COMT expression in human brain. Am J Hum Genet 2003; 73: 152–161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bulayeva KB, Glatt SJ, Bulayev OA, Pavlova TA, Tsuang MT . Genome-wide linkage scan of schizophrenia: a cross-isolate study. Genomics 2007; 89: 167–177.

    Article  CAS  PubMed  Google Scholar 

  65. Shifman S, Bronstein M, Sternfeld M, Pisante-Shalom A, Lev-Lehman E, Weizman A et al. A highly significant association between a COMT haplotype and schizophrenia. Am J Hum Genet 2002; 71: 1296–1302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Reymond A, Henrichsen CN, Harewood L, Merla G . Side effects of genome structural changes. Curr Opin Genet Dev 2007; 17: 381–386.

    Article  CAS  PubMed  Google Scholar 

  67. Schulz JB, Lindenau J, Seyfried J, Dichgans J . Glutathione, oxidative stress and neurodegeneration. Eur J Biochem 2000; 267: 4904–4911.

    Article  CAS  PubMed  Google Scholar 

  68. McClellan JM, Susser E, King MC . Schizophrenia: a common disease caused by multiple rare alleles. Br J Psychiatry 2007; 190: 194–199.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to patients and relatives for their support. We thank the Barcelona and Santiago de Compostela CEGEN units, especially Anna Puig, Anna Carreras and Mònica Bayés for their help with DNA-plate preparation and fragment analysis as well as Dr Andrés Medrano for his helpful comments. This work was funded by the Spanish Ministry of Health (PI070539 to LAPJ, RETIC G03/184 to XE, AC, LAPJ and EV, and PI050842 to EV), the Spanish Ministry of Education and Science (SAF2005-01005 to XE), the EU FP6 (037627) and Genoma España to LAPJ and XE. B Rodríguez-Santiago is supported by a postdoctoral fellowship of the Fondo Investigación Sanitaria (FIS CD06/00019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L A Pérez-Jurado.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez-Santiago, B., Brunet, A., Sobrino, B. et al. Association of common copy number variants at the glutathione S-transferase genes and rare novel genomic changes with schizophrenia. Mol Psychiatry 15, 1023–1033 (2010). https://doi.org/10.1038/mp.2009.53

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2009.53

Keywords

This article is cited by

Search

Quick links