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Identification of the tissue of origin of a tumor is vital to its management. Previous studies showed tissue-

specific expression patterns of microRNA and suggested that microRNA profiling would be useful in

addressing this diagnostic challenge. MicroRNAs are well preserved in formalin-fixed, paraffin-embedded

(FFPE) samples, further supporting this approach. To develop a standardized assay for identification of the

tissue origin of FFPE tumor samples, we used microarray data from 504 tumor samples to select a shortlist of

104 microRNA biomarker candidates. These 104 microRNAs were profiled by proprietary quantitative reverse

transcriptase polymerase chain reaction (qRT–PCR) on 356 FFPE tumor samples. A total of 48 microRNAs were

chosen from this list of candidates and used to train a classifier. We developed a clinical test for the

identification of the tumor tissue of origin based on a standardized protocol and defined the classification

criteria. The test measures expression levels of 48 microRNAs by qRT–PCR, and predicts the tissue of origin

among 25 possible classes, corresponding to 17 distinct tissues and organs. The biologically motivated

classifier combines the predictions generated by a binary decision tree and K-nearest neighbors (KNN). The

classifier was validated on an independent, blinded set of 204 FFPE tumor samples, including nearly 100

metastatic tumor samples. The test predictions correctly identified the reference diagnosis in 85% of the cases.

In 66% of the cases the two algorithm predictions (tree and KNN) agreed on a single-tissue origin, which was

identical to the reference diagnosis in 90% of cases. Thus, a qRT–PCR test based on the expression profile of 48

tissue-specific microRNAs allows accurate identification of the tumor tissue of origin.
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A significant fraction of cancers present as one or
more metastases, for which identification of the
tissue of origin is required. However, after complete
assessment, including history, physical examina-
tion, imaging, and pathological evaluation of tumor

samples, a substantial fraction of cases remain
unidentified.1–3 This process can delay initiation of
treatment; more importantly, without identification
of the primary tumor, an appropriate therapeutic
plan cannot be created.4–7 The application of
molecular diagnostics to the identification of tumor
tissue of origin has received substantial recent
attention.8–12 Most studies of molecular diagnosis
of tissue of origin used messenger RNA (mRNA)
profiling of tumor samples.8,13–15 MicroRNAs,
21–23-nucleotide-long functional RNAs, have an
important function in tissue differentiation16,17 and
tumorigenesis,18,19 and have highly tissue-specific
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expression patterns.20–22 The unique expression
profiles of microRNAs characteristic of each tissue
and the malignancies arising in them can permit
their accurate identification.23–26 MicroRNAs are
also stable in tissue, stored frozen or as formalin-
fixed, paraffin-embedded (FFPE) samples, and in
serum.27–29

In an earlier work, we showed that a biologically
motivated classifier based on expression of a
relatively small number of tissue-specific micro-
RNAs allows tumor tissues of origin to be accurately
identified.26 A small number of markers can be
measured by quantitative reverse transcriptase
polymerase chain reaction (qRT–PCR), which is a
well-established platform for diagnostic assays.
Here, we describe development of a qRT–PCR
test that predicts tissue of origin of FFPE tumor
samples.

Materials and methods

Samples

Tumor samples were obtained from several sources
(Beilinson Hospital, Rabin Medical Center, Petah-
Tikva, Israel; Sheba Medical Center, Tel-Hashomer,
Israel; Tel Aviv Sourasky Medical Center, Tel Aviv,
Israel; Soroka University Medical Center, Beer
Sheva, Israel; New York University School of
Medicine, New York, NY, USA; Henry Ford Hospi-
tal, Detroit, MI, USA; ABS, Wilmington Delaware,

USA; Bnai-Zion Medical Center, Haifa, Israel;
Indivumed GmbH, Hamburg, Germany). Institu-
tional review approvals were obtained for all
samples in accordance with each institute’s institu-
tional review board or IRB equivalent guidelines.
Samples included primary tumors and metastases
of defined origins, according to clinical records.
Tumor cell content was at least 50% for 495% of
samples, as determined by a pathologist based on
hematoxylin–eosin-stained slides. Tumors contain-
ing significant necrosis and especially dirty necrosis
(cutoff arbitrarily set at 420%) and sections
containing significant hemorrhage (cutoff arbitrarily
set at 420%) were excluded. Tumors with signifi-
cant fibrosis or desmoplastic reaction (450%) were
also excluded, although the fibrotic tissue is
typically not very cellular. A total of 853 tumor
samples took part in the study. These included 250
samples that were part of an earlier preliminary
study26 and 603 additional FFPE samples (Table 1;
Figure 1). In a few cases, more than one FFPE
specimen per patient was profiled during the
preliminary array studies and the training phase,
but for the purpose of determining cohort sizes,
these were counted (Table 1; Figure 1) as a single
sample. A total of 204 samples from 204 new
patients were used in the validation phase only, as
an independent blinded test set, with the exception
that 7 of the 204 samples were metastases from
patients from whom primaries were previously
profiled. The reference diagnosis of these samples

Table 1 Tissue origins and samples

Tissue origin Preliminary study Custom arrays Training set (PCR) Learning set total Test validation

Biliary tract 0 25 (25) 28 (9) 34 7
Brain 15 13 (12) 17 (6) 33 11
Breast 24 20 (15) 18 (13) 52 38
Colon 20 20 (15) 14 (7) 42 9
Esophagus 5 11 (9) 7 (3) 17 1
Head and neck 23 32 (21) 40 (19) 63 3
Kidney 19 11 (9) 15 (5) 33 10
Liver 6 5 (3) 13 (10) 19 8
Lung 47 43 (34) 54 (21) 102 26
Melanoma 26 12 (6) 12 (6) 38 7
Ovary 14 20 (18) 30 (14) 46 13
Pancreas 8 9 (5) 11 (4) 17 6
Prostate 6 12 (10) 6 (3) 19 20
Stomach or esophagus 17 22 (13) 19 (4) 34 7
Testis 3 19 (19) 24 (9) 31 8
Thymus 6 21 (18) 18 (4) 28 6
Thyroid 11 27 (22) 30 (8) 41 24

Overall 250 322 (254) 356 (145) 649 204

The number of FFPE tumor samples from each tissue origin for which data was used in each phase is listed: preliminary study26 (Figure 1a),
custom-designed commercial arrays (Figure 1b), qRT–PCR training set (Figure 1c), and the test validation (Figure 1d). Numbers in parenthesis
indicate the number of new samples added in each phase that were not measured in any of the previous phases: eg the qRT–PCR training phase
included a total of 356 samples, of which 145 samples were new samples not included in the previous phases, whereas the remaining
211 samples were also profiled on the spotted arrays of the preliminary study or on the custom arrays, or on both. The ‘learning set total’ indicates
the total number of samples from each tissue origin used in developing the test, ie counting each sample only once even if profiled on
multiple platforms. The validation samples were all new samples not included in previous phases, with the exception that seven of them were
metastases from patients from whom primaries were previously profiled. Together with the validation set of 204 samples, the study included a
total of 853 samples.
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from the original clinical record was confirmed by
an additional review of pathologic specimens. Total
RNA was extracted as described.26

MicroRNA Microarray and Analysis

The preliminary study (Figure 1a) used in-house
spotted arrays.26 For the next phase (Figure 1b), we
used custom-designed arrays from a commercial
provider (Agilent Technologies, Santa Clara, CA,
USA). These custom arrays included probes for 4900

known humanmicroRNAs,30,31 printed in triplicates, as
well as control probes and probes for putative micro-
RNA sequences. Triplicate spots were combined and
data was normalized as described.26 Differential expres-
sion of microRNAs was assessed using a Student’s
t-test, and a multiple hypothesis correction was per-
formed using false discovery rate.32 The information
from both microarray datasets (Table 1) was analyzed,
comparing microRNA differential expression between
different subgroups of tissues and used to generate a
shortlist of 104 candidate microRNAs.

Figure 1 (a–d) Development of a diagnostic test for determining tissue of origin: data from two array platforms (a, b) was used to select a
subset of 104 candidate microRNAs that were further investigated by qRT–PCR in a training set (c); a standardized test was developed,
measuring expression of 48 microRNAs, and was validated on an independent set of 204 blinded FFPE tumor samples (d). Graphs in each
box show separation of epithelial from non-epithelial samples (node #5 in the binary decision tree; Figure 2) using hsa-miR-200c and hsa-
miR-148b in different datasets, obtained using different platforms and sample sets. Data from the preliminary study26 (a) and from the
custom arrays (b) is shown in normalized fluorescence units on a logarithmic scale. Data from the qRT–PCR training set (c) and test
validation (d) is shown in inverted normalized Ct, proportional to log2(abundance). The gray area (with higher levels of hsa-miR-200c)
marks the region classified as epithelial (left branch) at this node. The classification rule determined for the qRT–PCR training set data
(c) was used as is for the validation dataset (d).
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qRT–PCR

qRT–PCR was performed as described,23,27 using
probes for the 104 candidate microRNAs, of which
five were tested with two different forward primers,
and for U6 snoRNA.

PCR Data: Feature Selection and Training

We kept for training samples with average Ct below
36 and at least 30 microRNAs detected (Cto38).
Each sample was normalized by subtracting from
the Ct of each microRNA the average Ct of all
microRNAs of the sample, and adding back a scaling
constant (the average Ct over the entire sample set).
Feature selection and classifier training was per-
formed as described,26 using the normalized Ct as
the input signal. The feature selection resulted in a
set of 48 microRNAs. The decision tree (Figure 2)
used logistic regression on combinations of one-
to-three microRNAs in each node to make binary

decisions. The K-nearest neighbor (KNN) was based
on comparing the expression of all 48 microRNAs
in each sample to all other samples in the training
database. The decision tree and KNN each return
a predicted tissue of origin and histological
type where applicable. The classifier returns the
two different predictions or a single consensus
prediction if the predictions concur. When the
decision tree and KNN predict different histological
types of the same tissue of origin, the tissue of origin
is returned as a consensus prediction with no
histological type indicated.

Test Protocol

RNA is extracted in batches together with a negative
control. The negative control is a no-RNA sample
that serves to detect potential contaminations,
and should not give any signal in the PCR reaction.
The extracted RNA, together with a positive
control sample, undergoes cDNA preparation and

Figure 2 Structure of the binary decision tree. A series of binary branching points (‘nodes’), starting at node #1 and moving downward
along the branches and through the nodes, leads to one of the possible tumor types (classes). Each node (numbered 1–25) represents a
binary decision between two sets of samples, those on the left and right branches of the node. Decisions are made at consecutive nodes
using microRNA expression levels, until an end point (‘leaf’ of the tree) is reached, indicating the predicted class for this sample. The
biliary tract is represented in both the hepatic branch (under node #2) and in the gastrointestinal branch (under node #15). The tree,
therefore, represents 25 classes in 26 leaves. Developing a different classifier for male and female cases or for different tumor sites would
inefficiently exploit measured data and would require unwieldy numbers of samples. Instead, exceptions were noted for several special
cases.26 For samples from female patients, testis or prostate origins were excluded from the KNN database, and the right branch was
automatically taken in node 3 and node 16 in the decision tree. For samples from male patients, ovary origin was excluded and the right
branch taken at node 17. For samples that were indicated as metastases to the liver, liver origin (hepatocellular carcinoma and biliary
tract carcinomas from within the liver) was excluded and the right branch taken at node 1. For samples indicated as brain metastases,
brain origin was excluded and the right branch taken at node 7. Additional information is thus incorporated into the classification
decision without loss of generality or need to retrain the classifier.
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48 microRNAs are measured by qRT–PCR in
duplicates in one 96-well plate per sample. The
positive control is a specific RNA sample that
should meet defined Ct ranges in the assay. Quality
assessment of each well is based on the fluores-
cence amplification curve, using thresholds on the
maximal fluorescence and the linear slope as a
function of the measured Ct. For each microRNA,
Ct

miR is calculated by taking the average Ct of the two
repeats. Quality assessment for each sample is
based on the number and identity of expressed
microRNAs (Cto38) and the average Ct of the
measured microRNAs. Ct

miR values for each sample
are normalized by rescaling as described above. The
rescaled values are used as input to the classifier
that was trained using qRT–PCR data (as described
above).

Results

Concept Development and MicroRNA Selection Using
Microarrays

Development of the qRT–PCR diagnostic test in-
cluded several phases as shown in Figure 1. In the
earlier reported preliminary study, we used proprie-
tary spotted arrays to identify a set of microRNAs
with potential usage in the identification of 22 tissue
types, and showed that the expression of most
microRNAs is generally independent of whether a
malignancy is a primary or a metastasis.26 Next, we
expanded this microarray dataset by profiling addi-
tional FFPE tumor samples on a different, custom-
designed microarray from a commercial provider. To
improve the product’s clinical relevance, this sam-
ple set composition was modified compared with
the preliminary study and included 25 possible
tumor classes, corresponding to 17 distinct tissues
and organs. A total of 254 new tumor samples,
supplemented by 68 from the preliminary study,
were tested using the custom arrays (Table 1). The
information from both microarray datasets was
analyzed, comparing microRNA differential expres-
sion between different subgroups of tissues using
the exploratory methodologies described in our
earlier study,26 and used to generate a shortlist of
104 candidate microRNA biomarkers that showed
specific expression in subsets of tissues, as well as
in subsets of histological types, such as hsa-miR-
205, which was previously shown to be highly
expressed in squamous cell carcinoma.23

Tissue Classification by MicroRNA qRT–PCR

To develop a diagnostic test for identification of
tissue of origin, we used a proprietary microRNA
qRT–PCR platform.27 A recently described diagnos-
tic test for sub-classification of non-small cell lung
carcinoma uses this same technology.23 We previ-
ously showed the performance and reproducibility

of this platform, as well as the correlation of data
obtained to microRNA arrays.23,24,26 This qRT–PCR
platform was used to measure the 104 candidate
microRNAs in a training set of 356 FFPE tumor
samples (Table 1). We used a feature selection and
classification approach that is based on biologic and
pathologic assumptions,26 and identifies expression
patterns that are useful for classification by grouping
tissues into meaningful subsets in the form of a
binary decision tree (henceforth ‘tree’). Assump-
tions about the function of microRNA in sequential
stages of development are implicitly incorporated in
the tree structure (Figure 2).26,33 Branching points in
the tree (‘nodes’) separate between groups of tissues
that show substantial differences in specific micro-
RNAs, and these are ostensibly related to underlying
biological differences. A representative example
of this is the use of hsa-miR-200c, involved in
epithelial-to-mesenchymal transition,16,17 to identify
tumors of epithelial tissue origin from tumors of
non-epithelial origin (Figure 1; node #5 in Figure 2).
Using this method, we selected a list of 48 micro-
RNAs that contained highly useful information for
tissue classification. The expression profile of these
48 microRNAs was used to train a classifier to
identify tissue of origin (Materials and methods).

The classifier combines the tree with a KNN
approach for improved robustness and accuracy.26

Tissue of origin is predicted by the tree by following
the branches and choosing the left or right branch at
each node. This binary decision is made at each
node by comparing a combination of microRNA
expression levels to a preset threshold (Figure 1).
Stepwise feature selection with logistic regression
was applied 20 times on different bootstrapped
datasets and used to select microRNAs for each
node.26 This resulted in a set of one-to-three
microRNAs at each node. The tree structure and
the choice of microRNAs at each node, together
with the logistic regression parameters, define the
tree classification based on the qRT–PCR training
dataset.

The KNN approach compares the expression
across all 48 measured microRNAs to the training
dataset of the 356 training samples, and selects the
majority vote among the nearest seven samples,
measured by Pearson correlation.26 Each of the two
approaches (tree and KNN) predicts one of 25
tumor classes, corresponding to 17 tissue origins
(Figure 2). The combined classifier reports either a
single predicted tissue origin when the two algorithms
agree on a class or tissue type, or two different tissue
prediction when the two algorithms do not reach
a consensus. We previously showed that this
approach, combining predictions by two different
types of classification approaches, reached accuracy
near 90% in identifying the tissues of origin of
independent validation tumor samples.26

During the development process, and later the
validation process, we profiled samples on three
different platforms, including in-house spotted
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arrays, custom-designed commercial arrays, and our
proprietary qRT–PCR platform (Table 1). Reassur-
ingly, results were consistent among these platforms
(Figure 1).

The potential performance of the classifier was
assessed in the training set of samples by leave-one-
out cross-validation, a process in which the classi-
fier is repeatedly trained, leaving out one sample at a
time, and then used to classify the left-out sample.
This indicated an expected accuracy of B90% for
the qRT–PCR-based classifier, consistent with re-
sults obtained in the preliminary study using
microRNA microarrays.26

A standard operating procedure (SOP) for a
clinical test was developed based on our experience
with applying these methods for clinical diagnostic
questions23 (Materials and methods). The qRT–PCR
test was designed to identify the tissue of origin of
fixed tumor specimens through their microRNA
expression patterns. Total RNA is extracted from
sections of FFPE tumor blocks, and expression
levels of 48 microRNAs are measured in duplicate
wells, taking up one 96-microwell plate per sample.
The measured microRNA expression levels are
quality checked and normalized, and the data is
entered into a classifier that was trained using the
qRT–PCR training data (Table 1; Training set). The
test SOP further specifies procedures for negative
and positive control samples as well as criteria to
ensure quality and reliability of measured data.

Test Validation

The test performance was assessed using an inde-
pendent set of 204 validation samples (Figure 1).
These archival samples included primary as well
as metastatic tumor samples, preserved as FFPE
blocks, whose original clinical diagnosis was one
of the origins on which the classifier was trained
(Table 1; Figure 2). The samples were processed
according to the SOP by personnel who were
blinded to the original reference diagnosis for
these samples, and classifications were auto-
matically generated by dedicated software. A total
of 16 of the 204 samples (8%) failed QA criteria
(Materials and methods). For 188 samples (92%),
including 87 metastatic tumor samples (46% of
the samples), the test was completed successfully
and produced tissue of origin predictions. For 159
of the 188 samples (85%), the reference diagnosis
for tissue of origin was predicted by at least one
of the two algorithms (Table 2). For 124 samples
(66%), the two algorithms agreed, generating a
consensus prediction for a single tissue of origin.
For these single-prediction cases, the sensitivity
(positive agreement) was 90% (111/124 of the
classifications agreed with the reference diagnosis),
and it exceeded 90% for most tissue types (Figure 3;
Table 2). Specificity (negative agreement) in this
group ranged from 95% to 100% and averaged above
99%. The pattern and overall performance values

Table 2 Performance of the test in blinded validation

Tissue origin
(reference diagnosis
for tissue of origin)

N (test set,
successful
samples)

Sensitivity
(one or two
predictions)

Specificity
(one or two
predictions)

Fraction
with single
prediction

Sensitivity
(single

prediction)

Specificity
(single

prediction)

Biliary tract 6 66.7 94 33.3 100 98.4
Brain 10 100 100 80 100 100
Breast 33 66.7 93.6 45.5 53.3 100
Colon 9 88.9 94.4 66.7 83.3 99.2
Esophagus 1 100 98.4 0 — 100
Head and neck 3 100 92.4 100 100 97.5
Kidney 8 87.5 99.4 62.5 80 100
Liver 8 100 99.4 100 100 100
Lung 23 91.3 84.9 87 95 94.2
Melanoma 7 85.7 97.8 85.7 83.3 100
Ovary 13 84.6 100 38.5 100 100
Pancreas 6 50 97.8 16.7 100 99.2
Prostate 19 89.5 99.4 57.9 100 100
Stomach or esophagus 5 40 98.9 40 50 100
Testis 7 100 100 100 100 100
Thymus 6 83.3 97.8 83.3 80 100
Thyroid 24 100 98.2 83.3 100 100

Total 188 84.6 96.9 66 89.5 99.3

Classification results for validation samples compared with the reference diagnosis for tissue of origin (‘tissue origin’). A total of 188 of 204 (92%)
validation samples were assigned tissue-of-origin predictions by the test. A single consensus tissue of origin was predicted for 124 (66%) of the
cases. For each tissue origin (reference diagnosis), sensitivity for one or two predictions was calculated as the fraction of cases for which the
reference tissue origin was predicted by at least one of the classification answers (positive agreement). Specificity for one or two predictions was
the fraction of cases with a different reference diagnosis that were not assigned this tissue origin by either of the two classification answers
(negative agreement). The fraction with single prediction indicates the fraction of samples of each tissue origin for which a single consensus
origin was predicted. Among these samples, the sensitivity for a single answer indicates the fraction of samples for which the reference tissue
origin was predicted by the test. The specificity for a single answer is the fraction of cases with a single answer and a different reference diagnosis
that was not assigned this tissue origin.
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are similar to the results obtained in the preliminary
microarray study.26

FFPE sections from 72 of the validation samples
were processed independently and blindly in a
second laboratory. Data and classifications for these
samples were compared between the two labora-
tories. The mean correlation for the qRT–PCR
signals per sample was 0.98. The results obtained
by the two laboratories disagreed on only three
samples. For another 8, they had one of two answers
in common and for the remaining 61, classifications
matched perfectly between the two laboratories,
showing the reproducibility of the test.

Classification Example

One of the training-set samples originally diagnosed
in the clinical setting as a metastatic tumor to the
brain originating from the lung was classified by the
tree (in leave-one-out cross-validation) as originat-
ing from the liver. This classification was traced
back to node #1, the branching point where lung and
liver origins diverge (Figure 2). This node uses hsa-
miR-122, a well-known marker of hepatic cells,20,34–36

together with hsa-miR-200c, an established epithe-
lial marker,16,17,26 two microRNAs that have been

previously shown to identify hepatic from non-hepatic
malignancies.26,35 The expression of these micro-
RNAs in this sample, in particular the very high
expression of hsa-miR-122 (Figure 4a), are strong
indicators of a possible hepatic origin of this sample.
On re-examination of the clinical record, it was
found that this sample was originally classified as a
lung metastasis based on the fact that the patient
had a known mass in the lung. This disagreement
between the original clinical diagnosis and our test
was followed up by blinded pathological review.
Indeed, the sample’s immunohistochemical staining
pattern was incompatible with lung adenocarcino-
ma origin, but was consistent with a diagnosis of
hepatocellular carcinoma (Figure 4b). Thus, our test
could suggest an alternative diagnosis for this
patient, namely a primary hepatocellular carcinoma
with metastatic spread to both lung and brain.

Discussion

Our work describes the first standardized test
developed for clinical use that uses the diagnostic
information of microRNAs for the identification
of tumor tissue of origin. The test is based on a
small number of microRNAs selected on the basis of

Figure 3 Confusion matrix on the validation set for the 124 single-answer cases. Each row and column correspond to one of the tissues
of origin identified by the test. Only 16 rows (and columns) are shown, rather than the 17 tissue origins, as no single-answer sample
or prediction corresponded to the ‘esophagus squamous’ class. Rows indicate the tissue of the reference diagnosis, columns indicate
the tissue determined by the microRNA test (in the same order); numbers on the diagonal indicate cases for which the tissues
predicted by the test matched the reference diagnosis, whereas off-diagonal cases were in disagreement and were counted as test errors.
Numbers in parenthesis (along the vertical axis) denote the overall sensitivity (positive percent agreement) per tissue of origin among the
single-answer cases.
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their biological relevance and specific expression
profiles. The classification is based on biological
and pathologic assumptions, effectively using the
diagnostic information that is contained in their
tissue-specific expression patterns.

This approach has been previously shown in a
preliminary study using microRNA microarrays.
The earlier study26 used a dataset of microRNA
expression profiles, which was coupled to a classi-
fication tree that implicitly assumed a sequential
function of microRNA in determining tissue types
and differentiation. The result was a decision tree
that was combined with KNN to create a microRNA-

based tissue classifier (the combination of decision
tree with KNN is determined in the training set,
and no post hoc enhancement is invoked on the
classifier test set). An additional outcome was a set
of binary decision nodes that indicated putative
involvement of specific microRNAs in important
developmental junctions (Table 2 in Rosenfeld
et al26). Notable among these was the identification
of a potential function of hsa-miR-200c and hsa-
miR-205 in differentiating epithelial from non-
epithelial tissues (node #3 in Rosenfeld et al26; see
Figure 1). Subsequent to this prediction, which was
based on expression data alone, the central function
of hsa-miR-200 family and hsa-miR-205 in the
epithelial-to-mesenchymal differentiation was
shown by several independent groups using mole-
cular and cell biology techniques.16,17 Other predic-
tions (eg nodes #1 and #6 in Rosenfeld et al26)
were supported by qRT–PCR24 and in situ hybridi-
zation.35,37

Here, we translated this framework into a stan-
dardized qRT–PCR test for clinical application.
We describe an additional discovery phase, the
translation of the results to a qRT–PCR platform,
the development of the diagnostic test, and its
validation in a clinical laboratory. The structure of
the decision tree (Figure 2) underwent minor
modifications, compared with the earlier tree,26

concomitant to changes in the list of tissues believed
to be more relevant to the clinical questions
associated with identifying difficult to diagnose
tumors. For example, biliary tract carcinoma, which
is a relevant differential diagnosis in cancer of
unknown primary (CUP) patients, was added to
the tumor panel of the assay. The main nodes of the
tree, however, maintained their biological contexts,

Figure 4 Classification example. (a) Measured levels (normalized
Ct, inversely proportional to log2(abundance)) of hsa-miR-200c and
hsa-miR-122 are compared for all training set samples, indicating
the left and right branches of node #1 (green circles and red stars,
respectively). One metastatic tumor excised from the brain (blue
square) originated from a patient that had a concomitant tumor
in the lung, and was, therefore, originally diagnosed as a lung
cancer. However, this sample showed an uncharacteristic high
expression of hsa-miR-122, a strong hepatic marker, and was
consequently classified as possibly originating from the liver by
the microRNA classifier. On re-examination of the metastatic
brain tumor by immunohistochemistry (blinded to the results of
the microRNA classifier), this tumor was indeed found to be
negative for lung-specific markers: the sample was negative for
immunohistochemical staining by both CK7 and TTF1, as well as
CK20, CEA, CA125, s-100, thyroglobulin, chromogranin, synap-
tophysin, CD56, GFAP, calcitonin, and anterior pituitary hor-
mones, whereas staining positive for CAM5.50 and AE1/AE3. This
staining pattern was compatible with hepatocellular carcinoma,
prompting further staining for HEPA1 and a-fetoprotein. The
tumor stained positive for both stains, consistent with a diagnosis
of hepatocellular carcinoma. (b) Hematoxylin–eosin staining
(upper panel) showed that the metastasis is composed of sheets
of cells with abundant eosinophilic cytoplasm and round to oval
nuclei. Among many immunostains used to evaluate the origin of
the tumor, HEPA-1 showed strong and specific immunopositivity
(lower panel).
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and continued to divide the classes into epithelial
vs non-epithelial (node #5 in Figure 2, c.f. node #3
in Rosenfeld et al26), gastrointestinal tract vs other
epithelial (node #12 in both trees), and squamous vs
non-squamous carcinomas (node #20 in Figure 2,
c.f. node #18 in Rosenfeld et al26). In the new tree
(Figure 2), additional neuroendocrine classes were
introduced and these are placed on their own
branch (left at node #9). The standardized protocol
was used to blindly classify an independent valida-
tion set of 204 tumor samples; two-thirds of the
cases were classified to a single predicted tissue,
and these identified the reference diagnosis with an
accuracy of 90%.

The stability of microRNAs in FFPE, fresh-frozen
tissue samples, as well as serum, makes their use for
diagnostics particularly attractive.27–29 Our micro-
RNA-based qRT–PCR test has been developed and
validated using retrospective FFPE samples with
established primary origins. Our technology is
highly sensitive and is applicable also to fresh
frozen and small samples such as are obtained with
fine needle aspirates.

Expert panels have underscored the importance of
objectivity and standardization in clinical diagno-
sis.38,39 Recent work suggested the use of large
panels of mRNA features for identification of tumor
tissue of origin.9,10,14,15 Our test uses a significantly
smaller number of tissue-specific microRNA bio-
markers, set forth in a straightforward classification
scheme, which provides specific tissue origins in a
majority of cases. Cases with consensus classifica-
tions are accurately identified with a higher con-
fidence. Some nodes in the classification decision
can be directly traced to underlying biological
mechanisms; other nodes generate biological hy-
potheses that can be tested and validated.

We have shown that an assay based on the
accurate measurement of microRNA expression
profiles provides an important objective tool
for the diagnosis of tumor tissue of origin. This
assay can provide a necessary complement to
diagnostic tools for the substantial number of
patients that present with metastatic tumors, and
thus save valuable time and facilitate treatment
decisions. Further studies are underway to establish
the ultimate clinical contribution and value of this
test.
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