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Genome-wide association studies in psychiatry: lessons
from early studies of non-psychiatric and psychiatric
phenotypes
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Recent advances in high-throughput genotyping now
permit genome-wide association studies (GWASs) in
which hundreds of thousands of DNA polymorph-
isms spread across the genome can be assayed in a
large set of individuals rapidly and for a realistic
cost.1 The GWAS approach has now been successfully
applied to many non-psychiatric diseases. In this
editorial, we consider the key lessons from those
studies for GWASs of psychiatric disorders, using
type 2 diabetes (T2D) as a particularly instructive
example.

What is a GWAS?

The defining feature of a GWAS is that a suitably large
number of genetic polymorphisms is examined to
provide an acceptable level of association information
across the whole genome.1,2 The technical advance
that has made this possible is the availability of
genotyping chips that can characterize DNA-sequence
variation at hundreds of thousands of single-nucleo-
tide polymorphisms (SNPs). A perfect tool would
provide complete information at every variable point
in the genome. Reality falls short of the ideal, with
current designs typically capturing a high proportion
of the information for around 65–80% of variant sites
where the minor allele frequency is above 5%,
assuming most of the SNPs on the array pass
appropriate quality control measures.3 Some regions
of the genome are covered well, others less well, and
low-frequency alleles (minor allele frequency <1%)
are generally not interrogated with current study
designs. Thus, the power of current GWAS is
constrained not only by the size of the sample, but
also by the technical properties of the genotyping
chip used (in terms of coverage of genomic location
and spectrum of DNAvariants that can be detected). It
is extremely important to recognize these shortcom-
ings, and in particular that GWASs are not well
powered to detect rare variation that influences
disease susceptibility (even rare variants of large
effect)—such variants require approaches based on
sequencing. Also the study design is not optimal for
detecting common alleles at risk loci where there are
multiple risk variants on multiple haplotypes within
the same genomic region. It follows, therefore, that in
general, GWASs are unable to provide definitive data

for ‘excluding’ a gene from involvement in suscepti-
bility to illness, and there continues to be an
important role for focused and detailed molecular
genetic analysis of genes that are the subject of
specific biological or positional hypotheses.
Genome-wide association studies can be used in

either of the two main genetic association study
designs: case–control based on unrelated subjects and
family-based association designs of many sorts. In
practice, most GWASs are of the unrelated case–
control design. One reason is that adequately pow-
ered GWASs as applied to complex diseases require
very large sample sizes, and unrelated case–control
samples are usually much easier and cheaper to
collect than family-based samples. Another is that
case–control designs can exploit a single large
common set of controls, the allele frequencies in
which can be contrasted with many different dis-
orders.4 This is clearly more economic than family
designs in which the controls are unique to that study.

Lessons from GWASs of non-psychiatric diseases

Lesson 1: GWASs work
Proof of principle for GWASs in human disease was
provided by the identification of the gene encoding
complement factor H as a risk locus for age-related
macular degeneration.5 However, it should be noted
that this study was atypical in that the risk variant
identified had a relatively large effect size that was
detectable in a mere 96 cases and 50 controls typed
for only B116000 SNPs. Subsequently, GWASs have
resulted in the identification of alleles that have been
confidently associated with common diseases includ-
ing coronary artery disease, atrial fibrillation, asthma,
Crohn’s disease, rheumatoid arthritis, type 1 (T1D)
and T2D, obesity, prostate cancer, breast cancer and
coeliac disease.4,6,7

Lesson 2: effect sizes are usually small, so big samples
are needed
Acknowledging the possibility of success in a small
sample, the overwhelming message from the many
GWASs of complex diseases so far is the importance
of large samples powered to detect small effect sizes.
Self evidently, the true effect size for any given risk
allele cannot be known in advance of its identifica-
tion, but theoretical considerations lead to the
expectation of a spectrum of effect size and risk allele
frequency, with alleles of small effect being much
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more frequent than alleles of large effect.8 Consistent
with the theoretical predictions, with few exceptions,
the effect sizes that have been identified in studies of
non-psychiatric diseases have been in the small
range. For example in the Wellcome Trust Case
Control Consortium (WTCCC) GWASs of seven
common diseases,4 per-allele odds ratios of identified
loci were in the range 1.2–1.5, and even these are
likely to be somewhat inflated, a phenomenon known
as the so-called ‘winners curse’ (see below). To have
reasonable power to detect such loci, it requires
samples of the order of 2000 cases and 2000 controls
or larger. If a sample of 1000 cases and 1000 controls
for each disease had been used in WTCCC, it
is estimated that only six rather than 16 signals
would have been detected at the most-stringent
significance threshold.4

The importance of large samples is further illus-
trated by the recent follow-up and meta-analysis of
T2D that used four case–control samples, each with
case numbers ranging from 1924 to 6529, resulting in
a total of 14 586 cases and 17968 controls.9 Within the
WTCCC study, three susceptibility loci for T2D were
identified at the most stringent threshold of statistical
significance whereas the meta-analysis allowed the
identification of nine robustly associated SNPs
(P=1.2�10–7–1�10–48). Small genetic effects were
the rule with all but one having an odds ratio p1.20.

It is important to remember that in most cases,
larger samples are required for replicating a finding
than can be predicted from the effect size estimated
from the discovery sample. This ‘winners curse’
arises because most discoveries benefit from, indeed
in small samples require, a favorable constellation of
factors that amplify the effect size in the discovery
sample above the true effect size in the population
from which it is drawn.10 Examples of factors that
contribute to this include chance fluctuations in
allele frequencies in cases and controls that maximize
the distinction between the two groups or genotyping
errors operating in a similar manner. Given that we
require large samples for initial detection of an effect,
we need to recognize that, on their own, even a series
of failures to replicate findings in modestly sized
replication samples do not constitute refutation of a
finding, although small samples can contribute to
assessing the involvement of a locus when incorpo-
rated into meta-analyses that summarize the overall
state of evidence from all samples.

An issue that is often not appreciated is that the
confidence attributable to a ‘significance level’ is
influenced by sample size.4 Ignoring the impact of
errors or poor design (for example, population
stratification), any set of results that cross a certain
threshold of statistical significance can be expected to
be a mixture of ‘true’ positives reflecting a genuine
disease association and false positives reflecting
chance. The rate of false positives due to chance is
approximately constant for all (nontrivial) sample
sizes and is simply the significance level used.
However, the rate of true positives will increase with

sample size because power to detect true effects will
increase. Thus, the proportion of true associations
among significant findings is expected to be greater in
larger samples than in small samples, and in general,
we should be wary of apparently impressive findings
in samples that have very limited power under
plausible models of effect size. In contrast, we should
place increasing confidence in highly significant
findings in large samples that are well-powered to
detect plausible effect sizes.

Lesson 3: rigorous quality control is paramount
The importance of quality control is not unique to
GWASs. However, the enormous data sets (samples
and SNPs) in GWASs provide a large number of
opportunities for spurious ‘associations’ to emerge
with high levels of statistical significance. One
important source of spurious findings is systematic
differences in allele calling between cases and
controls,11 a phenomenon that has particular impact
on haplotype-based tests.12 It is crucial, therefore, that
the data are thoroughly cleaned to remove low-quality
DNA samples, genotype calls and individual samples.
It is sobering that in uncleaned (and partly cleaned)
data, it was the experience within WTCCC that the
best predictor of an SNP with poor QC was a highly
significant difference in genotype distributions be-
tween cases and controls.

Lesson 4: GWASs may fail to detect susceptibility genes
It should be clear from the foregoing considerations
that the GWAS approach is poorly powered to detect
any susceptibility gene that is not well covered by
SNPs on the array used. Further, the approach is not
designed to detect a susceptibility allele that is rare,
even if that gene is well tagged to capture common
variation. An example of this is provided by the
WTCCC study of T1D where the insulin gene (INS)
was not detected because of poor coverage of the
gene.4 This provides a clear illustration of the
importance of not assuming that absence of an
association signal within a GWAS is a strong evidence
against, or worse can ‘exclude’, a gene from involve-
ment in illness.

Lesson 5: it is important to look well beyond the top few
‘hits’
There is a natural tendency to focus attention on the
few strongest findings in any particular study. How-
ever, this is not the best way to exploit GWASs, the
strength of which is the provision of genome-wide
data in a reasonably unbiased way. It can be shown
theoretically (and this is borne out in practice) that for
susceptibility loci of plausible effect sizes, even large
studies cannot reliably place these loci at the very top
of the list of hits for each study. The reason is simply
that for such loci, even large samples do not have
sufficient power to identify loci at very stringent
levels of statistical significance, whereas they often
are well-powered to identify the loci at more modest
levels of significance.4 In practical terms, this means
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that the true risk loci will, in suitable sample sizes,
usually fall within the top few hundred or thousand
hits, but which of these make it to the top of the list is
largely the result of the factors that drive the ‘winners
curse’. These factors will differ between studies and
so we cannot expect the most significantly associated
SNPs to match across studies. We would, however,
expect overrepresentation of the risk loci among the
top few hundred or few thousand.

Clear examples of this are provided by studies of
T2D. One of the previously known robust associa-
tions, a polymorphism within PPARG, was detected
within WTCCC but the significance level was
P=1.3�10–3. The key point here is that at the level
of a specific hypothesis concerning this gene, the
WTCCC is positive because this significance level
survives correction for the multiple SNPs tested
within the gene. However, this result does not even
approach significance if correcting for testing at a
genome-wide level, the signal ranking only just
within the top 1000 hits. Moreover, the polymorph-
ism at PPARG did not even achieve (within the
context of the genome) compelling evidence for
significance in the large combined meta-analysis
sample of 14 586 cases and 17968 controls
(P=1.7�10–6).9 Thus, it can be expected that
many—in fact, almost certainly most—of the true
associations will be contained within the large set of
hits of modest evidence rather than being concen-
trated in the top few highly significant hits. The
traditional way of thinking has been to focus attention
on the very top one or few hits because the evidence
from the study itself is most persuasive for these hits.
However, as soon as one moves to thinking of
combining other data sources—be they other GWASs
or non-genetic sources of data—it is much more
appropriate to use approaches that consider a much
broader range of hits.

Lesson 6: collaboration is important
Given the modest effect sizes and need for large
samples, it should be intuitively obvious that very
substantial benefits can be gained from collaborations
that increase total sample sizes and test consistency
and generalizability of findings. As mentioned above,
in T2D, ‘aggressive data sharing’ (that is, very early
and proactive) was key to rapid and efficient
identification of several susceptibility loci that were
not evident in any single study alone. This model has
been used to great effect for several other diseases
including T1D,13 Ankylosing Spondylitis14 and cor-
onary heart disease.15

Lesson 7: phenotype/selection is important
It has long been acknowledged in theory, but widely
ignored in practice, that sample ascertainment and,
consequently, variation in phenotype (case or control)
between studies can have a dramatic effect on the
ability to detect a susceptibility locus. A striking
empirical example of this fact is provided by the
gene FTO, which was shown in the collaborative

meta-analysis9 to be associated with risk of T2D
(P=1.3�10–12). However, association at FTO was not
significant in the B14000 subjects comprising the
‘DGI’ sample. In fact the estimated odds ratio for the
risk polymorphism in the diabetes genetics initiative
(DGI) sample was close to unity (that is, no effect). In
contrast, association was highly significant in the
similarly sized UK sample (P=7� 10–14). Evaluation
of study design led to the realization that the
difference was caused by important phenotypic
differences in design and analysis: in the DGI sample,
analyses matched for measures of obesity whereas no
such criterion was imposed on the WTCCC study.
Subsequent work has shown that fat mass and obesity
associated (FTO) influences risk of T2D through a
primary effect on body mass.16

This shows that phenotype variation can be critical
to the ability to identify susceptibility variants and
that taking account of phenotype variation across
samples has the potential to aid the understanding of
the mode of action of a susceptibility locus.

Are psychiatric disorders different from non-psy-
chiatric disorders?

Findings from genetic epidemiology, such as familial
recurrence risks and estimates of heritability, show
that many types of major psychiatric illness are
among the most genetically influenced of human
traits and diseases.17 As for other disorders, it is likely
that a range of mechanisms may influence genetic risk
including common polymorphisms, rare mutations
and structural rearrangements. There seems to be no
strong reasons to expect that the genetic mechanisms
underlying major psychiatric illness will be qualita-
tively different from those underlying non-psychiatric
disorders. There are, perhaps, reasons to expect that
the effect sizes of common susceptibility variants
might be at the lower end of the range of effect sizes
for complex diseases as a whole. The rationale for this
suggestion is that major disturbances in behavior and
social functioning, the hallmark of major psychiatric
illness, would usually be expected to adversely
influence an individual’s ability to reproduce and
pass genes on to future generations. It follows that, in
the absence of balancing selection, variants conferring
a high level of risk would rapidly become lost from
the population and would not establish themselves as
common polymorphisms.
However, the most obvious issue that marks out

psychiatric genetics as being more challenging than
genetic investigation of non-psychiatric disorders is
the phenotype.18,19 This is more difficult to define and
measure than for most non-psychiatric disorders.
Further, we have less knowledge of the causes and
mechanisms of pathogenesis. Our current official
classification systems, Diagnostic and Statistical
Manual of Mental Disorders and International Classi-
fication of Diseases, are descriptive systems. They
were developed to have acceptable reliability but with
no expectation that the categories represented valid

Editorial

651

Molecular Psychiatry



entities. Many of the diagnostic categories have a
degree of genetic validity from genetic epidemiology,
but it is also clear that there is likely to be genetic
overlap between categories19,20 and much heterogene-
ity within them. This will have a number of
consequences for gene-finding studies. First, the
inherent heterogeneity means that diagnostic cate-
gories will be more complex genetically than for non-
psychiatric disorders and consequently the effect
sizes of individual loci might be expected to be
smaller than those for non-psychiatric disorders. The
corollary of this is that we might expect genetic effects
to be greater for more narrowly defined phenotypes.
The problem is that for many disorders, there are no
clear-cut ways of subdividing the phenotype a priori.
This means that we have few alternatives to empirical
approaches with the consequent burden of multiple
testing. However, an approach that can help with this
problem is the use of phenotype refinement and a
subsequent iterative approach toward a more biologi-
cally valid clinical phenotype.21 Second, the genetic
overlap between disorders suggests that it might be
fruitful to explore the relationship between specific
genetic findings and specific symptom profiles and
dimensions between as well as within diagnostic
groupings. Third, the fact that diagnostic categories
are not anchored to an underlying pathophysiology
suggests that even quite subtle differences in ascer-
tainment and diagnosis could alter the constellation
of alleles conferring risk to the samples in question,
with damaging consequences for consistency and
replication. It follows that if psychiatric genetics is to
harness fully the power of GWASs, we must pay close
attention to how we define the phenotype and expect
a high degree of ‘co-morbidity’ and heterogeneity.

Those working in the field of psychiatric research
are usually aware, at least at a theoretical level, of the
limitations imposed by psychiatric phenotypes. How-
ever, the reality is that the researchers often do not
have the training or experience to deal with the
phenotype issues, and so they get substantially
overlooked with the tacit assumption that using
Diagnostic and Statistical Manual of Mental Disorders
categories provides as useful a classification as blood
sugar for diabetes, blood pressure for hypertension or
histopathology for Crohn’s disease or breast cancer.
We know, as discussed above, that even for an illness
like T2D, clinical covariates like obesity can have a
dramatic influence on the effect size of risk alleles.
For psychiatric phenotypes, as presently defined, ‘co-
morbidities’ (that is, overlaps in clinical syndromes)
are the rule and we must expect that effect sizes of
risk alleles will vary greatly between and within
samples according to the phenotypic characteristics
of the individuals within the sample. Obvious
examples of psychiatric scenarios that may be similar
to the obesity–diabetes situation include presence or
absence of prominent psychotic features in bipolar
disorder or prominence of anxiety in recurrent
depression. The phenotype issue, though not re-
stricted to psychiatry, is likely to be the issue that

most distinguishes psychiatry from the non-psychia-
tric diseases.22 Consequently, it is the area that needs
particular attention in psychiatry to ensure that
maximum benefit and efficiency is gained from the
ongoing major investments of time and money in
GWASs.
In summary, the phenotype issues provide a

particular challenge for psychiatric genetics. It seems
quite possible that effect sizes for common suscept-
ibility variants will be at the lower end of the range
found for complex diseases but there is nothing to
suggest that they are qualitatively different from other
complex disorders.

What are the principles we should apply to GWASs
of psychiatric disorders?

There is no reason to suspect that the approaches that
have been so successful for non-psychiatric diseases
are not capable of being successful in psychiatry.
However, successful application of the tools of
molecular genetics in general, and GWASs in parti-
cular, for the benefit of psychiatric patients will
require us to fully embrace the lessons from studies
of non-psychiatric disorders while taking account of
those issues that may be specific to psychiatric
phenotypes.
Box 1 summarizes key principles that should be

applied to conduct and interpret GWASs of psychia-
tric phenotypes.
Given that most of these data sets will be made

available for analysis by independent researchers at
an early stage, it is crucial that all those analyzing the
data are aware of these issues and take account of
them in interpreting and reporting analyses.

Experience to date in GWASs of bipolar disorder

In the WTCCC, the pattern of association signals in
bipolar disorder when compared with most of the
other disease phenotypes, showed fewer hits exceed-
ing the highly significant benchmark, P<5�10–7 but
more signals within the more modest range (P=
10–4�5�10–7) (Table 1). This is consistent with the
idea that, at least as currently defined, most of the
common genetic variation that influences suscept-
ibility to bipolar disorder has modest effect sizes and

Box 1 Key issues of importance in GWAS in general and
GWAS of psychiatric disorders in particular

Pay rigorous attention to quality control
Use appropriately large samples
Collaborate and share data
Consider distribution of signals not just top few hits
Pay close attention to phenotype characteristics and
selection of sample
Do not over-interpret a ‘negative’ finding at a locus

Abbreviation: GWAS, genome-wide association study.
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that there are very few (perhaps none) common
susceptibility alleles of large effect such as ApoE in
Alzheimer’s disease or HLA in T1D and other
autoimmune disorders. The most significant finding
was at rs420259 in a gene rich region at 16p12
(genotypic P=6.3� 10–8). Consistent with the discus-
sions above and with experience in non-psychiatric
disorders, this locus was not identified by the other
individually typed large-scale GWASs of bipolar
disorder for which data are available (STEP-UCL
sample),23 nor the published GWASs using a pooling
approach in samples from US and Germany.24 How-
ever, if rather than focusing on the top one (or few)
hits one considers the distributions of association
signals, there is a very clear, highly significant overlap
in the association shown within the WTCCC and US/
Bonn data sets (P=7�10–5).25 Similarly, meta-analy-
sis of the WTCCC and STEP/UCL data sets demon-
strated a strong signal with the same risk allele within
the gene CACNA1C (meta-analysis P=6.9� 10–7).23

There is a substantial amount of work required to take
such observations forward but the pattern of findings
to date is that expected theoretically for a complex
disease and is similar to that observed in studies
of similar-sized samples for non-psychiatric pheno-
types.

Conclusion: the first step on a long journey

We are at the beginning of GWASs in psychiatry. The
approach has a great deal to offer although it is
important to remember that GWAS forms one (albeit a
major) component of the genetic approaches that can
help us better understand psychiatric illness. It will
be necessary also to pursue approaches designed to
detect rare variants and structural variations that
contribute to illness. There is also a continuing need

to undertake detailed and extensive study of specific
genes to test specific biological hypotheses.
The initial experience with GWAS in bipolar

disorder is consistent with the experiences in non-
psychiatric disorders and suggests we can be opti-
mistic that careful application of the GWAS approach
across large, phenotypically well-characterized sam-
ples, including those of the GAIN collaborations,26

will make an important contribution to delineating
the etiology and pathogenesis of the disorders that
can devastate the lives of our patients.
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Table 1 Distribution of association signals in WTCCC

Phenotype 10�4 <
P<10�5

5� 10�7 <
P<10�6

P<5� 10�7

BD 76 14 1
CAD 57 9 1
CD 85 9 9
HT 56 6 0
RA 49 9 2
T1D 55 8 5
T2D 47 10 3

Abbreviations: BD, bipolar disorder; CAD, coronary artery
disease; CD, Crohn’s disease; HT, hypertension; RA,
rheumatoid arthritis; T1D, type 1 diabetes; T2D, type 2
diabetes.
Summary of the numbers of independent association
signals where at least one SNP achieved the significance
threshold shown within the Wellcome Trust Case Control
Consortium (WTCCC) study.4
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