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The majority of lung adenocarcinoma patients with epidermal growth factor receptor- (EGFR) mutated or EML4–

ALK rearrangement-positive tumors are sensitive to tyrosine kinase inhibitors. Both primary and acquired

resistance in a significant number of those patients to these therapies remains a major clinical problem. The

specific molecular mechanisms associated with tyrosine kinase inhibitor resistance are not fully understood.

Clinicopathological observations suggest that molecular alterations involving so-called ‘driver mutations’

could be used as markers that aid in the selection of patients most likely to benefit from targeted therapies. In

this review, we summarize recent developments involving the specific molecular mechanisms and markers that

have been associated with primary and acquired resistance to EGFR-targeted therapy in lung adenocarcino-

mas. Understanding these mechanisms may provide new treatment avenues and improve current treatment

algorithms.
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Approximately 85–90% of all cases of lung cancer
are carcinomas of non-small cell type.1–3 These
tumors can be further classified into several major
histological subtypes, including adenocarcinoma,
squamous cell carcinoma, large cell carcinoma,
adenosquamous cell carcinoma, and sarcomatoid
carcinoma.4 In recent years, attention has been paid
to the role that ‘driver mutations,’ such as epidermal
growth factor receptor (EGFR) and anaplastic lym-
phoma kinase (ALK), have in the tumorigenesis of
adenocarcinomas, and their potential use as targets
for therapy.5–9 Recent data suggest EGFR may also
serve as a prognostic factor, in addition to its role as
a predictive factor, as patients-bearing EGFR muta-
tions have shown favorable clinical outcomes even
with conventional chemotherapy.10–13

EGFR and members of its family have an im-
portant role in carcinogenesis through their involve-
ment in the modulation of cell proliferation,
apoptosis, cell motility, and neovascularization.12–16

EGFR alterations have been implicated in the
pathogenesis and progression of many malignan-
cies.13,17–21 The incidence of EGFR mutations in
unselected tumors with non-small cell histology
ranges from 10 to 50%, depending upon the ethnic
makeup of the patient population and the detection
methods used for mutation analysis; 95% of
such mutations have been found in adeno-
carcinomas.12,13,16,22–34 Although the exact molecular
mechanisms resulting from these somatic mutations
are not completely understood, it seems clear that
mutant EGFR has enhanced tyrosine kinase activity.
Tyrosine kinase is an enzyme that transports
phosphates from adenosine triphosphate (ATP) to a
protein’s tyrosine residue. Although these cases
are most often attributed to EGFR mutations, they
may also result from increased gene copy number
or increased EGFR protein expression.35,36 EGFR
tyrosine kinase inhibitors (TKIs) competitively
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block the binding of ATP to the catalytic site in the
tyrosine kinase domain of EGFR, subsequently
inhibiting autophosphorylation. The process blocks
downstream signaling and results in dramatic
antitumor activity for a subset of lung adenocarci-
noma patients.

EGFR alterations have prompted the development
of two classes of anti-EGFR agents: monoclonal anti-
EGFR antibodies (such as cetuximab, panitumumab,
etc) and small molecule TKIs directed against EGFR
tyrosine kinase (such as gefitinib, erlotinib, etc).
Clinical trials were initiated that employed novel
agents targeting EGFR tyrosine kinase. The results of
the clinical trials indicated that many of the tumors
harboring mutant EGFR are highly sensitive to EGFR
TKIs, with up to 70% demonstrating a significant
clinical response.5,28,29,37–39 Recent studies have
provided more compelling evidence of the clinical
benefits of anti-EGFR treatment in the appropriate
setting.13,15,22,38,40–48 Evidence from the large phase
III randomized Iressa Pan-Asia Study trial and other
phase III trials have prompted the American Society
of Clinical Oncology to issue a provisional clinical
opinion recommending the testing of EGFR muta-
tional status in patients being considered for first
line EGFR TKI therapy owing to their demonstrated
benefit on progression-free survival.22,41 Of note,
they caution that no definitive benefit has been
shown in patients treated with first-line TKIs in
regards to overall survival.22

Biomarkers to predict which patients might
benefit from targeted therapy are urgently needed.
Pathologists have a central role in the process of
determining appropriate testing of these tumors
and in the interpretation of the test results. In this
review, we summarize the most recent develop-
ments involving the specific molecular mechanisms
and markers that have been associated with primary
and acquired resistance to EGFR-targeted therapy,
which may lead to new, more effective treatment
possibilities and may augment the currently used
treatment algorithms.

EGFR alterations in lung cancer

EGFR Mutations

EGFR is located at chromosome 7p11.2, spans about
200 kb, and contains 28 exons. The gene encodes a
protein of 464 amino acids.49,50 EGFR is composed of
an N-terminal extracellular ligand-binding domain,
a transmembrane lipophilic segment, and a
C-terminal intracellular region containing a tyrosine
kinase domain. The EGFR tyrosine kinase modu-
lates cell proliferation and survival through auto-
activation of EGFR itself, or through two down-
stream intermediate pathways: the PIK3CA/AKT1/
MTOR pathway and the RAS/RAF1/MAP2K1/
MAPK1 pathway.51 Upon ligand binding to EGFR,
the receptors form homodimers or heterodimers, which
activate their intrinsic intracellular protein-tyrosine

kinase. The ligand binding-induced dimerization
results in cross-autophosphorylation of key tyrosine
residues in the cytoplasmic domains, which func-
tion as docking sites for downstream signal
transducers.36 This activation of EGFR initiates
signaling cascades involving several downstream
pathways, which induce crucial cellular responses,
such as proliferation, differentiation, motility, and
survival13,52–62 (Figure 1).

EGFR mutations, which are associated with
objective responses to single-agent TKI therapy in
lung adenocarcinomas, are preferentially observed
in a specific subset of patients: females of East Asian
ethnicity who have never smoked and who have
adenocarcinoma with lepidic growth pattern
(formerly bronchioloalveolar carcinoma).5,6,14,63,64

In adenocarcinomas, the majority of mutations
have been identified in exons 18–21 of the EGFR
gene.9,65,66 These mutations can be roughly classified
into three major categories: in-frame deletions in
exon 19, insertion mutations in exon 20, and
missense mutations in exons 18–21 (Figure 2).
Different EGFR mutations have different signaling
properties, but most mutations affect the ATP-
binding cleft, where targeting TKIs compete for
binding.58 The most frequent mutations were
located at exon 19 and exon 21. There are over 20
variant types of exon 19 deletions, with the most
common including delE746-A750, delL747-
T751insS, and delL747-P753insS. L858R, in exon
21, is the second most frequent mutation. Addi-
tional mutations are located at exon 18 including
G719C, G719S, G719A, and S720F and mutations
found in exon 21 including L861Q and L861R.
The exon 20 insertions frequently associated with
EGFR-TKI non-responsiveness, including D770-
N771insNPG, D770-N771insSVQ, D770-N771insG,
and point mutations, including T790M, V769L,
and N771T.15,67 The most important mutation in
exon 20 is T790M, which is associated with a
small fraction of adenocarcinomas with primary
resistance to EGFR TKI and over one-half of the
patients with acquired resistance to EGFR TKI
(Figure 2).12,67–71

A comprehensive literature review by Yamamoto
et al33 indicated that 569 mutations were found
in 2880 lung cancer patients (20%). The distribution
of EGFR mutations was as follows: 48% in exon 19,
43% in exon 21, 4% in exon 20, and 3% in exon 18.
EGFR mutations, except EGFRvIII, are rarely
found in squamous cell and large cell carcinomas,
thus EGFR TKI therapy may not be a relevant
therapy for patients with those tumors. In a large
series of lung carcinomas investigated for the
presence of EGFR mutations in exons 18, 19, and
21, no EGFR mutations were found in the 454
squamous carcinomas and 31 large cell carcinomas
investigated. In contrast, EGFR mutations were
found in 10% of 375 adenocarcinomas and in 26%
of the 86 cases designated as bronchioloalveolar
carcinomas.27
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The most commonly used method to detect EGFR
mutations is direct sequencing.23,25 It is noteworthy
that tissue slides frequently contain heterogeneous
components of cells, a fact that sometimes hampers
optimal analysis. In addition, some patients present
with multifocal lung tumors.72 Careful dissection of

cells from a suitably representative area selected by
a pathologist is essential to ensure a successful test
result. Other methods include PCR–single-strand
conformational polymorphism analysis73,74 and high
resolution-melting amplicon analysis.75,76 Relative
to the direct sequencing method, the other two

Figure 2 Frequency of mutations in exons 18–21 of the EGFR gene and the association with responsiveness to EGFR targeted therapy.
The EGFR located in chromosome 7p11.2 contains 28 exons. Exons 18–21 in the tyrosine kinase region of the EGFR gene are scaled up; a
detailed list of EGFR mutations in these exons associated with sensitivity (green) or resistance (orange) to EGFR TKI.6,12,67–71,80–84,195 The
frequency of the mutations is labeled to the side of the color-coded bars. The most prevalent EGFR mutations are in-frame deletions of
exon 19 (45%), followed by L858R substitution in exon 21 (41%). Exon 18 mutations (G719A/C/S) account for B5% of the overall
mutations. The exon 19 deletions, L858R in exon 21, G719A/C/S in exon 18, the L861Q and L861R in exon 21, are mutations that predict
the probability of benefit from EGFR TKI therapy of adenocarcinomas. The insertion mutations in exon 20 (D770_N771 (insNPG),
D770_N771 (insSVQ), D770_N771 (insG)) are the second most common and are associated with EGFR TKI therapy resistance. D761Y in
exon 19 is also associated with resistance to EGFR TKI although it occurs in low frequency. *T790M mutation represents B1% of
primary resistance but over 50% of acquired resistance in adenocarcinomas. **There are more than 20 exon 19 deletion forms in the lung
adenocarcinomas, with the most common ones including delE746-A750, delL747-T751linsS, and delL747–P753insS.

Figure 1 The EGFR-signaling pathway. EGFR is composed of an extracellular domain, a transmembrane lipophilic segment, and an
intracellular region containing tyrosine kinase domains that occupy exons 18–24. The binding of ligands to EGFR results in
autophosphorylation of key tyrosine residues in the tyrosine kinase domain and activates tyrosine kinase activity, which further activates
the downstream PIK3CA/AKT1/MTOR and RAS/RAF1/MAP2K1 pathways. The aberrant signaling influences several key aspects
including cell proliferation, apoptosis, migration, survival, and more complex processes such as angiogenesis.
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techniques allow for the rapid detection of EGFR
mutations with high sensitivity and specificity.
However, confirmation of mutations via direct
sequencing is still necessary.27,76,77 Though not of
any current clinical use, an assay that provides a
rapid assessment of EGFR mutation status in as little
as 30 min using a ‘smart amplification process’ has
been described. These may one day provide greatly
improved turnaround times for this analysis.78

Formalin-fixed and paraffin-embedded tissue is
perfectly suitable for fluorescence in situ hybridiza-
tion (FISH) and DNA-based tests, but tissue pre-
servation is critical for a successful test. Decalcified
and ethanol-fixed tissue, as well as tissues contain-
ing abundant necrosis, should be avoided.

The ability to detect multiple driver mutations in
lung adenocarcinoma has revolutionized the medi-
cal management of this disease and multiplexed
testing for all common driver mutations will provide
physicians with a more precise guide for therapy.9

Recently, Kris et al79 identified 10 driver mutations
in tumor samples from 1000 lung adenocarcinoma
patients enrolled in the National Cancer Institute
Lung Cancer Mutation Consortium. The mutations,
involving KRAS, EGFR, ERBB2 (HER2), BRAF,
PIK3CA, AKT1, MAP2K1, and NRAS, were screened
using standard multiplexed assays and FISH. Driver
mutations were detected in 60% of tumors. The
incidences of mutations were as follows: KRAS
25%, EGFR 23%, ALK rearrangements 6%, BRAF
3%, PIK3CA 3%, MET amplifications 2%, ERBB2
1%, MAP2K1 0.4%, NRAS 0.2%, and AKT1 0%
(Figure 3).12,67–71 It is noteworthy that 95% of
molecular lesions were mutually exclusive.79

EGFR mutations are responsible for the constitu-
tive activation of the tyrosine kinase receptor. These
mutations are also most frequently associated
with either sensitivity or resistance to EGFR TKIs
(Figure 2).6,80–84 The response-associated mutations
are linked with response rates of 470% in patients
treated with either erlotinib or gefitinib.85,86 How-
ever, upto 25% of patients with TKI resistance-
associated mutations will also respond to the
therapy.67 Pao et al7 analyzed EGFR mutation of
exons 18–24 in tumors from 10 gefitinib-responsive
and from 7 erlotinib-responsive patients. The results
demonstrated that EGFR mutations were present in
7 of 10 (70%) gefitinib-responsive and in 5 of 7
(71%) erlotinib-responsive tumors.

EGFR genotype was more useful than clinical
characteristics for selection of appropriate patients
for consideration of first-line therapy with an EGFR
TKI.85 EGFR mutations are generally associated with
sensitivity to TKI therapy.71,87 Both retrospective
and prospective studies have demonstrated that
lung adenocarcinoma patients carrying such an
EGFR mutation and who were treated with TKIs
had significantly higher response rates and longer
progression-free survival than patients without an
EGFR mutation,5–7,25,29,71,83,85,87,88 with some patients
experiencing rapid, complete, or partial responses

that were persistant.55 Jackman et al85 studied 223
chemotherapy-naı̈ve patients with advanced lung
cancer of non-small cell type, among which 86%
were adenocarcinomas. Sensitizing EGFR mutations
were found in 84 carcinomas, 89% of which were
adenocarcinomas. The mutations were associated
with a 67% response rate, with a time to progression
of 11.8 months, and overall survival of 23.9
months.85 Exon 19 deletions were associated with
a relatively longer median time to progression and
overall survival compared with L858R (exon 21)
mutations. Wild-type EGFR was found in 139
patients (62%), and this finding was associated
with poor outcomes (response rate, 3%; time to pro-
gression, 3.2 months), irrespective of KRAS status.

EGFRvIII Mutation

EGFR variant III (EGFRvIII), a mutation resulting
from an in-frame deletion of exons 2–7 of the coding
sequence (amino acids 6–273), has been associated
with a subset of squamous cell lung cancers.89–91 A
number of functional differences between EGFRvIII
and EGFR have been characterized.90,91 EGFRvIII has
been identified in an array of human solid tumors,
including glioblastoma, breast cancer, ovarian can-
cer, prostate cancer, and lung caner. Although
EGFRvIII fails to bind EGF, its intracellular tyrosine

Figure 3 Frequency of major driver mutations in signaling
molecules in lung adenocarcinomas. About 64% of all adenocar-
cinoma cases harbor somatic driver mutations. According to the
National Cancer Institute Lung Cancer Mutation Consortium
data,79 B23% of lung adenocarcinomas harbor EGFR mutations.
The EGFR mutation status of the cancer is associated with its
responsiveness or resistance to EGFR TKI therapy. KRAS muta-
tions are more frequently found in adenocarcinomas (25%),
which are mutually exclusive with EGFR mutations. Mutations
in KRAS have been proposed as one of the mechanisms of
primary resistance to gefitinib and erlotinib therapy. A subset
of adenocarcinoma cases harbors a transforming fusion gene,
EML4–ALK (6%), which mainly involves adenocarcinoma from
non-smokers with wild-type EGFR and KRAS mutations. The
mutation frequency of BRAF is 3%, PIK3CA 3%, MET amplifica-
tions 2%, ERBB2(Her2/neu) 1%, MAP2K1 0.4%, and NRAS 0.2%.
Each of the molecular alterations has a role in the signal
pathways, activating important cell functions, including cell
proliferation and survival. Approximately 36.4% of lung adeno-
carcinomas do not harbor currently detectable mutations.
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kinase is constitutively activated, allowing the
receptor to undergo tyrosine autophosphoryla-
tion.92–94 EGFRvIII activates the phosphatidylinosi-
tol 30 kinase (PIK3CA) signaling pathway, which
provides critical information for cell survival, pro-
liferation, and motility.95,96 The true incidence and
clinical significance of EGFRvIII mutations are not
yet clearly defined. There have also been reports
that EGFRvIII mutation in lung cancer correlates
with increased EGFR copy number.97

Ji et al98 determined that EGFRvIII mutations were
present in 5% (3/56) of human lung squamous cell
carcinomas, but not in adenocarcinomas (0/123).
The information concerning whether EGFRvIII mu-
tation is associated with specific histological types
of lung cancer is conflicting, although most studies
have indicated that EGFRvIII is associated with
squamous cell carcinoma.98,99 In the study by Sasaki
et al,97 EGFRvIII mutation was detected in 3% (8/
252) of non-selected lung cancer patients. All
patients bearing a EGFRvIII mutation were male,
smokers, and seven had squamous cell carcinoma,
whereas one had poorly differentiated adenocarci-
noma. However, in the investigation of Ohtsuka
et al,99 EGFRvIII mutation was detected in one of
seven squamous cell carcinomas with an adenocar-
cinoma component, in two of four adenosquamous
carcinomas and in one of seven large cell carcinomas.

EGFRvIII-bearing squamous cell carcinomas were
reportedly insensitive to gefitinib and erlotinib, but
showed sensitivity to neratinib (HKI-272).98,100

EGFR Copy Number Alteration

Some, but not all, studies have shown that EGFR
gene amplification is associated with significantly
better survival after treatment with TKI.10,30,101

Despite the fact that the majority of studies demon-
strate that a high EGFR gene copy number correlates
with better response and increased survival in
adenocarcinoma patients treated with EGFR TKI,
debate remains about its true prognostic value.
Dahabreh et al31 reviewed 59 publications concern-
ing 1020 mutations in 3101 patients. EGFR muta-
tions were detectable in 70% (15/21) of patients who
had a gain of EGFR copy number. There are several
methods for detecting and determining EGFR gene
copy number, or dosage, including FISH,25,30,102

chromogenic in situ hybridization,32,103 and real-
time quantitative PCR.10,104,105 When compared with
EGFR mutations, EGFR gene copy number gain was
a less sensitive and less specific marker, and may
therefore not be considered clinically suitable for
patient selection.31

EGFR Protein Overexpression

There are three main types of immunohistochemical
tests for EGFR protein: total EGFR, phosphorylated
EGFR, and mutant-specific EGFR.

Total EGFR

Overexpression of total EGFR has been demon-
strated in 40–80% of tumors representing various
subtypes of lung tumors; however, the use of EGFR
overexpression as a prognostic marker has been
largely unsuccessful.106–109 Many studies suggest
that immunohistochemistry-based assays measuring
EGFR expression do not serve as a robust predictors
of response to TKI therapy.110 The study from Li
et al111 further emphasized that EGFR overexpres-
sion appears to be independent of EGFR mutation.
As total EGFR did not correlate well with EGFR
mutations, it is not accepted as a marker for EGFR
TKI treatment selection.

Phosphorylated Form of EGFR

Phosphorylations in the carboxyl-terminus of EGFR
have a key role in the recruitment of signaling
molecules and activation of downstream signaling
pathways.51,112,113 The utility of detecting phos-
phorylated EGFR remains questionable owing to
concerns about its stability and its compatibility
with routine pathology practice. Further studies
are warranted to evaluate the potential clinical
utility of antibodies that recognize phosphorylated
EGFR.

EGFR Mutation-Specific Antibodies

The current commercially available antibodies
recognize two of the most common EGFR mutations
((delE746_A750) in exon 19 and L858R in exon
21).114 The antibodies successfully detected EGFR
alterations in 51 of 217 adenocarcinomas and in 1 of
217 squamous carcinomas. These findings were
confirmed by DNA sequencing.114 Immunohisto-
chemistry using mutation-specific antibodies could
potentially be used to screen for patients who may
be candidates for EGFR inhibitors.115 However, there
are concerns about the limited mutation types the
antibodies recognize and a practical cutoff point for
deeming a test positive or negative has yet to be
established. In light of currently available data, it
has been proposed that commercially available
antibodies may be most useful for initial screening.

Other Alterations that Affect the EGFR TKI Response

Other gene mutations downstream of the EGFR
signaling pathway are also involved in tumorigen-
esis of lung adenocarcinomas. Studies have indi-
cated that any activating mutation in the EGFR/
RAS/RAF1 signaling pathway may be sufficient for
the pathogenesis of certain lung cancers.116,117 The
findings of Yamamoto et al33 indicated that EGFR-
mutant cancers tend to have fewer downstream
molecular alterations. If EGFR-mutant cancers
acquire other critical molecular alterations, genetically
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or epigenetically, they may survive by using
alternative signaling pathways, even if the
EGFR signaling is effectively inhibited. It is ex-
pected that in the presence of additional molecular
alterations, the effectiveness of TKI therapy for
EGFR-mutant tumors will be reduced. The most
frequently encountered alterations include KRAS
mutations,118–121 MET amplification,122–125 ALK
gene fusion,126–129 PIK3CA mutations,130 BRAF
mutations,118,131–133 and IGF1R overexpression
(Figure 3).134,135

Is EGFR mutation specific for lung
adenocarcinoma?

Current data indicate that EGFR mutations are
adenocarcinoma dominant, rather than adenocarci-
noma specific. Clinically, most EGFR mutations are
detected in adenocarcinomas;27 with other types of
lung carcinomas showing a much lower frequency
of EGFR mutations: 5% in squamous cell carcino-
mas and virtually none in large cell carcinomas.27,136

Lung adenocarcinomas frequently possess EGFR
mutations and frequently exhibit increased EGFR
copy number.111 A study including 334 cases of lung
adenocarcinoma using PCR-based assays to detect
deletions within exon 19 and the L858R mutation
in exon 21 of the EGFR gene found that 23% of
these tumors contained a mutation. Of those, 29%
were exon 19 deletions and 29% were the L858R
mutation in exon 21. In addition, EGFR amplifica-
tion, defined as greater than five EGFR signals per
nucleus, was detected in 52% of EGFR-mutated
tumors, but in only 6% of those lacking the EGFR
mutations.111 Among adenocarcinomas, EGFR muta-
tions are more prevalent in cases formerly subtyped
as bronchioloalveolar carcinomas.27,41,99 However,
EGFR mutations in squamous cell carcinoma appear
to occur much less frequently, with a reported
incidence as high as 14% from a group of seven
patients to as low as 0% in a group of 454 squamous
cell lung cancers.27,41,99 The National Comprehen-
sive Cancer Network recommends erlotinib as the
first-line therapy for patients who have an EGFR
mutation and who have advanced, recurrent, or
metastatic adenocarcinoma.3

Adenosquamous carcinomas appear to have an
EGFR mutation incidence that is similar to that of
adenocarcinomas. Furthermore, adenosquamous
carcinomas have been treated in a manner similar
to adenocarcinomas as these tumors harbor compar-
able EGFR mutations. In a study that included 23
adenosquamous carcinomas with separately micro-
dissected glandular and squamous components
analyzied for EGFR and KRAS mutations, EGFR
mutations were observed in 13% of cases (3/23), two
of which had identical mutations in the glandular
and squamous elements.137

Although EGFR mutations in lung cancers
other than adenocarcinoma type are not common,

occasionally reported cases bearing EGFR mutation
have indicated that EGFR TKI therapy could still be
a potentially effective approach for those patients
(Figure 4). Large cell carcinoma, appears to harbor
EGFR mutations very rarely.27,138,139 In one study,
only one L858R mutation was found in 60 large cell
carcinomas of lung.139 In the study of Marchetti et
al,27 EGFR mutations were identified in 39 (10%) of
375 adenocarcinomas, but no EGFR mutations were
found in 454 squamous carcinomas and 31 large cell
carcinomas. De Pas et al140 reported a 66-year-old
woman with metastatic large cell lung cancer har-
boring EGFR mutation. A positron emission tomo-
graphy scan performed 2 months after the initiation
of gefitinib therapy showed a dramatic response to
treatment in both the patient’s primary tumor and
her metastatic deposits.

Sarcomatoid lung cancer is rare and highly
malignant. Whether EGFR mutation is involved in
its tumorigenesis is unclear. Jiang et al141 investi-
gated a group of 33 patients with sarcomatoid lung
cancer for EGFR mutations by direct sequencing.
EGFR mutations were detected from 9 of 32 patients
and only one patient had a KRAS mutation.

In contrast to the EGFR mutations that are often
found in adenocarcinomas, pure squamous cell
carcinomas exhibit mutations in the discoidin
domain receptor tyrosine kinase 2 with a frequency
of 3.8% (11/290).142 Discoidin domain receptor 2, a
tyrosine kinase receptor that binds collagen as its
endogenous ligand, has been previously shown to
promote cell migration, proliferation, and survival
when activated by ligand binding and phosphoryla-
tion. EGFRvIII mutations were found in 5% of
human lung squamous cell carcinomas (also see
prior discussion) (Figure 4).98,99

The advent of targeted therapy based on driver
mutations in lung adenocarcinoma has countered
the notion that non-small cell lung cancer (NSCLC)
is a distinct clinical entity. Current information
indicates that distinguishing a tumor as NSCLC
alone is no longer sufficient for patient management
and the term ‘non-small cell lung cancer (NSCLC)’
should be abandoned. Recently, a panel of experts
proposed a major revision of the lung cancer
classification system.143 These changes primarily
affect the classification of adenocarcinoma and
its distinction from squamous cell carcinomas
(Table 1).143 The new classification system from
the International Association for the Study of
Lung Cancer, the American Thoracic Society, and
the European Respiratory Society further classifies
lung carcinomas into more precise subtypes
based on a multiparameter approach that incorpo-
rates and integrates clinical, molecular, and histolo-
gical features (Table 1).143 The advent of mutation-
specific therapies has dramatically changed the
landscape of lung cancer treatments.3,13 Patients
without EGFR mutations seldom respond to
EGFR-targeted therapy. Targeted therapy drugs
are inherently costly as these carefully designed

Molecular pathology of lung cancer

352 L Cheng et al

Modern Pathology (2012) 25, 347–369



molecules are patented, yet aimed at a limited
patient population. Inappropriate use of these and
other targeted therapies run the risk not only of
clinical failure, but also of unnecessary expense or
even life-threatening toxicity.

EML4–ALK rearrangement:
driver mutation of lung cancer

The ALK gene encodes a receptor tyrosine kinase
found in a number of fusion proteins consisting of

Figure 4 Current molecular tests and options for targeted therapies. Adenocarcinomas and adenosquamous carcinomas have a relatively
high incidence of EGFR mutations or EML4–ALK rearrangement. Patients with such tumors could potentially benefit from targeted
therapies using EGFR TKI and ALK TKI. EGFRvIII is associated with a small subset of squamous cell carcinomas, but the rationale for the
therapy targeted to this mutation has not yet been established. Large cell and sarcomatoid carcinomas are not considered suitable tumors
for the EGFR TKI therapy although a recent article reported 28% EGFR mutations from a group of 32 sarcomatoid lung cancers.

Table 1 International Association for the Study of Lung Cancer (IASLC), American Thoracic Society (ATS), and European Respiratory
Society (ERS). Classification of lung adenocarcinoma in resection specimens

Preinvasive lesions
Atypical adenomatous hyperplasia
Adenocarcinoma in situ (r3 cm formerly bronchioloalveolar carcinoma)

Non-mucinous
Mucinous
Mixed mucinous/non-mucinous

Minimally invasive adenocarcinoma (r3 cm lepidic predominant tumor with r5mm invasion)
Non-mucinous
Mucinous
Mixed mucinous/non-mucinous

Invasive adenocarcinoma
Lepidic predominant (formerly non-mucinous bronchioloalveolar carcinoma, with 45 mm invasion)
Acinar predominant
Papillary predominant
Micropapillary predominant
Solid predominant with mucin production

Variants of invasive adenocarcinoma
Invasive mucinous adenocarcinoma (formerly mucinous bronchioloalveolar carcinoma)
Colloid
Fetal (low and high grade)
Enteric
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the intracellular kinase domain of ALK and the
amino terminal portions of different genes.144,145

EML4–ALK fusion is formed as the result of a small
inversion within the short arm of chromosome 2 that
joins intron 13 of echinoderm microtubule asso-
ciated protein-like 4 (EML4) to intron 19 of ALK
[inv(2)(p21;p23)], generating an oncogenic fusion
encoding a constitutively activated protein tyrosine
kinase.8,146 A subset of lung adenocarcinoma cases
harbor within the genome this transforming fusion
gene, EML4–ALK (Figure 5).

The EML4–ALK fusion is a rare abnormality
detected in B3–13% of patients with adenocarci-
nomas.8,146–152 The most common fusion results from
the joining of exons 1–13 of EML4 to exons 20–29 of
ALK. At least seven EML4–ALK variants (V1–V7)
have been identified in lung adenocarcinomas.153

All seven variants are formed through the fusion of
the intracellular tyrosine kinase domain of ALK with
a variably truncated EML4 gene.8,154–156 Activated
ALK is involved in the inhibition of apoptosis and
the promotion of cellular proliferation through
activation of downstream PIK3CA/AKT1- and
MAPK1-signaling pathways.157 Fusion of the
EML4–ALK gene and its associated EML4–ALK
product may further lead to constitutive activation
of the RAS/RAF1/MAP2K1/MAPK1 pathway.54 Ad-
ditionally, two other less frequent ALK fusions in
lung cancer have been reported, but not yet studied
for their downstream consequences.158 The key
downstream effectors on the ALK pathway include
the RAS-activated protein, extracellular signal regu-
lated kinase (MAPK1), phosphoinositide 3-kinase
(PIK3CA), and STAT3 signaling pathways.151 RAS/
MAP2K1/MAPK1 pathways are critical for cell
proliferation, whereas the PIK3CA/AKT1 and
STAT3 pathways are important for cell survival.
The histology of these tumors is typically character-
ized by mucin production and either a solid growth
pattern containing signet ring cells in western
patients or an acinar growth pattern in Asian
patients.159–162 Compared with patients with wild-
type ALK and EGFR, patients with the EML4–ALK
fusion gene tend to be younger (median, 52 vs 64
years), of Asian ethnicity, diagnosed at an advanced
clinical stage at presentation, male dominant (58 vs
32%), and more likely to be never-smokers (74 vs
26%), but with a comparable response rate to
chemotherapy and overall survival.8,148,159,160 The
EML4–ALK fusion gene was detected in 19 of 141
(13%) tumor samples by FISH.148 None of the 10
patients with an EML4–ALK rearrangement achieved
an objective response to EGFR TKIs. In contrast,
24% of responding patients in the EML4–ALK-
negative cohort showed an objective response with
an EGFR TKI.148,163 Tiseo et al126 reported a 48-year-
old Caucasian never-smoker man with lung adenos-
quamous carcinoma harboring EML4–ALK fusion
and exon 19 deletion in EGFR gene. The patient
manifested resistance to the erlotinib therapy. The
authors concluded that ALK status should be

investigated in unexplained cases of EGFR TKI-
resistance lung cancers. In the study of Shaw et al,148

none of the 10 patients with EML4–ALK fusion
had a documented clinical response to erlotinib. As
the presence of the EML4–ALK fusion gene is
mutually exclusive with the EGFR mutation, it is
unclear if EGFR TKI resistance is owing to
EML4–ALK mutation itself or because of the EGFR
wild-type.

It has been reported that although ALK-fusion-
positive lung cancers are resistant to the EGFR TKIs,
gefitinib, and erlotinib, they are sensitive to small
molecule TKIs against ALK.152 ALK TKIs (ALK TKI),
including crizotinib, are effective treatments in
preclinical models for patients with ALK-fusion
cancers.164 In a pivotal phase 1 clinical trial, the
ALK tyrosine kinase inhibitor (TKI) crizotinib (PF-
02341066) demonstrated impressive antitumor ac-
tivity in the majority of patients with adenocarcino-
mas harboring EML4–ALK fusions. However, despite
these remarkable initial clinical responses, these
cancers eventually developed resistance to crizoti-
nib, usually within 1 year, thereby limiting the
potential clinical benefit of this drug. Katayama et
al165 found that cells resistant to intermediate doses
of crizotinib develop either amplification of the
EML4–ALK gene or a gatekeeper mutation, L1196M,
within the kinase domain. Sasaki et al164 proposed
two mechanisms of ALK TKI resistance based on
evidence from a crizotinib-treated ALK-positive
lung cancer patient and in a cell line generated
from the resistant tumor. The crizotinib-resistant
DFCI076 cell line harbored a unique L1152R ALK
secondary mutation and was also resistant to the
structurally unrelated ALK TKI, TAE684. In con-
trast, the TAE684-resistant (TR3) H3122 cell line did
not contain an ALK secondary mutation, but instead
harbored coactivation of EGFR signaling. Therefore,
the authors suggested that dual inhibition of both
ALK and EGFR was the most effective therapeutic
strategy for the DFCI076 and H3122 TR3 cell
lines.164

In a recent analysis of 82 ALK-positive lung cancer
patients, ALK tyrosine kinase inhibitor (crizotinib)
therapy was associated with improved survival
compared with that of crizotinib-naive controls.166

Survival among ALK-positive patients who were
given crizotinib in the second-line or third-line
setting was significantly better than those patients
given any second-line therapy (2-year survival, 55 vs
12%). However, unlike EGFR mutation, ALK
rearrangement was not a favorable prognostic factor.166

Dual-color–split-apart FISH is the recommended
method for the EML4–ALK test. A positive test result
in 415% of 50 analyzed tumor cells is the cutoff
point recommended by the College of American
Pathologist and the Association of Molecular
Pathology. The results of ALK FISH interpretation
should be verified by two independent personnel.
RT-PCR is not recommended due to repeated fail-
ures of RNA-based testing using formalin-fixed
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paraffin-embedded tissue. Immunohistochemistry is
also not currently recommended as an alternative to
FISH testing, due to the low expression level and
resulting suboptimal sensitivity and specificity.167,168

EGFR targeted therapy approaches

There are two major approaches for inhibiting
EGFR signaling: (1) prevent ligand binding to the

Figure 5 Schematic of EML4–ALK rearrangement, its detection by FISH, and its downstream effects. Both EML4 and ALK genes are
located on the short arm of chromosome 2. The EML4–ALK rearrangement results from a chromosomal inversion, t(2;5) (a). Green and
orange bars represent DNA probes corresponding to the 50 and 30 fragments of the ALK gene. The EML4–ALK fusion gene is mainly found
in adenocarcinomas that arise in non-smokers with wild-type EGFR and KRAS. The EML4–ALK fusion protein activates canonical
signaling pathways, including STAT3, RAS/MAP2K1, and PIK3CA/AKT1 cascades, which further affect cell cycle regulation, cell
proliferation, neovascularization, and cell survival. At least nine variants have been identified. FISH detection of ELM4–ALK uses break-
apart technology, which detects the adjacently located EML4 and ALK genes in wild-type signals (overlapping green-red) (b), and break-
apart signals (separated green-red in one set of green-red) caused by chromosomal inversion (c).
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extracellular domain with a monoclonal antibody
and (2) inhibit the intracellular tyrosine kinase
activity with a small molecule TKI. Ligand binding
to the extracellular domain of EGFR promotes
receptor dimerization, which in turn leads to
activation of the cytoplasmic tyrosine kinase. The
activated EGFR kinase phosphorylates tyrosines in
the EGFR C-terminal, initiates signaling cascades,
and stimulates cell growth and differentiation
(Figure 6).13,169,170

Monoclonal Antibodies

Monoclonal antibodies, such as cetuximab and
panitumumab, are either chimeric mouse-human
or fully humanized antibodies targeting the EGFR
extracellular domain, leading to blockade of ligand-
activated signal transduction and receptor dimeriza-
tion. Fully humanized antibodies, such as panitu-
mumab, have a high affinity for EGFR and a longer
half life.171

The binding of the antibody initiates EGFR
internalization and degradation, which leads to

signal termination.110,172–174 The treatment has
shown consistent benefit to clinical outcome when
added to chemotherapy.173 However, this class of
treatment only inhibits ligand-dependent activation
of EGFR and not autophosphorylation of the
tyrosine kinase domain via constitutive activation.
These mutations may still activate the downstream
pathways, and upregulate cell cycle progression,
cell growth, and angiogenesis.

Tyrosine Kinase Inhibitors

TKIs are synthetic small molecules that block the
magnesium-ATP-binding pocket of the intracellular
tyrosine kinase domain.110 TKIs prevent the intra-
cellular tyrosine kinase domain of the EGFR from
autophosphorylation through binding to its ATP-
binding site. Several TKIs, such as gefitinib and
erlotinib, are specific for EGFR, whereas others
inhibit other receptors in addition to EGFR, such
as ERBB2 and VEGFR2. TKIs block ligand-induced
receptor autophosphorylation by binding to the
tyrosine kinase domain and disrupting tyrosine
kinase activity, thereby abrogating intracellular
downstream signaling. Somatic activating mutations
of the EGFR gene in exons 19 and 21 increase gene
copy number. Certain clinical and pathological
features have been associated with dramatic tumor
responses and favorable clinical outcomes with
these agents in patients with lung cancer.30,55,175

Mechanisms of Resistance to EGFR Targeted Therapy

In a population of unselected patients, response to
EGFR TKIs has been reported to be only 10%.176

These disappointing outcomes may reflect the fact
that the majority of lung cancers are EGFR-mutation
negative. Moreover, the outcomes may also be
related to evidence that some EGFR mutations not
only activate EGFR tyrosine kinase and drive cancer
cells to grow, but are also associated with resistance
to current EGFR TKI therapy.82,84,177,178 Current
strategies have been focused on detection of EGFR
mutation and EML4–ALK rearrangement in lung
adenocarcinomas (Figure 7).

The most important mutation associated with
acquired EGFR TKI resistance is T790M, a point
mutation located at exon 20, resulting in the
substitution of methionine for threonine.70,179–181

Clinically, patients with EGFR exon 20 mutations
do not respond to gefitinib.67 Moreover, the appear-
ance of a secondary mutation in exon 20 (T790M)
accounts for B50% of acquired drug resistance.71,182

Screening for the emergence of such mutations on
circulating tumor cells from the blood of patients
during the course of treatment may allow earlier
identification of acquired resistance.178,180 Other
TKI-resistant mutations include insertions in D770
at exon 20 and D761Y at exon 19 (Figure 2).

Figure 6 Mechanism of constitutive activation of EGFR results
from EGFR mutation and strategies of anti-EGFR therapy. (a)
EGFR mutations provoke autophosphorylation of key tyrosine
residues (P) in the tyrosine kinase domain, thus activating
tyrosine kinase activity constitutively and initiating downstream
effectors. (b) Two strategies are used for inhibiting EGFR
signaling: humanized antibodies and small molecule TKIs. The
antibodies inhibit the ligand-dependent activation of EGFR by
blocking the ligand-binding site and preventing EGFR from
activation. In contrast, TKIs block the magnesium-adenosine
triphosphate-binding pocket of the intracellular tyrosine kinase
domain, further inhibiting autophosphorylation. This inhibition
disrupts tyrosine kinase activity and abrogates intracellular
downstream signaling.
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Results of some preclinical studies suggest that
the clinical benefit observed with EGFR TKIs is not
restricted to those patients harboring EGFR gene
mutations. This may be due to molecular factors
other than EGFR mutation. EGFR gene amplification
and receptor/ligand overexpression, both allowing
for a ‘gain of function’ to occur, may account for
some cases of tumor sensitivity to single-agent EGFR
inhibitors.30,36 Recent evidence suggests that the
approach to accurately predicting response to TKI
therapy in adenocarcinomas should combine the
status of EGFR mutation and its copy number.
Although multiple parameters have been used to
predict tumor responsiveness to TKI, EGFR muta-
tion detection remains one of the most important
determinants for the prediction of clinical respon-
siveness and survival benefit.183

The EGFR pathway has a central role in a subset of
adenocarcinomas through converging signals for cell
proliferation, motility, and other cancer cell beha-
viors.5,184 However, the mechanisms underlying
tumor resistance to EGFR-targeted therapy are still
not completely known. Genetic alterations fre-
quently occur during lung cancer progression owing
to genomic instability. Biological stress may also
modulate multiple signaling pathways and trigger
epigenetic alterations. Despite impressive initial
clinical responses, patients with EGFR-mutated
adenocarcinomas almost inevitably develop drug
resistance after B1 year of TKI treatment.185,186

Studies have revealed several molecular mechan-
isms that may contribute to the development of
tumor resistance to TKI therapy,71,84,186,187 including

acquired secondary EGFR mutation, activation of
alternative signaling pathways that bypass the EGFR
pathway, overexpression of HGF,122 tyrosine protein
kinase MET amplification,53,124 epigenetic factors,188

constitutive activation of signaling pathways down-
stream of EGFR,13,189 tumor stromal and extra-
cellular matrix alterations,190,191 or host-related
mechanisms such as rapid drug inactivation and
ATP-binding cassette transporters efflux.192

Primary resistance to EGFR targeted
therapy

Recent clinical trials of gefitinib or erlotinib therapy
report response rates in EGFR-mutated lung cancer
cases ranging from 75 to 90%.13,15,22,38,193 A subset of
lung adenocarcinomas show primary resistance to
EGFR TKI therapy, even in the presence of an
activating mutation in EGFR.194 The most commonly
found mutations associated with TKI drug sensitiv-
ity include exon 19 deletions downstream of the
lysine residue at position 745 (DE746-A750), point
mutations in exon 21 (L858R and L861Q and
L861R), in exon 18 (G719A/C/S), and in exon 20
(V765A, T783A, and S768I).67–71 However, insertion
mutations of exon 20, D770_N771 (insNPG),
D770_N771 (insSVQ), D770_N771 (insG), and point
mutations in exon 20 (V769L, N771T) were asso-
ciated with EGFR TKI resistance.12,195 This observa-
tion has been confirmed in an in vitro model in
which insertion mutations in exon 20 rendered
transformed cells less responsive to EGFR TKIs

Figure 7 Suggested algorithm for molecular testing for patients with lung adenocarcinoma. The algorithm defines the rationale in
selecting patients who could benefit from EGFR and EML4–ALKA targeted therapy. Adenocarcinoma cases are subjected to testing for
EGFR mutations. The EGFR mutation-positive cases (25%) are further divided into responsive and resistant groups according to their
mutation profiles. A responsive mutation predicts a response rate of 91% and a resistant mutation predicts a response rate of 9%. The
presence of wild-type EGFR characterizes about 75% of the adenocarcinomas, and predicts the likelihood of non-responsive to EGFR
TKI. Tumors with wild-type EGFR are further tested for EML4–ALK rearrangement. Although EML4–ALK rearrangement is found in only
3% of patients with lung adenocarcinoma, its presence predicts a 53% probability of response to targeted therapy.
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compared with the sensitizing mutations of exons
19 and 21.195 Insertion mutation in exon 20 at 770
renders the EGFR 100-fold less sensitive to TKIs
when compared with the sensitizing mutations.195

The mutation T790M, which is associated with
B50% of acquired resistance, has also been linked
to primary resistance, although infrequently (o5%
of such cases) (Figure 2).179

Approximately 10–25% of EGFR-mutant lung
adenocarcinomas do not respond to an EGFR TKI.15

In addition to the previously mentioned mutations,
even rarer primary mutations, such as D761Y,
G719C, and E709A mutations, have also been shown
to be insensitive to EGFR TKIs, and even more so
when co-occurring with other genetic alterations.196

Primary TKI resistance may also be mediated by
the presence of other genetic alterations that
affect signaling downstream from EGFR, such as
mutation of KRAS, PIK3CA, and loss of PTEN
expression.197–199 Mutations in KRAS, which are
frequently found in adenocarcinomas with wild-
type EGFR, are a mechanism of primary resistance to
gefitinib and erlotinib.63 PTEN is one of the key
downstream components of the EGFR pathway and
has a significant role in cell survival, proliferation,
and growth. Knockdown of PTEN expression in
cells results in drug resistance to gefitinib and
erlotinib.200 Loss of PTEN expression results in
overactivation of the Akt pathway and confers
resistance to EGFR TKI.198 Study results suggest
that the loss of expression of PTEN may be mediated
by an epigenetic mechanism, as genetic alterations
on the PTEN gene are found in fewer than 10% of
cases.201,202 BRAF mutations may also be associated
with primary resistance to EGFR TKIs.203

Wild-Type EGFR

The wild-type EGFR appears to be a significant
marker for the primary EGFR TKI resistance. The
Iressa Pan-Asia Study clinical trial demonstrated
that most tumors without detectable EGFR tyrosine
kinase domain mutations were insensitive to gefiti-
nib.41 Tumors with wild-type EGFR often harbor
somatic mutations in other genes that affect the key
pathways in lung adenocarcinoma. Thus, primary
drug insensitivity is likely linked to the absence of
drug-sensitizing mutations in EGFR and is more
likely to be a result of mutations in other genes.15,85

Further complicating matters are the findings that
even in tumors with EGFR mutations, certain
mutations appear to confer greater sensitivity to
treatment than others.33 This emphasizes that pre-
dicting response to treatment is a complex process
that is not completely understood at this time.

KRAS Mutations

One of the most important discoveries for the
clinical management of colorectal carcinoma has

been the association of mutations in KRAS and the
usual failure of monoclonal antibodies targeting
EGFR, such as panitumumab and cetuximab. The
KRAS protooncogene encodes KRAS G-protein,
which has a critical role in the RAS/MAPK1
signaling pathway downstream of many growth
factor receptors, including EGFR. Some tumors
harbor somatic mutations in exon 2 of KRAS that
compromise the hydrolysis of RAS-bound GTP to
GDP, resulting in constitutive activation of the RAS
pathway.204 In the presence of a KRAS mutation, the
EGFR pathway activation is not significantly in-
hibited by cetuximab or panitumumab, which acts
upstream of the KRAS protein, diminishing the
efficacy of the agents. This pathway is identical to
the EGFR pathway targeted by TKIs in adenocarci-
nomas.

KRAS has a key role in the EGFR signaling
network. An activating mutation of KRAS is present
in B25–35% of TKI non-responsive cases.63 EGFR
and KRAS mutations are rarely detected in the same
tumor, suggesting that they may perform function-
ally equivalent roles in lung tumorigenesis.205,206

KRAS mutation is a negative predictor of response to
anti-EGFR monoclonal antibodies and is also an
important mechanism of resistance to TKIs in lung
adenocarcinomas.55 A meta-analysis by Linardou
et al207 provided empirical evidence that somatic
mutations of the KRAS oncogene are highly specific
negative predictors of response to single-agent EGFR
TKIs in advanced lung cancers, mostly adenocarci-
nomas. Mao et al121 reviewed 1470 lung cancers
from 22 publications, of which 231 had KRAS
mutations (16%). The mutations were more com-
mon in adenocarcinoma than in other histological
types of lung cancer (26 vs 16%). The objective
response rate of patients with mutant KRAS was 3%
(6/210), whereas the objective response rate of
patients with wild-type KRAS was 26%. As most
KRAS mutations are detected in codons 12 and 13 of
exon 2, an alternative-screening algorithm is to
perform KRAS mutation analysis first, followed by
EGFR mutation test if KRAS mutations are not found
(Figure 8).

Mutations in KRAS are one mechanism of
primary resistance to gefitinib and erlotinib.208

KRAS mutations are almost exclusively detected in
codons 12 and 13 of exon 2, resulting in EGFR
independent intracellular signal transduction
activation. In the study of Eberhard et al,11 EGFR
exons 18 through 21 and KRAS exon 2 mutations
were investigated via sequencing in tumors of
274 patients. KRAS mutations were present in
21% of tumors, which were associated with sig-
nificantly decreased time to progression and survi-
val in patients treated with erlotinib plus
chemotherapy.

KRAS mutations were detected in 21/215 (10%) of
adenocarcinomas but were not found in 15 squa-
mous cell carcinomas or 11 lymphoepithelioma-like
carcinomas.196 Santis et al209 observed a similar
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pattern. In a study including 121 adenocarcinomas
from African–American patients, KRAS mutations
were compared with data from Caucasian patients
(n¼ 476).210 The KRAS mutations were found in
17% (21/121) of African–American patients com-
pared with 26% (125/476) of Caucasian patients.210

KRAS mutations in adenocarcinoma are usually
associated with wild-type EGFR and non-respon-
siveness to EGFR TKI therapy. Therefore, it is
difficult to determine whether the resistance is due
to the presence of mutated KRAS or to the absence
of mutated EGFR. Mao et al121 reviewed 22 studies,
finding that KRAS mutations were detected in
150 of 718 (21%) patients with lung cancer.
Mutations were more common among adenocarci-
nomas than in other types of cancer (26 vs 16%).
The objective response rate of patients to EGFR TKI
with mutant KRAS was 3% (6/210), compared
with 26% (287/1125) of patients without KRAS
mutations. Having a wild-type KRAS is very im-
portant if benefit is to be derived from EGFR
inhibition, but is not the sole determinant of this
outcome as other mechanisms of resistance to EGFR
inhibitors exist.

BRAF Mutation

The BRAF gene encodes a protein that has a key role
downstream of KRAS in the cell signaling pathway
activating important cell functions, including cell
proliferation and survival.132,133 Both KRAS and
BRAF genes are part of the signaling cascade for
the EGFR family proteins.211 The BRAF protein is a
serine/threonine protein kinase that is activated by
KRAS in a GTP-dependent manner.118 Mutant BRAF
proteins have elevated kinase activity and can
transform NIH3T3 cells.212 KRAS function is not
required for the growth of cancer cell lines with
BRAF mutations.212 Among 697 patients with lung
adenocarcinoma, BRAF mutations were present in
18 (3%) of the patients. The BRAF mutation
frequencies were V600E (50%), G469A (39%), and
D594G (11%), in exons 15, 11, and 15, respec-
tively.213 All patients with BRAF mutations
were current or former smokers. The major BRAF
functions are believed to be mediated by phosphor-
ylation and thus activate the MAPK1, MAP2K1,
and MAP2K2 pathways.118,214 Mutations in BRAF
have been shown to impair responsiveness to

Figure 8 Alternative algorithm for molecular testing for patients with lung adenocarcinomas. Approximately 25% of lung
adenocarcinomas harbor KRAS mutations, which predict non-response to EGFR TKI therapy. Of the remaining KRAS-negative lung
adenocarcinomas, B20% harbor EGFR mutations, which are associated with responsiveness to EGFR TKI therapy. EGFR mutation-
negative cases may benefit from additional testing for the EML4–ALK rearrangement, which will be helpful in selecting patients
potentially eligible for ALK targeted therapy.
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panitumumab or cetuximab in patients with colo-
rectal carcinomas.215 BRAF mutations are found in
1–3% of lung cancers, most of which are adeno-
carcinomas.206,212 BRAF mutations are found in a
mutually exclusive pattern with KRAS mutations,
suggesting that these genetic events activate a set of
common downstream effectors of transformation.
However, BRAF exon 15 mutations were tested on
96 paired samples of primary lung adenocarcinomas
and corresponding locoregional lymph node metas-
tases.133 BRAF mutations were observed in two
patients with KRAS mutations demonstrating the
possibility of both mutations in BRAF and KRAS
occurring in the same tumor.

Mutations in the KRAS/BRAF pathway were
recently shown to predict clinical response to MEK
inhibition in lung adenocarcinoma.56,216 The histo-
logical phenotype of BRAF mutant adenocarcinomas
has not been well described, but was reported to be a
mixed type adenocarcinoma with a high incidence
of papillary (80%) and lepidic growth (50%)
patterns.217

De Oliveira Duarte Achcar et al218 investigated 15
primary micropapillary lung adenocarcinomas for
KRAS, EGFR, and BRAF mutations. BRAF was
found in three (20%) of these cases. The tumors
had diverse histological characteristics including
mucinous, lepidic, acinar, and solid growth pattern.

The initial retrospective work on mutant BRAF’s
effect on EGFR-targeted therapy was performed on a
cohort of 132 metastatic colorectal cancer pa-
tients.215 The results showed that none of the
patients who experienced a response displayed
BRAF mutations, whereas 11 of 79 (14%) non-
responders carried a BRAF V600E allele.215 As BRAF
mutations are mutually exclusive to EGFR and
KRAS mutations, it is likely to be associated with
lack of response to EGFR TKIs.138

Other Genomic Alterations

Genetic alterations other than EGFR, KRAS, and
EML4–ALK alterations are relatively rare in lung
adenocarcinomas and available data concerning
such alterations are limited. However, these less
common alterations may have significant clinical
importance. Current literature indicates that 30–
40% of EGFR TKI-resistant EGFR-mutated tumors
do not carry secondary resistance muta-
tions.123,134,200,219 The role of oncogenic activation
of EGFR downstream effectors such as KRAS, BRAF,
PIK3CA, and PTEN in response to therapy has been
discussed extensively in a series of studies.54,62 The
RAS/MAPK1 and PIK3CA/AKT1 pathways are the
major signaling networks linking EGFR activation to
cell proliferation and survival.220 Activating muta-
tions in these downstream effectors of EGFR signal-
ing could lead to resistance to EGFR inhibitors.221–223

The discovery of other molecular resistance
aberrations, such as MET kinase amplification or

mutations of EML4–ALK fusion, which cause con-
stitutive activation of RAS/RAF1/MAP2K1, has
provided further insight and validation into factors
limiting the therapeutic efficacy of EGFR inhibi-
tors.53,148,224 The mystery as to why all tumors
harboring drug-sensitive EGFR mutations do not
respond to treatment with EGFR TKI inhibitors is
yet to be resolved. Clinical investigations have
shown that the presence of other genetic alterations
affecting signaling pathways downstream of EGFR
may have a crucial role. Mutation of PIK3CA confers
gefitinib resistance and loss of PTEN expression also
contributes to erlotinib resistance.198,225

Heterogeneity within cancer cell populations in
the response to anticancer therapy is another factor
to be considered.72 However, some studies demon-
strate that heterogeneity is not likely a significant
factor that affects the EGFR targeted therapy. Yatabe
et al226 compared EGFR mutation patterns between
primary and metastatic sites and between primary
and recurrent tumors. There were no discordant
mutation patterns among 77 paired primary and
metastatic site samples or among 54 primary and
recurrent tumor pairs.

A recent study evaluated whether abundance of
EGFR mutations in tumors predicts treatment out-
come in 100 cases of advanced lung cancer, among
which 93 were adenocarcinomas.205 Of the 100
samples studied, 51 and 18 samples harbored high
and low abundances of EGFR mutations, respec-
tively, and 31 carried wild-type EGFR. Differences in
overall survival and objective response rate in
patients with high and low abundances of EGFR
mutations were not significant.227 This study also
pointed out that heterogeneity caused by factors
other than EGFR mutation could also affect EGFR
TKI response. Sharma et al228 reported detecting a
small subpopulation of reversibly ‘drug-tolerant’
cells showing more than 100-fold reduced drug
sensitivity. The drug tolerant phenotype is main-
tained via engagement of IGF1 receptor signaling.
Treatment against IGF1 could selectively ablate the
drug-tolerant subpopulation, thereby potentially
improving the therapeutic effectiveness of EGFR
TKI.228

MET Amplification

MET also contributes to primary and acquired
resistance to EGFR TKIs.194,229 MET is located on
chromosome 7q21, which encodes the tyrosine
kinase, hepatocyte growth factor receptor.230 Ampli-
fication of MET is associated with acquired resis-
tance to EGFR TKIs through a mechanism termed
kinase switch.134 Overall, MET amplification has
been reported in about 20% of tumors from patients
with acquired resistance.9,231,232 MET amplification
occurs in both squamous cell carcinoma and
adenocarcinoma.232 In vitro studies have shown that
MET amplification is associated with increased
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concentrations of phosphorylated hepatocyte
growth factor receptor.53 Amplification of MET
correlated with a poor prognosis in a study of
surgically resected lung cancers, including 241
adenocarcinomas, 139 squamous cell carcinomas,
and 67 other types of tumors.231

Aberrant MET signaling may have a key role in the
development of acquired resistance to therapy with
an EGFR TKI.53 The clinical relevance of MET
amplification has been investigated by examining
tumor biopsies from patients who developed ac-
quired resistance to gefitinib or erlotinib. The MET
copy status was assessed in rebiopsy samples from
18 lung cancer patients at the time of secondary
resistance development following an initial partial
response.53 MET amplification was detected in four
patients (22%). In another study, MET amplification
was identified in 9 of 43 (21%) patients who had
developed secondary resistance to an EGFR TKI in
contrast to 2 of 62 (3%) patients with known
sensitizing EGFR mutations who also had amplifica-
tion of MET.233 The identification of MET amplifica-
tion has led to the development of hepatocyte
growth factor receptor-targeted TKIs.234 Clinical
trials are underway with hopes that this may
provide another form of targeted in therapy in EGFR
TKI nonresponders.

ERCC1 Expression

ERCC1 (excision repair cross-complementing 1) is a
DNA repair gene located at 19q13.32, which en-
codes a protein consisting of 297 amino-acid
residues. Defects in ERCC1 are the cause of
cerebro–oculo–facio–skeletal syndrome type 4. The
ERCC1 enzyme has a key role in the nucleotide
excision repair pathway, and also removes cisplatin-
induced DNA adducts.235 The prognostic signifi-
cance of ERCC1 was accessed by Simon et al236 with
real time quantitative-PCR in surgical specimens
from chemotherapy-naı̈ve patients.

Investigational results of 1207 lung cancer pa-
tients by Gandara et al237,238 on the relationship
between EGFR mutation status and ERCC1 gene
expression indicated that EGFR mutant cancers are
more likely to be categorized as ERCC1 low and,
therefore, platinum sensitive. Immunohistochemis-
try evaluation of ERCC1 expression in tumors from
130 patients revealed that ERCC1 was expressed in
10% of EGFR-mutated tumors and in 70% of EGFR
wild-type tumors.238 Patients with low ERCC1
expression had a longer overall survival compared
with the patients with high ERCC1 expression.239

Although most studies indicate a consistent associa-
tion between ERCC1 expression level and respon-
siveness to cisplatin-based therapy, another study
reported discordance of ERCC1 expression between
primary and metastatic tumors. This discordance
was found in about 40% (n¼ 49) of cases, poten-
tially indicating challenges in the clinical applica-
tion of ERCC1.240

Acquired resistance to EGFR TKI

Published data indicate that 70–80% of mutation-
positive adenocarcinomas are EGFR TKI sensitive,
whereas response rates of tumors with wild-type
EGFR are only 10–20%.28,39,41,241,242 There are two
well-established mechanisms of acquired resistance:
additional mutations in the EGFR gene, acquired
during the course of treatment, which change the
protein coding sequence; and amplification of other
oncogene signaling pathways, such as those invol-
ving the RAS and MET oncogenes.84,221–223

Kobayashi et al182 reported a gefitinib-resistant
advanced adenocarcinoma patient who had a re-
lapse after 2 years of complete remission with
gefitinib. The DNA sequence of the EGFR at relapse
revealed the presence of a second point mutation,
resulting in threonine–methionine amino-acid
change at position 790 of EGFR (T790M). Structural
modeling and biochemical studies showed that this
second mutation led to gefitinib resistance.182 The
same mutation was confirmed by Pao et al208

through molecular analysis of EGFR in patients
with acquired resistance to gefitinib or erlotinib.
These gefitinib-resistant cases contain the same
secondary mutation (T790M) in the kinase domain
as those reported by Kobayashi et al.182 Codon 790 of
EGFR is considered to be the ‘gatekeeper’ residue,
which is an important determinant of inhibitor
affinity in the ATP-binding pocket of EGFR.110

Substitution of this residue in EGFR with a bulky
methionine may cause resistance by steric inter-
ference with binding of TKIs, including gefitinib
and erlotinib.182,208,243 This mutation confers a
survival advantage to the tumor and is selected
while the patient is receiving anti-EGFR TKI treat-
ment.82,179 This secondary mutation is quite pre-
valent, being found in up to 50% of EGFR-mutant
tumors treated with first-generation EGFR
TKIs.182,208

Arcila et al244 recently analyzed sensitizing EGFR
mutations in 121 lung cancer patients, but only 104
(86%) cases were tested successfully. Most test
failures were related to low-tumor content in the
tested samples. All tested cases (61/61) with
matched pretreatment and resistance specimens
showed concordant sensitizing EGFR mutations.
T790 M mutation was identified in 51 of 99 patients
(52%) of cases analyzed. Retesting of 30 T790M-
negative patients by the highly sensitive locked
nucleic acid-based method detected 11 additional
mutants for an overall prevalence of 68%.244

To address this particular cause of resistance,
current third-generation EGFR TKIs are in develop-
ment that irreversibly bind the ATP-binding socket
in the presence of T790M.15 This compound,
WZ4002, has a selective affinity for doubly mutated
cells and, therefore, may represent a second-line
treatment in cases of acquired resistance due to
T790M. Further trials are needed to assess the
potential efficacy of this approach before its clinical
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application. Because of the rarity of secondary
mutations other than T790M in the EGFR tyrosine
kinase domain, routine analysis of cases with
acquired resistance is not recommended.

Conclusions

In summary, the advent of EGFR and ALK TKI
therapy has provided a powerful new treatment
modality for patients diagnosed with lung adeno-
carcinoma. Yet, primary and acquired resistance to
targeted therapy continues to be a major obstacle to
satisfactory clinical outcomes. Identification of the
specific molecular alterations that contribute to
response to EGFR targeted therapy will become
a critical part of the process of selecting patients
for appropriate treatments. Along with a growing
understanding of the mechanisms of pharmaco-
therapy and the evolution of molecular resistance,
it is anticipated that in order to maximize thera-
peutic effect and improve overall survival lung
cancer treatments will be specifically tailored for
the individual patient based on the presence or
absence of critical molecular alterations.
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