Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A genome-wide panel of congenic mice reveals widespread epistasis of behavior quantitative trait loci

Abstract

Understanding the genetics of behavioral variation remains a fascinating but difficult problem with considerable theoretical and practical implications. We used the genome-tagged mice (GTM) and an extensive test battery of well-validated behavioral assays to scan the genome for behavioral quantitative trait loci (QTLs). The GTM are a panel of ‘speed congenic’ mice consisting of over 60 strains spanning the entire autosomal genome. Each strain harbors a small (23 cM) DBA/2J donor segment on a uniform C57BL/6J background. The panel allows for mapping to regions as small as 5 cM and provides a powerful new tool for increasing mapping power and replicability in the analysis of QTLs. A total of 97 loci were mapped for a variety of complex behavioral traits including hyperactivity, anxiety, prepulse inhibition, avoidance and conditional fear. A larger number of loci were recovered than generally attained from standard mapping crosses. In addition, a surprisingly high proportion of loci, 63%, showed phenotypes unlike either of the parental strains. These data suggest that epistasis decreases sensitivity of locus detection in traditional crosses and demonstrate the utility of the GTM for mapping complex behavioral traits with high sensitivity and precision.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Caldarone B, Saavedra C, Tartaglia K, Wehner JM, Dudek BC, Flaherty L . Quantitative trait loci analysis affecting contextual conditioning in mice. Nat Genet 1997; 17: 335–337.

    Article  CAS  Google Scholar 

  2. Wehner JM, Radcliffe RA, Rosmann ST, Christensen SC, Rasmussen DL, Fulker DW et al. Quantitative trait locus analysis of contextual fear conditioning in mice. Nat Genet 1997; 17: 331–334.

    Article  CAS  Google Scholar 

  3. Flint J, Corley R, DeFries JC, Fulker DW, Gray JA, Miller S et al. A simple genetic basis for a complex psychological trait in laboratory mice. Science 1995; 269: 1432–1435.

    Article  CAS  Google Scholar 

  4. Gershenfeld HK, Neumann PE, Mathis C, Crawley JN, Li X, Paul SM . Mapping quantitative trait loci for open-field behavior in mice. Behav Genet 1997; 27: 201–210.

    Article  CAS  Google Scholar 

  5. Gershenfeld HK, Paul SM . Mapping quantitative trait loci for fear-like behaviors in mice. Genomics 1997; 46: 1–8.

    Article  CAS  Google Scholar 

  6. Talbot CJ, Nicod A, Cherny SS, Fulker DW, Collins AC, Flint J . High-resolution mapping of quantitative trait loci in outbred mice. Nat Genet 1999; 21: 305–308.

    Article  CAS  Google Scholar 

  7. Geyer MA, McIlwain KL, Paylor R . Mouse genetic models for prepulse inhibition: an early review. Mol Psychiatry 2002; 7: 1039–1053.

    Article  CAS  Google Scholar 

  8. Yalcin B, Willis-Owen SA, Fullerton J, Meesaq A, Deacon RM, Rawlins JN et al. Genetic dissection of a behavioral quantitative trait locus shows that Rgs2 modulates anxiety in mice. Nat Genet 2005; 36: 1197–1202.

    Article  Google Scholar 

  9. Yoshikawa T, Watanabe A, Ishitsuka Y, Nakaya A, Nakatani N . Identification of multiple genetic loci linked to the propensity for ‘behavioral despair’ in mice. Genome Res 2002; 12: 357–366.

    Article  CAS  Google Scholar 

  10. Flint J . The genetic basis of cognition. Brain 1999; 122: 2015–2032.

    Article  Google Scholar 

  11. Wehner JM, Radcliffe RA, Bowers BJ . Quantitative genetics and mouse behavior. Annu Rev Neurosci 2001; 24: 845–867.

    Article  CAS  Google Scholar 

  12. Wahlsten D, Rustay NR, Metten P, Crabbe JC . In search of a better mouse test. Trends Neurosci 2003; 26: 132–136.

    Article  CAS  Google Scholar 

  13. Wahlsten D, Metten P, Phillips TJ, Boehm II SL, Burkhart-Kasch S, Dorow J et al. Different data from different labs: lessons from studies of gene–environment interaction. J Neurobiol 2003; 54: 283–311.

    Article  Google Scholar 

  14. Kafkafi N, Benjamini Y, Sakov A, Elmer GI, Golani I . Genotype–environment interactions in mouse behavior: a way out of the problem. Proc Natl Acad Sci 2005; 102: 4619–4624.

    Article  CAS  Google Scholar 

  15. Iakoubova OA, Olsson CL, Dains KM, Ross DA, Andalibi A, Lau K et al. Genome-tagged mice (GTM): two sets of genome-wide congenic strains. Genomics 2001; 74: 89–104.

    Article  CAS  Google Scholar 

  16. Sayah DM, Khan AH, Gasperoni TL, Smith DJ . A genetic screen for novel behavioral mutations in mice. Mol Psychiatry 2001; 5: 369–377.

    Article  Google Scholar 

  17. Kazlauckas V, Schuh J, Dall’Igna OP, Pereira GS, Bonan CD, Lara DR . Behavioral and cognitive profile of mice with high and low exploratory phenotypes. Behav Brain Res 2005; 162: 272–278.

    Article  Google Scholar 

  18. Pellow S, Chopin P, File SE, Briley M . Validation of open, closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 1985; 14: 149–167.

    Article  CAS  Google Scholar 

  19. Rodgers RJ, Dalvi A . Anxiety, defence and the elevated plus-maze. Neurosci Biobehav Rev 1997; 21: 801–810.

    Article  CAS  Google Scholar 

  20. Kim JJ, Rison RA, Fanselow MS . Effects of amygdala, hippocampus, and periaqueductal gray lesions on short- and long-term contextual fear. Behav Neurosci 1993; 107: 1093–1098.

    Article  CAS  Google Scholar 

  21. Anagnostaras SG, Josselyn SA, Frankland PW, Silva AJ . Computer-assisted behavioral assessment of Pavlovian fear conditioning in mice. Learn Mem 2001; 7: 58–72.

    Article  Google Scholar 

  22. O’Reilly RC, Rudy JW . Conjunctive representations in learning and memory: principles of cortical and hippocampal function. Psychol Rev 2001; 108: 311–345.

    Article  Google Scholar 

  23. Santini E, Ge H, Ren K, Pena de Ortiz S, Quirk GJ . Consolidation of fear extinction requires protein synthesis in the medial prefrontal cortex. J Neurosci 2004; 24: 5704–5710.

    Article  CAS  Google Scholar 

  24. Phillips RG, LeDoux JE . Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci 1992; 106: 274–285.

    Article  CAS  Google Scholar 

  25. Maren S, Aharonov G, Fanselow MS . Neurotoxic lesions of the dorsal hippocampus and Pavlovian fear conditioning in rats. Behav Brain Res 1997; 88: 261–274.

    Article  CAS  Google Scholar 

  26. Milad MR, Quirk GJ . Neurons in medial prefrontal cortex signal memory for fear extinction. Nature 2002; 420: 70–74.

    Article  CAS  Google Scholar 

  27. Fanselow MS . Contextual fear, gestalt memories, and the hippocampus. Behav Brain Res 2000; 110: 73–81.

    Article  CAS  Google Scholar 

  28. Paylor R, Crawley JN . Inbred strain differences in prepulse inhibition of the mouse startle response. Psychopharmacology 1997; 132: 169–180.

    Article  CAS  Google Scholar 

  29. Porsolt RD, Bertin A, Jalfre M . Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 1977a; 229: 327–336.

    CAS  Google Scholar 

  30. Porsolt RD, Le Pichon M, Jalfre M . Depression: a new animal model sensitive to antidepressant treatments. Nature 1977b; 266: 730–732.

    Article  CAS  Google Scholar 

  31. Liu D, Singh RP, Khan AH, Bhavsar K, Lusis AJ, Davis RC et al. Identifying loci for behavioral traits using genome-tagged mice. J Neurosci Res 2003; 74: 562–569.

    Article  CAS  Google Scholar 

  32. Liu D, Singh RP, Khan AH, Lusis AJ, Davis RC, Smith DJ . Mapping behavioral traits by use of genome-tagged mice. Am J Geriatr Psychiatry 2004; 12: 158–165.

    Article  Google Scholar 

  33. Grillon C, Ameli R, Charney DS, Krystal J, Braff D . Startle gating deficits occur across prepulse intensities in schizophrenic patients. Biol Psychiatry 1992; 32: 939–943.

    Article  CAS  Google Scholar 

  34. Waldo M, Myles-Worsley M, Madison A, Byerley W, Freedman R . Sensory gating deficits in parents of schizophrenics. Am J Med Genet 1995; 60: 506–511.

    Article  CAS  Google Scholar 

  35. Xu Y, Demarest K, Hitzemann R, Sikela JM . Gene coding variant in Cas1 between the C57BL/6J and DBA/2J inbred mouse strains: linkage to a QTL for ethanol-induced locomotor activation. Alcohol Clin Exp Res 2002; 26: 1–7.

    Article  CAS  Google Scholar 

  36. Kempermann G, Gage FH . Genetic determinants of adult hippocampal neurogenesis correlate with acquisition, but not probe trial performance, in the water maze task. Eur J Neurosci 2002; 16: 129–136.

    Article  CAS  Google Scholar 

  37. Singer JB, Hill AE, Nadeau JH, Lander ES . Mapping quantitative trait loci for anxiety in chromosome substitution strains of mice. Genetics 2005; 169: 855–862.

    Article  CAS  Google Scholar 

  38. Wang J, Williams RW, Manly KF . WebQTL: web-based complex trait analysis. Neuroinformatics 2003; 1: 299–308.

    Article  Google Scholar 

  39. Valentinuzzi VS, Kolker DE, Vitaterna MH, Shimomura K, Whiteley A, Low-Zeddies S et al. Automated measurement of mouse freezing behavior and its use for quantitative trait locus analysis of contextual fear conditioning in (BALB/cJ × C57BL/6J) F2 mice. Learn Mem 1998; 5: 391–403.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Willis-Owen SA, Flint J . Identifying the genetic determinants of emotionality in humans: insights from rodents. Neurosci Biobehav Rev 2006; 31: 115–124.

    Article  Google Scholar 

  41. Anagnostaras SG, Gale GD, Fanselow MS . Hippocampus and contextual fear conditioning: recent controversies and advances. Hippocampus 2001; 11: 8–17.

    Article  CAS  Google Scholar 

  42. Gorman JM, Kent JM, Sullivan GM, Coplan JD . Neuroanatomical hypothesis of panic disorder, revised. Am J Psychiatry 2000; 157: 493–505.

    Article  CAS  Google Scholar 

  43. Marshall RD, Garakani A . Psychobiology of the acute stress response and its relationship to the psychobiology of post-traumatic stress disorder. Psychiatr Clin N Am 2002; 25: 385–395.

    Article  Google Scholar 

  44. Bouton ME, Nelson JB, Rosas JM . Stimulus generalization, context change, and forgetting. Psychol Bull 1999; 125: 171–186.

    Article  CAS  Google Scholar 

  45. Henderson ND, Turri MG, DeFries JC, Flint J . QTL analysis of multiple behavioral measures of anxiety in mice. Behav Genet 2004; 34: 267–293.

    Article  Google Scholar 

  46. Schafe GE, LeDoux JE . Memory consolidation of auditory Pavlovian fear conditioning requires protein synthesis and protein kinase A in the amygdala. J Neurosci 2000; 20: RC96.

    Article  CAS  Google Scholar 

  47. Josselyn SA, Shi C, Carlezon Jr WA, Neve RL, Nestler EJ, Davis M . Long-term memory is facilitated by cAMP response element-binding protein overexpression in the amygdala. J Neurosci 2001; 21: 2404–2412.

    Article  CAS  Google Scholar 

  48. Romanski LM, LeDoux JE . Equipotentiality of thalamo–amygdala and thalamo–cortico–amygdala circuits in auditory fear conditioning. J Neurosci 1992; 12: 4501–4509.

    Article  CAS  Google Scholar 

  49. Waddell J, Dunnett C, Falls WA . C57BL/6J and DBA/2J mice differ in extinction and renewal of extinguished conditioned fear. Behav Brain Res 2004; 154: 567–576.

    Article  Google Scholar 

  50. Valdar W, Solberg LC, Gauguier D, Burnett S, Klenerman P, Cookson WO et al. Genome-wide genetic association of complex traits in heterogeneous stock mice. Nat Genet 2006; 38: 879–8870.

    Article  CAS  Google Scholar 

  51. Iakoubova OA, Olsson CL, Dains KM, Ross DA, Andalibi A, Lau K et al. Genome-tagged mice (GTM): two sets of genome-wide congenic strains. Genetics 2001; 74: 89–104.

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge funding from the National Institutes of Health RO1 MH071779.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G D Gale.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gale, G., Yazdi, R., Khan, A. et al. A genome-wide panel of congenic mice reveals widespread epistasis of behavior quantitative trait loci. Mol Psychiatry 14, 631–645 (2009). https://doi.org/10.1038/mp.2008.4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2008.4

Keywords

This article is cited by

Search

Quick links