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In the recent years, a large number of molecular alterations in thyroid cancer has been discovered

and characterized. Some of these markers may have significant diagnostic utility, can be used for tumor

prognostication, and serve as potential therapeutic targets. The diagnostic utility of these markers is of

particular importance in thyroid fine-needle aspiration samples. Some molecular markers, such as BRAF, offer

help in risk stratification and can be potentially used to optimize surgical and postsurgical management of

patients with thyroid cancer. This review discusses major molecular alterations known to occur in thyroid

cancer, focusing on those markers that have been extensively characterized, carry clinical significance, and are

being introduced into pathology practice.
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In the recent years, our understanding of molecular
genetics of thyroid cancer has expanded dramati-
cally. This knowledge contributes to better under-
standing of thyroid tumor biology and has started to
translate into clinical practice as an ancillary tool for
cytological and pathological diagnosis of thyroid
cancer and for better tumor prognostication.

Molecular alterations in thyroid cancer

Four mutation types, that is, BRAF and RAS point
mutations and RET/PTC and PAX8/peroxisome
proliferator-activated receptor g (PPARg) rearrange-
ments, constitute the majority of mutations known
to occur in the two most common types of thyroid
cancer, papillary and follicular carcinoma. At this
time, they carry the highest impact on tumor
diagnosis and prognostication. Papillary carcinomas
harbor point mutations of the BRAF and RAS genes
and RET/PTC rearrangements, all of which are able
to activate the mitogen-activated protein kinase
(MAPK) pathway. These mutually exclusive muta-
tions are found in 470% of papillary thyroid
carcinomas.1–4 Follicular carcinomas are known
to harbor either RAS mutations or PAX8/PPARg
rearrangement. These mutations are also mutually

exclusive and identified in B75% of follicular
carcinomas.5

Another type of genetic alterations in thyroid
cancer involve the PI3K/AKT signaling pathway,
although they are rare in well-differentiated
thyroid cancer and have higher prevalence in less-
differentiated thyroid carcinomas.6–8 Additional
mutations known to occur in poorly differentiated
and anaplastic carcinomas involve the TP53 and
CTNNB1 genes.9 However, these mutations are rare
in well-differentiated papillary or follicular carci-
noma. TRK rearrangement represents another type of
chromosomal rearrangement that occurs in papillary
thyroid carcinomas,10–12 although its prevalence is
low, particularly in North America (o5%).

BRAF

Mutations of the BRAF gene have been reported in
35–70% of papillary thyroid carcinomas, although
in most studies the prevalence in close to 40–45%,
making it the most common known genetic event in
papillary thyroid carcinomas.2,13,14 The vast majority
(495%) of BRAF mutations found in thyroid cancer
are a thymine to adenine transversion at nucleotide
1799 (T1799A) leading to a substitution of valine by
glutamic acid at residue 600 of the protein (V600E).
This point mutation leads to constitutive activation
of BRAF kinase and chronic stimulation of the
MAPK pathway, and is tumorigenic for thyroid
cells. Other and rare mechanisms of BRAF activa-
tion in thyroid papillary cancer include K601E point
mutation, small in-frame insertions or deletionsReceived 15 July 2010; accepted 28 July 2010
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surrounding codon 600,15 and AKAP9/BRAF rear-
rangement, which is more common in papillary
carcinomas associated with radiation exposure.16

BRAF V600E mutation has a strong association
with specific histological variants of papillary
carcinoma. It is highly prevalent in the tall cell
variant of papillary carcinoma (Figure 1), where it
occurs in 70–80% of cases, and in tumors with
classic papillary growth (B60%).1,13,17 Many BRAF-
positive tumors are classic papillary carcinomas
with focally prominent tall cell features or diffuse
borderline tall cell features. BRAF-positive
classic papillary carcinomas typically have an
invasive border and may show focal areas composed
of tumor cells with tall cell features. On the contrary,
BRAF V600E is found only in about 10% of
follicular variants of papillary carcinoma. Another
BRAF point mutation, K601E, which is overall rare,
is found mostly in the follicular variant of papillary
carcinoma.18,19 BRAF V600E mutation can also be
seen in anaplastic and poorly differentiated thyroid
carcinomas arising from papillary carcinoma.17,20,21

However, BRAF V600E is not found in follicular
carcinomas and benign thyroid nodules, and there-
fore among primary thyroid lesions it represents a
specific marker of papillary carcinoma and related
tumor types.

In addition to higher incidence in the tall cell
variant of papillary carcinoma, BRAF V600E muta-
tion has also been shown to correlate with other
aggressive characteristics of papillary carcinomas,
including extrathyroidal extension, advanced tumor
stage at presentation, and lymph node or distant
metastases.17,20,22,23

RET/PTC

RET/PTC rearrangement is another genetic altera-
tion found in papillary carcinomas.24 It is formed by
the fusion between the 30 portion of the RET receptor

tyrosine kinase gene and the 50 portion of various
unrelated genes. Two most common rearrangement
types, RET/PTC1 and RET/PTC3, are intrachromo-
somal inversions as both RET and its respective
fusion partner genes, H4 and NCOA4 (also known
as ELE1), are located on chromosome 10.25–27

RET/PTC2 and nine more recently identified types
of RET/PTC are all interchromosomal translocations
(reviewed in Ciampi et al28). All rearrangement
types contain the intact tyrosine kinase domain of
the RET receptor and enables the RET/PTC chimeric
protein to activate the RAS–RAF–MAPK cascade
and initiate thyroid tumorigenesis.

RET/PTC rearrangements are found on average in
10–20% of adult sporadic papillary carcinomas,
although its prevalence is highly variable between
various observations, largely because of the differ-
ence in sensitivity of the detection methods and
also because of some geographical variability.29,30

RET/PTC occur with higher incidence in patients
with the history of radiation exposure (50–80%) and
in papillary carcinomas from children and young
adults (40–70%).31–34 The distribution of RET/PTC
rearrangement within tumor cells can vary from
involving most of neoplastic cells (clonal RET/PTC)
to being detected only in a small fraction (o1%) of
tumor cells (nonclonal RET/PTC).35,36 Although
RET/PTC has been found in several studies in
adenomas and other benign thyroid lesions, it can
be assumed that clonal RET/PTC (ie, rearrangement
that is found in most cells within the tumor)
is reasonably specific for papillary thyroid carci-
noma.29,35 Two groups have reported the occurrence
of RET/PTC in hyalinizing trabecular tumors.37–39

In one observation, four tumors showed RET
expression by immunohistochemistry and three of
those were found to harbor RET/PTC1 rearrange-
ment by RT-PCR.37 In another study, RET/PTC1 was
detected in six out of eight hyalinizing trabecular
adenomas by RT-PCR.38 These findings provide

Figure 1 Left: Microscopic appearance of the tall cell variant papillary carcinoma. Right: The tumor was positive for BRAF codon 600
GTG-GAG mutation leading to V600E, as detected by Sanger sequencing.
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evidence suggesting that hyalinizing trabecular
tumors represent a peculiar variant of papillary
carcinoma. However, these studies did not investi-
gate whether or not RET/PTC was present in the
majority of cells within these tumors and therefore
cannot provide conclusive biological evidence for
linkage between papillary carcinoma and hyaliniz-
ing trabecular tumor.

In papillary thyroid carcinomas, RET/PTC1 is the
most common and comprises 60–70% of all re-
arrangement types, whereas RET/PTC3 accounts for
20–30% and RET/PTC2 and other novel rearrange-
ment types for o5%.11,40 RET/PTC-positive papil-
lary carcinomas, particularly those carrying
RET/PTC1 rearrangement, are typically present at
younger age and have a high rate of lymph node
metastases.1 Most RET/PTC-positive tumors, parti-
cularly those harboring RET/PTC1, show classic
papillary growth pattern, and RET/PTC1 appears to
be more common in papillary microcarcinomas.40–42

The follicular variant of papillary carcinoma shows
low prevalence of RET/PTC.34,40 Among papillary
carcinomas in children exposed to radiation after
the Chernobyl accident, a strong correlation between
different RET/PTC types and morphological variants
of papillary carcinoma has been observed. In these
populations, the solid variant of papillary carcinoma
was associated with RET/PTC3 and classic papil-
lary carcinoma with RET/PTC1.31,32,43 However, it
remains unclear whether such phenotype–genotype
correlation exists in the general population. It has
not been found in a study of sporadic solid variant
and classic papillary carcinomas, although the
number of cases analyzed for RET/PTC in this study
was small.44

RAS

Point mutations of the RAS gene are not restricted to
a particular type of thyroid tumors and found in
follicular carcinomas, papillary carcinomas, and
follicular adenomas. The three human RAS genes

(HRAS, KRAS, and NRAS) encode highly related
G-proteins that propagate signals arising from cell
membrane receptors to various intracellular targets.
Point mutations in the specific domains of the RAS
gene either increase its affinity for GTP (mutations
in codons 12 and 13) or inactivate its autocatalytic
GTPase function (mutation in codon 61), resulting
in permanent RAS activation and chronic stimula-
tion of its downstream targets along the MAPK and
PI3K/AKT signaling pathways.

In thyroid tumors, mutations involving NRAS
codon 61 and HRAS codon 61 are by far the most
common, although mutations have been found in
different hotspots of all three genes. In papillary
carcinomas, RAS mutations occur in 15–20% of
tumors.45–50 Papillary carcinomas harboring RAS
mutation almost always have the follicular variant
histology (Figure 2); this mutation also correlates
with significantly less prominent nuclear features of
papillary carcinoma, more frequent encapsulation,
and low rate of lymph node metastases.1,51 RAS
mutations are also found in 40–50% of conventional
type follicular carcinomas48,52–56 and 20–40%
of conventional type follicular adenomas.45,52–55 In
adenomas, the mutations appeared to be more
common in tumors with a microfollicular growth
pattern.52 A lower incidence has been reported in
oncocytic tumors, in which only 0–4% of adeno-
mas and 15–25% of carcinomas appeared to be
affected.54,57,58 RAS mutations have also been de-
tected in few cold adenomatous nodules and goiter
nodules,45,54,59 although it is likely that these lesions
are true neoplasms and therefore should be desig-
nated as follicular adenomas, despite their frequent
macrofollicular colloid-rich histology.

PAX8/PPARc

PAX8/PPARg rearrangement is a result of transloca-
tion between chromosomes 2 and 3, t(2;3)(q13;p25),
leading to the fusion between the PAX8 gene coding

Figure 2 Left: Microscopic appearance of the encapsulated follicular variant of papillary carcinoma. Right: The tumor was positive for
NRAS codon 61 CAA-CGA mutation leading to Q61R, as detected by Sanger sequencing.
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for the thyroid-specific paired domain transcription
factor, and the PPARg gene.60 PAX8/PPARg rearran-
gement leads to strong overexpression of the PPARg
protein, although the mechanisms of cell transfor-
mation induced by this genetic event are yet to be
fully understood.

PAX8/PPARg is found in 30–40% of conventional
type follicular carcinomas, and with lower preva-
lence in oncocytic carcinomas.5,61,62 Tumors harbor-
ing PAX8/PPARg tend to present at a younger age,
are smaller in size, have a solid/nested growth
pattern, and more frequently reveal vascular inva-
sion.5,19,61 This rearrangement can also be found in a
small fraction (2–10%) of follicular adenomas and in
some (o5%) follicular variant papillary carcino-
mas.5,19,62,63 Follicular adenomas positive for PAX8/
PPARg typically have a thick capsule and show the
immunohistochemical profile characteristic of thyr-
oid cancer, suggesting that they may represent
preinvasive (in situ) follicular carcinomas or malig-
nant tumors in which invasion was overlooked
during histological examination.5 Single studies
have reported a significantly higher frequency of
PAX8/PPARg rearrangement in follicular adenomas
and follicular variant papillary carcinomas.19

Another type of the PPARg gene fusion, CREB3L2/
PPARg, has been reported in 1 out of 42 follicular
carcinomas.64

Sample requirements and techniques
for molecular analysis

Modern molecular techniques allow the detection of
various genetic alterations in fine-needle aspiration
(FNA) samples and in various types of surgically
removed tumor tissues. A snap-frozen tumor sample
generally represents the best source of material for
molecular testing. If the fixed material has to be
used, the formalin fixation or cytological ethanol
fixation should be used. Tissue exposed to decalcify-
ing solution, B5, and most of other special fixatives
degrade nucleic acids and therefore cannot be used
for molecular analysis. The choice of most appropriate
detection technique is determined by the mutation
type and samples type available for the analysis.

Testing for point mutations, such as those of BRAF
and RAS, is relatively straightforward and can be
reliably performed in freshly frozen and fixed
samples. Avariety of available molecular techniques
can be used, including conventional PCR and
Sanger sequencing, pyrosequencing, real-time PCR
amplification and post-PCR melting curve analysis,
allele-specific PCR, and others.2,17,65–70 These tech-
niques typically provide a reliable and sensitive
detection of BRAF mutations in various types
of thyroid samples. One study that compared
four different approaches, that is, probe-specific
real-time PCR, real-time allele-specific PCR, direct
sequencing, and colorimetric assay, found all the
techniques showing similarly high sensitivity in the
detection of BRAF mutation in fixed FNA samples.66

The choice of a method for the detection of
chromosomal rearrangements, such as RET/PTC
and PAX8/PPARg, is dictated largely by the type of
sample available. When freshly collected or snap-
frozen FNA or tumor tissue samples are available,
the testing can be reliably performed by RT-PCR.
The sensitivity of detection should generally be not
higher than 1% of tumor cells (ie, should detect 1%
or more tumors cells in the background of normal
cells) to avoid detecting nonclonal rearrangements,
which have no diagnostic implications. When only
formalin-fixed and paraffin-embedded tissue is
available for testing, fluorescence in situ hybridiza-
tion is the assay of choice. The appropriate cutoff
levels have to be established, which generally
should be no o8–12% of cells with the rearrange-
ment pattern of signals, as this assure the reliable
detection and avoid detecting nonclonal rearrange-
ments.71 Usage of RT-PCR for clinical detection
of RET/PTC and PAX8/PPARg rearrangements in
formalin-fixed and paraffin-embedded tissues
should be avoided due to severe RNA degradation,
which can not be compensated by choosing ultra-
sensitive conditions. The latter results in the loss of
diagnostic specificity of the test due to increased
detection of nonclonal rearrangement and higher
risk of false-positive results.

Role of molecular markers in thyroid
cancer diagnosis

Molecular Analysis of FNA Samples

FNA cytology is currently the most reliable diag-
nostic test for thyroid nodules and establishes the
definitive diagnosis of a benign or malignant lesion
in the majority of cases, whereas 10–40% of all FNA
samples are diagnosed as indeterminate for malig-
nancy.72–75 The general category of indeterminate
cytology encompasses several subcategories, that is,
follicular lesion of indeterminate significance
(FLUS), follicular neoplasm/Hürthle cell neoplasm,
and suspicious for malignancy, which correlate with
the estimated risk of malignancy of 5–10, 20–30,
and 50–75%, respectively.76 Owing to the lack of
definitive diagnosis, most patients with indetermi-
nate cytology undergo surgery, although only 8–17%
of surgically removed thyroid nodules are malig-
nant.77,78 Patients with indeterminate FNA cytology
and malignant tumors are not adequately treated as
well, as most of them initially undergo thyroid
lobectomy and later have another surgery to com-
plete thyroidectomy.

Molecular testing of FNA samples may signifi-
cantly improve the accuracy of cytological diagnosis
of thyroid nodules. Most experience to date
is accumulated for BRAF mutations. The results of
BRAF testing in 2766 FNA samples have been
reported in 18 prospective and retrospective
studies.65,66,69,70,79–92 Among 581 BRAF-positive
nodules tested in FNA samples in these studies,
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580 were papillary carcinomas on pathological
examination of the resected nodules, whereas one
was diagnosed as a benign nodule,92 resulting in the
false-positive rate of 0.2%. This reportedly benign
nodule had a histopathological diagnosis of ‘atypi-
cal nodular hyperplasia’ and was not examined
using modern immunohistochemical techniques
that are helpful in the diagnosis of thyroid malig-
nancy in difficult cases.93 Importantly, 15–40% of
BRAF-positive FNA samples are indeterminate or
nondiagnostic by cytology,69,70,82,85,87,88 indicating
that testing for BRAF is helpful in establishing the
definitive diagnosis of cancer in nodules with
indeterminate cytology.

In addition to BRAF, several studies have explored
the possibility of the detection of RET/PTC, TRK,
or RAS mutations in thyroid FNA samples.88,94,95

However, the biggest diagnostic impact can
be achieved by testing FNA samples for a panel of
mutations rather then for a single mutation. Recent
studies have explored the diagnostic utility of
molecular testing for a panel of mutations consisting
of BRAF, RAS, RET/PTC, and PAX8/PPARg.69,96 One
study examined 470 consecutive FNA samples from
thyroid nodules that were prospectively tested and
yielded 32 mutations.69 The presence of any muta-
tion was a strong predictor of cancer, as 31 (97%) of
mutation-positive nodules had a malignant diagno-
sis after surgery and one case (3%) was a follicular
adenoma. This study showed that testing for a panel
of mutations was particularly useful in nodules with
indeterminate cytology, especially in the lowest risk
subgroup of indeterminate cytology, that is, FLUS.
In this subgroup, the positive mutational status
had a 100% accuracy in predicting the risk of a
malignancy, whereas mutation-negative nodules
were all benign. In addition, this study showed that
molecular testing decreased the false-negative rate
of cytology from 2.1 to 0.9%.69 Another study
focused only on the FLUS group of cytology samples
and found that testing for mutations had a 100%
positive predictive value and 92% negative predic-
tive value for cancer in this group (Figure 3).96

Regarding specific mutations that constituted the
panel, BRAF, RET/PTC, and PAX8/PPARg mutations
had a 100% positive predictive value for cancer in
both studies.69,96 Detection of RAS mutation, which
was the second most common mutation after BRAF,
also appeared to be of high diagnostic value in FNA
samples, as it conferred an 87–100% probability of
malignancy. Importantly, RAS mutations were iden-
tified in tumors, which are difficult to diagnose by
cytology alone, that is, follicular variant of papillary
carcinoma and follicular carcinoma. The accumula-
tion of knowledge on diagnostic use of molecular
markers has been reflected in the Revised Manage-
ment Guidelines for Patients with Thyroid Nodules
and Differentiated Thyroid Cancer, recently released
by the American Thyroid Association.97 The guide-
lines recommend the use of molecular markers, such
as BRAF, RAS, RET/PTC, and PAX8/PPARg, for

indeterminate FNA cytology to help guide patient
management.

Molecular Analysis of Surgically Removed Tumors

Molecular testing of surgically removed thyroid
samples has a rather limited diagnostic impact in
papillary carcinomas. When the histopathological
diagnosis of papillary carcinoma is suspected,
testing of tumor tissue for BRAF and clonal RET/
PTC can be of diagnostic value as their presence is a
strong indicator of papillary carcinoma. However,
many tumors carrying these mutations are classic
papillary carcinomas or tall cell variants, and in
those cases the histological diagnosis is typically
straightforward. The follicular variant of papillary
carcinoma, which more often imposes diagnostic
difficulty on surgical pathology examination,
most frequently has RAS mutations. However, RAS
mutation cannot be used to define malignancy as it
can be found in follicular adenomas.

In follicular carcinomas, testing for PAX8/PPARg
rearrangement may be of significant diagnostic
value. This mutation is characteristically seen in
follicular carcinomas, although, as discussed earlier,
it can also be seen in a small fraction of follicular
adenomas. The finding of PAX8/PPARg should
prompt the pathologist to perform an exhaustive
search for vascular or capsular invasion. The
invasion may not be seen at first, but is detected in
many PAX8/PPARg-positive follicular tumors after
examination of the entire tumor capsule in multiple
histological levels.5,61,98

Molecular markers of aggressiveness
in thyroid cancer

BRAF

BRAF V600E mutation is generally considered as a
reliable prognostic marker for papillary carcinoma.

Molecular
Testing for
Mutations

Cancer on
Surgical

Pathology

124 (24%)
FLUS Positive

12 (10%)
12/12

(100%)

117 (94%)
acceptable for

molecular
analysis

Negative
105 (90%)

8/105
(7.6%)

513
samples

Figure 3 Diagnostic significance of mutational testing in thyroid
FNA samples with FLUS cytology. On the basis of the results
reported by Ohori et al.96
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Its association with more unfavorable tumor beha-
vior has been documented in most studies involving
sufficiently large cohorts of patients, although some
observations have not found such an association
(reviewed in Xing23). In many studies, BRAF V600E
mutation correlate with aggressive tumor character-
istics, such as tall cell variant, extrathyroidal
extension, advanced tumor stage at presentation,
and lymph node or distant metastases (reviewed in
Xing23). More importantly, BRAF V600E has been
found to be an independent predictor of treatment
failure and tumor recurrence, even in patients with
low-stage disease.22,99,100 A recent study of 102
papillary carcinomas with median follow-up of 15
years demonstrated that BRAF V600E mutation was
an independent risk factor for tumor-related
death.101 BRAF V600E association with disease-free
probability remains significant when mutation was
detected not only in surgically removed tumor
samples but also in thyroid FNA samples.90

BRAF activation via BRAF V600E mutation in
thyroid cells appears to lead to the alteration of
function of sodium iodide symporter (NIS) and
other genes metabolizing iodide, which is likely to
be responsible for the decreased ability of tumors
with BRAF mutation to trap radioiodine and treat-
ment failure of the recurrent disease.8,102,103 BRAF
mutation also predisposes to tumor dedifferentia-
tion and progression to poorly differentiated and
anaplastic carcinoma, which is likely to contribute
to less favorable prognosis for these patients.

The prognostic implications of BRAF mutation
could be of particular importance in papillary
microcarcinomas, which are incidentally discovered
tumors of r1 cm in size. These tumors are com-
monly found in thyroid samples removed for
larger benign nodules. Most of the microcarcinomas
are indolent tumors cured by surgical resection,
although some of them demonstrate metastatic
behavior, recur and may lead to patient death, and
those require more aggressive treatment.104 The
role of BRAF mutation in defining a subset of
aggressive papillary microcarcinomas remains to
be fully defined. However, several recent studies
have demonstrated that BRAF mutation in thyroid
microcarcinomas correlates with either high rate of
extrathyroidal tumor extension or lymph node
metastasis or both of these features.105–107

RAS

The role of RAS mutation in predicting more
aggressive tumor behavior is not well defined. As
this mutation is also found in benign follicular
adenomas, the RAS status by itself cannot be used
for tumor prognostication. Some evidence exists,
however, that RAS mutations in invasive follicular
and papillary carcinoma may correlate with more
unfavorable prognosis, although this correlation is
far from being conclusively established.

Several studies have found a significant correla-
tion between RAS mutation and metastatic behavior
of follicular carcinomas, especially with respect
to bone metastases, which may be due to the role
of RAS mutation in promoting tumor dedifferentia-
tion and transformation to anaplastic carcino-
ma.46,48,108,109 The association between mutant RAS
and more aggressive behavior of papillary carcinoma
has been reported in a series of 91 tumors followed
up on average for 14 years, in which RAS mutation
was found to correlate with distant metastasis and
significantly higher mortality rate.47 On the other
hand, RAS mutations are frequently found in
encapsulated follicular variant of papillary carcino-
ma, the tumor with an indolent behavior.51,110

Therefore, it is likely that RAS mutations mark a
subset of widely invasive well-differentiated thyroid
carcinomas, which are prone to metastatic spread
and dedifferentiation and therefore entail higher
mortality, but this mutation can not be used as a
universal prognostic marker for all types of thyroid
cancer.
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