Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Evidence for HTR1A and LHPP as interacting genetic risk factors in major depression

Abstract

The HTR1A −1019C>G genotype was associated with major depression in the Utah population. Linkage analysis on Utah pedigrees with strong family histories of major depression including only cases with the HTR1A −1019G allele revealed a linkage peak on chromosome 10 (maximum HLOD=4.4). Sequencing of all known genes in the linkage region revealed disease-segregating single-nucleotide polymorphisms (SNPs) in LHPP. LHPP SNPs were also associated with major depression in both Utah and Ashkenazi populations. Consistent with the linkage evidence, LHPP associations depended on HTR1A genotype. Lhpp or a product of a collinear brain-specific transcript, therefore, may interact with Htr1a in the pathogenesis of major depression.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Murray C, Lopez A . The Global Burden of Disease: A Comprehensive Assessment of Mortality and Disability From Disease, Injuries, and Risk Factors in 1990 and Projected to 2020. Harvard University Press: Cambridge MA, 1996.

    Google Scholar 

  2. Fava M, Davidson K . Definition and epidemiology of treatment-resistant depression. Psychiatr Clin North Amer 1996; 19: 179–200.

    Article  CAS  Google Scholar 

  3. Mann J, Emslie G, Baldessarini R, Beardsley W, Fawcett J, Goodwin F et al. ACNP Task Force report on SSRIs and suicidal behavior in youth. Neuropsychopharmacol 2006; 31: 473–492.

    Article  CAS  Google Scholar 

  4. Mueller T, Leon A, Keller M, Solomon D, Endicott J, Coryell W et al. Recurrence after recovery from major depressive disorder during 15 years of observational follow-up. Am J Psychiatry 1999; 156: 1000–1006.

    CAS  PubMed  Google Scholar 

  5. Mann J . Drug therapy: the medical management of depression. New Engl J Med 2005; 353: 1819–1834.

    Article  CAS  Google Scholar 

  6. Abkevich V, Camp N, Hensel C, Neff C, Russell D, Hughes D et al. Predisposition locus for major depression at chromosome 12q22–12q23.2. Am J Hum Genet 2003; 73: 1271–1281.

    Article  CAS  Google Scholar 

  7. Thomas A, Gutin A, Abkevich V, Bansal A . Multilocus linkage analysis by blocked Gibbs sampling. Stat Comp 2000; 10: 259–269.

    Article  Google Scholar 

  8. Lemonde S, Turecki G, Bakish D, Du L, Hrdina P, Bown C et al. Impaired repression at a 5-hydroxytryptamine 1A receptor gene polymorphism associated with major depression and suicide. J Neurosci 2003; 23: 8788–8799.

    Article  CAS  Google Scholar 

  9. Arias B, Arranz M, Gasto C, Catalan R, Pintor L, Gutierrez B et al. Analysis of structural polymorphisms and C-1018G promoter variant of the 5-HT1A receptor gene as putative risk factors in major depression. Mol Psychiatry 2002; 7: 930–932.

    Article  CAS  Google Scholar 

  10. Arias B, Catalán R, Gastó C, Gutiérrez B, Fañanás L . Evidence for a combined genetic effect of the 5-HT1A receptor and serotonin transporter genes in the clinical outcome of major depressive patients treated with citalopram. J Psychopharmacol 2005; 19: 166–172.

    Article  CAS  Google Scholar 

  11. Huang Y-Y, Battistuzzi C, Oquendo M, Harkavy-Friedman J, Greenhill L, Zalsman G et al. Human 5-HT1A receptor C(−1019)G polymorphism and psychopathology. Int J Neuropsychopharmacol 2004; 7: 441–451.

    Article  CAS  Google Scholar 

  12. Lemonde S, Du L, Bakish D, Hrdina P, Albert P . Association of the C(−1019)G 5-HT1A functional promoter polymorphism with antidepressant response. Int J Neuropsychopharmacol 2004; 7: 501–506.

    Article  CAS  Google Scholar 

  13. Rothe C, Gutknecht L, Freitag C, Tauber R, Mössner R, Franke P et al. Association of a functional −1019C>G 5-HT1A receptor gene polymorphism with panic disorder with agoraphobia. Int J Neuropsychopharmacol 2004; 7: 189–192.

    Article  CAS  Google Scholar 

  14. Serretti A, Artioli P, Lorenzi C, Pirovano A, Tubazio V, Zanardi R . The C(-1019)G polymorphism of the 5-HT1A gene promoter and antidepressant response in mood disorders: preliminary findings. Int J Neuropsychopharmacol 2004; 7: 453–460.

    Article  CAS  Google Scholar 

  15. Strobel A, Gutknecht L, Rothe C, Reif A, Mössner R, Zeng Y et al. Allelic variation in 5-HT1A receptor expression is associated with anxiety- and depression-related personality traits. J Neural Trans 2003; 110: 1445–1453.

    Article  CAS  Google Scholar 

  16. Pruitt K, Tatusova T, Maglott D . NCBI reference sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucl Acids Res 2005; 33: D501–D504.

    Article  CAS  Google Scholar 

  17. Finn R, Mistry J, Schuster-Böckler B, Griffiths-Jones S, Hollich V, Lassmann T et al. Pfam: clans, web tools and services. Nucl Acids Res 2006; 34: D247–D251.

    Article  CAS  Google Scholar 

  18. Felsenstein J . PHYLIP—phylogeny inference package (Version 3.2). Cladistics 1989; 5: 164–166.

    Google Scholar 

  19. Page R . TreeView: an application to display phylogenetic trees on personal computers. Comp Appl Biosci 1996; 12: 357–358.

    CAS  PubMed  Google Scholar 

  20. Barrett J, Fry B, Maller J, Daly M . Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21: 263–265.

    Article  CAS  Google Scholar 

  21. Barnes N, Sharp T . A review of central 5-HT receptors and their function. Neuropharmacol 1999; 38: 1083–1152.

    Article  CAS  Google Scholar 

  22. Wu S, Comings D . A common C-1018G polymorphism in the human 5-HT1A receptor gene. Psychiatr Genet 1999; 9: 105–106.

    Article  CAS  Google Scholar 

  23. Harlan J, Chen Y, Gubbins E, Mueller R, Roch J-M, Walter K et al. Variants in Apaf-1 segregating with major depression promote apoptosome function. Mol Psychiatry 2006; 11: 76–85.

    Article  CAS  Google Scholar 

  24. Seal U, Binkley F . An inorganic pyrophosphatase of swine brain. J Biol Chem 1957; 228: 193–199.

    CAS  PubMed  Google Scholar 

  25. Felix R, Fleisch H . Properties of inorganic pyrophosphatase of pig scapula cartilage. Biochem J 1975; 147: 111–118.

    Article  CAS  Google Scholar 

  26. Hachimori A, Fujii T, Ohki K, Iizuka E . Purification and properties of inorganic pyrophosphatase from porcine brain. J Biochem 1983; 93: 257–264.

    Article  CAS  Google Scholar 

  27. Smirnova I, Baykov A . Reversible inactivation of rat liver inorganic pyrophosphatase by substrate and its analogs. Arch Biochem Biophys 1991; 287: 135–140.

    Article  CAS  Google Scholar 

  28. Yoshida C, Shah H, Weinhouse S . Purification and properties of inorganic pyrophosphatase of rat liver and hepatoma 3924A. Cancer Res 1982; 42: 3526–3531.

    CAS  PubMed  Google Scholar 

  29. Yokoi F, Hiraishi H, Izuhara K . Molecular cloning of a cDNA for the human phospholysine phosphohistidine inorganic pyrophosphate phosphatase. J Biochem 2003; 133: 607–614.

    Article  CAS  Google Scholar 

  30. Hiraishi H, Yokoi F, Kumon A . 3-phosphohistidine and 6-phospholysine are substrates of a 56-kDa inorganic pyrophosphatase from bovine liver. Arch Biochem Biophys 1998; 349: 381–387.

    Article  CAS  Google Scholar 

  31. Harrison P, Weinberger D . Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 2005; 10: 40–68.

    Article  CAS  Google Scholar 

  32. Hashimoto L, Habita C, Beressi J, Delepine M, Basse C, Cambon-Thomsen A et al. Genetic mapping of a susceptibility locus for insulin dependent diabetes mellitus on chromosome 11q. Nature 1994; 371: 161–164.

    Article  CAS  Google Scholar 

  33. Zubenko GS, Maher B, Hughes 3rd HB, Zubenko WN, Stiffler JS, Kaplan BB et al. Genome-wide linkage survey for genetic loci that influence the development of depressive disorders in families with recurrent, early-onset, major depression. Am J Med Genet 2003; 123B: 1–18.

    Article  Google Scholar 

  34. Saviouk V, Chow E, Bassett A, Brzustowicz L . Tumor necrosis factor promoter haplotype associated with schizophrenia reveals a linked locus on 1q44. Mol Psychiatry 2005; 10: 375–383.

    Article  CAS  Google Scholar 

  35. Stone S, Abkevich V, Russell D, Riley R, Timms K, Tran T et al. TBC1D1 is a candidate for a severe obesity gene and evidence for a gene/gene interaction in obesity predisposition. Hum Mol Genet 2006; 15: 2709–2720.

    Article  CAS  Google Scholar 

  36. Stock J, Stock A, Mottonen J . Signal transduction in bacteria. Nature 1990; 344: 395–400.

    Article  CAS  Google Scholar 

  37. Klumpp S, Krieglstein J . Phosphorylation and dephosphorylation of histidine residues in proteins. Eur J Biochem 2002; 269: 1067–1071.

    Article  CAS  Google Scholar 

  38. Matthews H . Protein kinases and phosphatases that act on histidine, lysine, or arginine residues in eukaryotic proteins: a possible regulator of the mitogen-activated protein kinase cascade. Pharmacol Ther 1995; 67: 323–350.

    Article  CAS  Google Scholar 

  39. Cuello F, Schulze R, Heemeyer F, Meyer H, Lutz S, Jakobs K et al. Activation of heterotrimeric G proteins by a high energy phosphate transfer via nucleoside diphosphate kinase (NDPK) B and Gβ subunits: complex formation of NDPK B with Gβγ dimers and phosphorylation of His-266 in Gβ. J Biol Chem 2003; 278: 7220–7226.

    Article  CAS  Google Scholar 

  40. Hohenegger M, Mitterauer T, Voss T, Nanoff C, Freissmuth M . Thiophosphorylation of the G protein β subunit in human platelet membranes: evidence against a direct phosphate transfer reaction to Gα subunits. Mol Pharmacol 1996; 49: 73–80.

    CAS  PubMed  Google Scholar 

  41. Kowluru A . Regulatory roles for small G proteins in the pancreatic β-cell: lessons from models of impaired insulin secretion. Am J Physiol Endocrinol Metab 2003; 285: E669–E684.

    Article  CAS  Google Scholar 

  42. Randazzo P, Northrup J, Kahn R . Activation of a small GTP-binding protein by nucleoside diphosphate kinase. Science 1991; 254: 850–853.

    Article  CAS  Google Scholar 

  43. Wieland T, Nürnberg B, Ulibarri I, Kaldenberg-Stasch S, Schultz G, Jakobs K . Guanine nucleotide-specific phosphate transfer by guanine nucleotide-binding regulatory protein β-subunits: characterization of the phosphorylated amino acid. J Biol Chem 1993; 268: 18111–18118.

    CAS  PubMed  Google Scholar 

  44. Chi H, Tiller G, Dasouki M, Romano P, Wang J, O’Keefe R et al. Multiple inositol polyphosphate phosphatase: evolution as a distinct group within the histidine phosphatase family and chromosomal localization of the human and mouse genes to chromosomes 10q23 and 19. Genomics 1999; 56: 324–336.

    Article  CAS  Google Scholar 

  45. Ek P, Pettersson G, Ek B, Gong F, Li J-P, Zetterqvist Ö . Identification and characterization of a mammalian 14-kDa phosphohistidine phosphatase. Eur J Biochem 2002; 269: 5016–5023.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs James P Sullivan, Brian B Spear, Donald N Halbert and Jerry Lanchbury for the guidance and critical review of our work. This work was funded by Abbott Laboratories and Myriad Genetics. We are indebted to the individuals who agreed to participate in this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D Shattuck or D A Katz.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website (http://www.nature.com/mp)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neff, C., Abkevich, V., Packer, J. et al. Evidence for HTR1A and LHPP as interacting genetic risk factors in major depression. Mol Psychiatry 14, 621–630 (2009). https://doi.org/10.1038/mp.2008.8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2008.8

Keywords

This article is cited by

Search

Quick links