Breast carcinoma with amplified *HER2*: a gene expression signature specific for trastuzumab resistance and poor prognosis

Thaer Khoury¹, Kazunori Kanehira¹, Dan Wang², Foluso Ademuyiwa³, Wilfrido Mojica⁴, Richard Cheney¹, Carl Morrison¹, Jeffrey Conroy⁵, Norma Nowak⁵ and Song Liu²

¹Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY, USA; ²Department of Biostatistics, Roswell Park Cancer Institute, Buffalo, NY, USA; ³Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA; ⁴Department of Pathology, Roswell Park Cancer Institute, University at Buffalo, Buffalo, NY, USA and ⁵Department of Microarray Facility, Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY, USA

Recent trials have shown remarkable efficacy from combined trastuzumab and chemotherapy in the adjuvant setting of breast cancer. In spite of these successes, refractory breast cancer has emerged as a clinically problematic outcome for a subset of patients managed this way. In an effort to clarify and optimize the treatment regimens for breast cancer patients who are candidates to receive trastuzumab, we sought to analyze whether a distinctive genetic signature could be characterized that would reliably predict the treatment outcome. The ability to predict who will respond and who will become refractory to this agent will allow for improved, rational clinical management of these patients and further stratify the personalized nature of this treatment regimen. In this study, 41 consecutive cases of breast carcinoma with well-documented amplification of the human epidermal growth factor receptor-2 gene and corresponding banked fresh-frozen tissue were identified and divided into two separate groups based on whether they received trastuzumab or not. The first group consisted of 12 patients who had received trastuzumab in the adjuvant setting, of which three later experienced tumor recurrence. The second group consisted of 10 patients not treated with trastuzumab, of which 6 were later found to have recurrence. Differentially expressed genetic profiles were determined using human genomewide Illumina Bead Microarrays. The differentially expressed genes for non-recurrence vs recurrence in the trastuzumab-treated group were distinct from those in the same comparison group in the untreated group. Differential expression of key genes indentified in this study might offer an insight into a possible mechanism of trastuzumab resistance in breast carcinoma, and may emerge as potential predictive biomarkers indicative of trastuzumab resistance.

Modern Pathology (2010) 23, 1364–1378; doi:10.1038/modpathol.2010.125; published online 23 July 2010

Keywords: gene signature; HER2; prognosis; trastuzumab-resistance

Human epidermal growth factor receptor-2 (HER2) belongs to the type I family of tyrosine kinase receptors involved in the signal transduction pathways that regulates epithelial cell growth, differentiation, apoptosis and metastasis. With the exception of HER2, which has no ligand, the HER proteins exist at the plasma membrane in an inactivated form that activates on ligand binding.^{1,2}

Overexpression of HER2 occurs in approximately 18–20% of invasive breast cancers.^{3,4} HER2 overexpression deregulates downstream signaling networks, which in turn affect tumor cell growth and survival and have been previously documented to predict for a poor clinical outcome.⁵ A 'crosstalk' between signaling networks that regulate growth and survival is known to exist in epithelial tumors. In breast cancers, this crosstalk has been shown to exist between the HER2 pathway and estrogen receptor α and a key regulator of cell growth and

Correspondence: Dr Thaer Khoury, MD, Roswell Park Cancer Institute, Elm & Carlton streets, Buffalo, NY 14263, USA. E-mail: thaer.khoury@roswellpark.org

Received 6 January 2010; revised 26 May 2010; accepted 27 May 2010; published online 23 July 2010

survival, insulin-like growth factor receptor 1, the latter of which is also upregulated in breast cancers. $^{6-8}$

Trastuzumab, a monoclonal antibody that targets HER2, has significantly improved disease-free and overall survival when combined with chemotherapy for patients with breast cancers treated in both the adjuvant and metastatic settings.^{2,9-11} Pre-clinical studies indicate synergistic antitumor activity when trastuzumab is combined with a number of anticancer drugs. As well, additive cytotoxic interactions between trastuzumab and other agents, including paclitaxel, have been shown.¹² However, a subset of patients who initially received trastuzumab in the adjuvant setting eventually develop recurrent, resistant tumor within 1 year of treatment.¹³ The emergence of refractory tumors has become a significant clinical problem, with numerous preclinical studies already having investigated such possible etiologies for this resistance as HER2 downstream signaling, crosstalk pathways and HER2 gene mutations.¹⁴

The clinical, financial and emotional implications of a trastuzumab treatment regimen cannot be overlooked. An entire year must be committed to intravenous therapy for those patients that will receive this agent. Notable side effects include a significant risk for cardiotoxicity especially following adjuvant anthracyclines.^{15,16} Although initially thought to be reversible, the idea of the transient nature of this therapy-related cardiac dysfunction has been recently called into question.¹⁵ Finally, for the estimated 15 000 patients predicted to be eligible to receive trastuzumab, the collective financial burden has been calculated to be as high as \$750 million per year.¹⁷ Therefore, the ability to predict trastuzumab resistance will have a tremendous effect in all aspects of the health care for breast cancer patients. The intent of this study was to identify a genetic signature that could predict trastuzumab resistance and poor clinical outcome. To our knowledge, this is the first study to determine whether a distinct molecular signature of gene expression exists in patients known to clinically show resistance to trastuzumab.

Materials and methods

Patients' Selection

A total of 151 patients with amplified *HER2* detected by fluorescence *in situ* hybridization were identified from the files of the Roswell Park Cancer Institute between the years 2001 and 2009. For all cases, tissue was collected on extirpation and delivered to the Department of Pathology in under

Figure 1 Box plot of expression-detection *P*-value for all 42 samples. The expression-detection *P*-value is to test the null hypothesis of whether the expression intensity of a given gene is indistinguishable from the background intensity. Yaxis: expression-detection *P*-value; X axis: samples (patients). Patient 11142 (shown in gray) stand out as an outlier showing majority of genes undetectable (large *P*-value). For data quality control, we filtered out this sample for further analysis. This led to 41 samples for further clinicopathologic and microarray data analysis.

5 min. Thereafter, appropriate portions of tumor were selected and snap frozen within 5 min. The biospecimen inclusion criteria for this study included the existence of banked, fresh-frozen tumor, tumor occupying >80% of the tissue and extracted RNA that met the Illumina platform's workable criteria (see below). Of the 151 patients initially identified, only 42 were found to fulfill the aforementioned criteria and therefore warrant inclusion into this study.

Clinicopathologic data including patient's age at diagnosis, race, tumor histologic type, stage, grade, size, hormonal receptor and lymph node status were abstracted from their medical records. Data on receipt of adjuvant chemotherapy, receipt or no receipt of trastuzumab, and duration of disease-free survival were recorded. Two separate groups were readily identified: those treated with trastuzumab and those not treated with trastuzumab. The first group was further subcategorized based on whether or not they developed resistance to trastuzumab therapy. Patients were considered resistant to this therapeutic approach if they showed local or distant tumor recurrence within 2 years of being treated with trastuzumab. In contrast, patients who did not receive adjuvant trastuzumab therapy were divided into two groups; a poor-prognosis group if they had local or distant tumor recurrence within 2 years, and a good-prognosis group if they were disease free for >2 years. These groups did not include patients who presented with distant organ metastases (stage 4). Review of the patients' medical records along with performing the gene array of the patients' samples was approved by the institutional review board.

RNA Preparation

Total RNA from 42 patients were prepared using the TRizol Reagent (Invitrogen, Carlsbad, CA, USA) following the manufacturer's instructions. After elution, RNA samples were concentrated by EtOH precipitation at -20 °C overnight and resuspended in nuclease-free water. Before labeling, RNA samples were quantitated using a ND-1000 spectrophotometer (NanoDrop) and evaluated for degradation using a 2100 Bioanalyzer (Agilent Technologies, Sanat Clara, CA, USA). By Illumina criteria, samples were required to have a RIN >7, an OD 260:280 of 1.9–2.0, an OD 260/230 > 1.8 and > 1.5 28S:18S ratio of the ribosomal bands for gene expression array analysis.

Gene Expression Assay

Expression profiling was accomplished using the HumanHT-12 v3 whole-genome gene expression direct hybridization assay (Illumina). Initially, 250 ng total RNA was converted to cDNA, followed by an *in vitro* transcription step to generate labeled

cRNA using the Ambion Illumina TotalPrep RNA Amplification Kit (Ambion, Austin, TX, USA) as per the manufacturer's instructions. The labeled probes were then mixed with hybridization reagents and hybridized overnight to the HumanHT-12 v3 BeadChips. Following washing and staining, the BeadChips are imaged using the Illumina BeadArray Reader to measure fluorescence intensity at each probe. The intensity of the signal corresponded to the quantity of the respective mRNA in the original sample.

 Table 1
 Clinicopathologic findings of patients

Age, median (range)	49 (28–82)
Race White Black Others	$31 (75.6)^{a}$ 9 (22) 1 (2.4)
<i>Menopause status</i> Pre Post Unknown	19 (46.3) 18 (43.9) 4 (9.8)
<i>Type of surgery</i> Mastectomy Conservative	16 (39) 25 (61)
Histology Ductal Lobular	40 (97.6) 1 (2.4)
SBR grade 2 3	12 (29.3) 29 (70.7)
Hormone receptor + -	23 (56.1) 18 (43.9)
Stage 1 2 3 4	1 (2.4) 17 (41.5) 18 (43.9) 5 (12.2)
<i>Trastuzumab</i> Yes No Unknown	27 (65.9) 13 (31.7) 1 (2.4)
Adjuvant therapy Yes No Unknown	31 (75.6) 5 (12.2) 5 (12.2)
<i>Recurrence</i> No Local Distant Unknown	25 (61) 1 (2.4) 8 (19.5) 7 (17.1)
Alive Yes No Unknown	30 (73.2) 5 (12.2) 6 (14.6)

^aNo. (%).

Data Analysis

BeadChip data files were analyzed with Illumina's GenomeStudio gene expression module and Bioconductor package to determine gene expression signal levels.¹⁸ Briefly, the raw intensity of Illumina Human HT-12 v3.0 gene expression array was scanned and extracted using BeadScan, with the data corrected by background subtraction in GenomeStudio module. The *lumi* module in the R-based *Bioconductor* Package was used to transform the expression intensity into *log2* scale.¹⁹ The log2 transformed intensity data were normalized using the Quantile normalization algorithm.

For data quality control, we first filtered out sample 11142 from further analysis as it stood out as an outlier with the majority of genes undetected (Figure 1, Table 3). This led to 41 samples for further clinicopathologic and microarray data analysis. Then, we filtered out the genes whose expression-detection *P*-value was > 0.05 (ie, indistinguishable from the background intensity) across >75% of samples. Approximately 17 000 genes among 37 849 genes passed this filtering for downstream analysis. Several notable genes including PIK3CA, MUC4 and AKT were filtered out from subsequent analysis. For example, PIK3CA was not expressed (P > 0.05) in all but one sample.

We then performed eight separate comparisons based on the following collected patients' characteristics: age ($<50 \ vs \ge 50 \ or < 40 \ vs \ge 40$), race (black vs white), tumor stage (advanced vs early), hormonal receptor status (hormonal receptor- vs hormonal receptor +), menopausal status (pre- vs post-), nonrecurrence vs recurrence in the trastuzumabnon-treated group and responsive vs resistant in the trastuzumab-treated group. We used the Limma program in the R-based Bioconductor package to calculate the level of gene differential expression for each comparison.²⁰ Briefly, for each comparison, a linear model was fit to the data (with cell means corresponding to the different conditions and a random effect for array). For each comparison, we obtained the list of differentially expressed genes constrained by *P*-value < 0.05.

Following single gene-based significance testing, we use the expression value of differentially expressed genes (P < 0.05) to cluster the patients for each comparison. Our purpose was to test whether the identified differentially expressed genes

 Table 2 Patients who treated with trastuzumab and had recurrence

Patient ^a	Age	Type of surgery	Hormone receptor	Stage	Site of recurrence	DFS (months)
1	46	Mastectomy	Positive	2	Multiple organs	3
2	52	Conservative	Positive	3	Brain	18
3	44	Conservative	Positive	3	Breast	19
4	51	Conservative	Negative	3	None	41
5	52	Conservative	Negative	2	None	51
6	41	Conservative	Positive	3	None	56
7	47	Mastectomy	Positive	2	None	44
8	34	Mastectomy	Negative	3	None	35
9	44	Mastectomy	Positive	2	None	42
10	28	Mastectomy	Negative	3	None	34
11	58	Conservative	Positive	3	None	34
12	75	Conservative	Positive	2	None	33

^aAll patients treated with adjuvant therapy in addition to trastuzumab.

Table 3 Patients who were not treated with trastuzumab and have >3 years follow-up unless tumor recurred before then

	Age	Type of surgery	Hormone receptor	Stage	Adjuvant therapy	Site of recurrence	DFS (months)
1	78	Conservative	Positive	2	Yes	None	108
2	52	Mastectomy	Negative	2	Yes	None	92
3	63	Conservative	Positive	2	Yes	None	76
4	74	Conservative	Positive	2	No	None	49
5^{a}	73	Mastectomy	Positive	3	No	Multiple organs	24
6	57	Mastectony	Negative	3	Yes	Chest wall	10
7	67	Mastectony	Negative	2	Yes	Multiple organs	23
8	38	Mastectomy	Positive	2	No	Multiple organs	3
9	39	Conservative	Positive	2	No	Multiple organs	8
10	46	Mastectomy	Positive	3	Yes	Multiple organs	13
11	43	Mastectomy	Positive	3	NA	Bone	8

^aFor data quality control, we filtered out this patient (sample ID: 11142) from further microarray data analysis as it stood out as an outlier with the majority of genes undetected (Figure 1). This resulted four no recurrence subjects *vs* six recurrence subjects.

for each comparison were able to serve as gene signature to classify patients into their corresponding clinicopathologic groups. Hierarchical clustering based on the average linkage of Pearson correlation was used.²¹ All calculations were carried out using statistical software available in the R package.

Results

Clinicopathologic Findings

A total of 41 HER2-positive breast cancer patients treated between 2001 and 2009 at the Roswell Park Cancer Institute had tumors amenable to microarray analysis for this study. Patient characteristics are shown in Table 1. In total, 21 of 41 cases (51%) analyzed were <50 years at time of diagnosis; the median age was 49 years (range 28-82). Two-thirds of the cases had high-grade tumors and the majority of individuals had ductal histology. The median and range of follow-up was between 3 and 111 (median 29 months). Five patients died, two because of breast cancer and three of unknown reason. Patients were composed of 12 with trastuzumab treated, 10 not treated with trastuzumab, 5 who presented with distant organ metastases (stage 4), 4 who were lost to follow-up and 9 that had <2 years follow-up but with no tumor recurrence. In the trastuzumabtreated group, three patients had tumor recurrence at 3, 18 and 19 months, respectively. In the group not treated with trastuzumab, six patients had tumor recurrence after a median of 10 months and range of 3 and 24 months (Tables 2 and 3).

Gene Expression Findings

Identification of differentially expressed genes Eight separate comparisons were performed based on the following collected patients' characteristics: trastuzumab-treated group (responsive vs resistant), trastuzumab-non-treated group (no recurrence vs recurrence), age ($<50 vs \ge 50$ or $<40 vs \ge 40$), race (black vs white), tumor stage (advanced vs early), hormonal receptor status (hormonal receptor- vs hormonal receptor +) and menopausal status (pre- vs post-).

For the trastuzumab-treated group (responsive vs resistant), we identified 770 differentially expressed genes at the statistically significant level of P < 0.05, with 281 genes upregulated in patients found to be responsive to trastuzumab while 489 genes were downregulated. For the trastuzumab-non-treated group, we identified 509 statistically significant (P < 0.05) differentially expressed genes with 329 genes upregulated in patients with no recurrence while 189 were genes downregulated. The number of identified differentially expressed genes with a P < 0.05 and the subgroup restricted by desired fold change for each comparison are summarized in Table 4.

 $\begin{array}{c} 4 \ vs \ 6 \\ 509 \ (329/180) \\ 132 \ (94/38) \end{array}$ no recurrence vs recurrence) TNTTT (responsive $\begin{array}{c} 3 \ vs \ 9 \\ 770 \ (281/489) \\ 243 \ (80/163) \end{array}$ vs resistant) Table 4 Summary of the number of differentially expressed genes obtained from eight separate comparisons based on patients' clinicopathologic data 18 *vs* 23 560 (258/302) 19 (3/16) Tumor stage (advanced vs early) receptor (- vs +) 1451 (697/754) 117 (29/88) Hormone 15 vs 16 $\begin{array}{c} 18 \ vs \ 19 \\ 485 \ (243/242) \\ 31 \ (16/15) \end{array}$ pre- vs post-) Menopause $\begin{array}{c} 1079 \ (609/470) \\ 125 \ (56/69) \end{array}$ (black vs white) 9 VS 31 Race $\begin{array}{c} 34 \ vs \ 7 \\ 673 \ (431/242) \\ 74 \ (60/14) \end{array}$ $Age (<40 \text{ vs} \ge 40)$ $Age (< 50 \text{ vs } \ge 50)$ 20 *vs* 21 606 (285/321) of DEGs (P < 0.05)of DEGs with # of patients

44 (38/6)

64 (18/46)

0/0) 0

(5/22)

27

9 (4/5)

28 (10/18)

20 (17/3)

13 (6/7)

≥1.5-fold change ≥twofold change

of DEGs with

40 (18/22)

Abbreviations: TT, trastuzumab-treated; TNT, trastuzumab-non-treated

Figure 2 Hierarchical clustering of patient samples based on differentially expressed genes (P < 0.05) obtained from the trastuzumabtreated group, responsive vs resistant. (a) Clustering dendrogram: Y initial means resistant while N initial means responsive. (b) Clustering heat map: red means upregulated while green means downregulated.

Figure 3 Hierachical clustering of patient samples based on differentially expressed genes (P < 0.05) obtained from the trastuzumabnon-treated group, non-recurrence vs recurrence. (a) Clustering dendrogram: Y initial means recurrence while N initial means non-recurrence. (b) Clustering heat map: red means upregulated while green means downregulated.

Patients clustering based on differentially expressed genes

The expression value of differentially expressed genes identified from each comparison was used to cluster the patients into their corresponding clinicopathologic groups. As shown in Figure 2, the 770 differentially expressed genes derived from the trastuzumab-treated group separated into three trastuzumab-resistant and nine trastuzumab-responsive patients. In the same way, the 509 differentially expressed genes derived from those not treated with trastuzumab separated into six patients with recurrence and four with no recurrence (Figure 3).

The patient clustering results using differentially expressed genes derived from the other seven comparisons is shown in Figure 4. The results show that those respective differentially expressed genes can more or less separate the patients

Figure 4 Hierarchical clustering of patient samples based on differentially expressed genes (P < 0.05) obtained from comparing (a) age ($< 50 \ vs \ge 50$); (b) age ($< 40 \ vs \ge 40$); (c) race (black vs white); (d) tumor stage (advanced vs early); (e) hormone receptor status (hormone receptor- vs hormone receptor +); (f) menopause status (pre- vs post-).

Figure 5 Venn diagrams show little overlap for differentially expressed genes derived from different comparisons, including three groups, trastuzumab-treated, trastuzumab-non-treated and other. The latter group represents the unions of differentially expressed genes from the other six separate comparisons of clinicopathologic data (age, race, tumor stage, hormonal receptor status and menopause status). (a) Differentially expressed genes as defined by P < 0.05. (b) Differentially expressed genes with at least 1.5-fold change. (c) Differentially expressed genes with at least twofold change.

into their corresponding clinicopathologic groups. As expected, better clustering performance was obtained in hormonal receptor status and tumor stage categories, and worse clustering performance was observed in age and menopause status.

Few overlap between differentially expressed gene sets

We grouped the differentially expressed genes from age ($<50 \ vs \ge 50$ or $<40 \ vs \ge 40$), race (black vs white), tumor stage (advanced vs early), hormonal receptor status (hormonal receptor- vs hormonal receptor+) and menopausal status (pre- vs post-) into one non-redundant differentially expressed genes set. This differentially expressed gene set, termed 'other', is composed of 3456 unique genes showing differential expression in at least one of the six comparisons above.

As shown in Figure 5, we found that there was little overlap between the three differentially expressed gene sets: trastuzumab-treated, untreated and 'others'. Only two differentially expressed genes were shared by all three differentially expressed genes sets. The lack of overlap between the gene sets derived from the trastuzumab-treated and non-treated groups were of particular interest. Only 23 differentially expressed genes were shared between the 770 (3.0%) trastuzumab-treated group and the 509 (4.5%) trastuzumab-untreated group and only 1 differentially expressed gene was shared when a \geq twofold change was included as a restrictive criteria.

Further functional annotation of differentially expressed genes with at least a twofold change showed that the composition of enriched function term was different between the two different groups (Figure 6). Remarkably, the trastuzumab-treated differentially expressed genes were enriched for genes involved in nucleic acid binding while the trastuzumab-untreated profile was enriched in immunity and defense. The complete differentially expressed gene list between these two groups with the stipulation of at least a twofold change is listed in Tables 5 and 6.

Previously described significant genes in trastuzumab resistance of pre-clinical studies

Previous studies have shown that the HER2 signaling pathway might have an important role in trastuzumab resistance.¹⁴ Therefore, we tested the hypothesis whether the HER2 signaling pathway members were significantly dysregulated in the trastuzumab-treated comparison group. Briefly, the 17 000 genes were ranked based on the t-statistics score for comparing the mean expression value of trastuzumab treatment (responsive vs resistant). This ranked list was used to analyze whether the *t*-statistical score of genes from the HER2 signaling pathway were significantly deviated from those in the rest of the gene sets. Statistical significance was estimated by Kolmogorov-Smirnov test.²² The HER2 pathway data set was obtained from KEGG database with manual addition from existing literature.

The HER2 pathway was significantly dysregulated in the trastuzumab-treated group response comparison (K–S test, P<0.017). However, only the PTPN11 gene in the HER2 pathway showed a statistically significant differential expression at the single gene level (P<0.05). The HER2 pathway was not found to be significantly dysregulated in the other six comparisons (eg, P=0.21 in trastuzumabnon-treated comparison).

We further checked a compiled list of genes that might have a role in trastuzumab resistance as suggested by previous literature that included PTEN, PIK3, mTOR, MAPK and vascular endothelial growth factor (VEGF) (Table 7). However, there was no evidence of differential expression.

Trastuzumab resistance gene signature

T Khoury et al

Figure 6 Enriched function annotation for differentially expressed genes with at least twofold change. Functional annotations are considered enriched with *P*-values < 0.1 as reported by NCBI DAVID API server (default setting). (Left) Enriched biological process term; (Right) enriched molecular function term. The number following each enriched functional term is the number of annotated differentially expressed genes. (a) Functional annotation for differentially expressed genes from the trastuzumab-treated group. (b) Functional annotation for differentially expressed genes.

Discussion

Human breast tumors are diverse in their natural history and in their responsiveness to treatments.²³ The revelation of distinctive molecular portraits for human breast cancers has had tremendous implications on breast cancer therapy and research. Breast cancers can now be subdivided into three categories: ER + /luminal-like, basal-like and HER2 +; the latter of which can be further subdivided into ER + and $ER - .^{24,25}$ This discovery had enabled further work into identifying predictors for survival through the identification of distinctive gene signatures. Two tests are now clinically available that can predict clinical outcome and indicate therapy in 'estrogen receptor-positive lymph node-

negative' breast cancer patients with Mammaprint and Oncotype DX gene profiles.^{26,27}

The advent of immunotherapy and the implications it may have on tumors have recently introduced another variable that needs to be taken into consideration. The therapeutic humanized monoclonal antibody trastuzumab is still a mystery in its mechanism of action and lately, the reason for the emergence of resistance to it. The suggested mechanism of action is disruption of functional dimers involving HER2, reduction of extracellular domain shedding (which is thought to result in a constitutively active receptor (p95HER2)), and the recruitment of immune effector cells, which results in antibody-dependent cellular cytotoxicity.^{28,29}

Table 5	List of differentially	expressed ge	enes with at least	twofold change obtained	from comparisons of re-	sponsive <i>vs</i> resistant in the	trastuzumab-treated group
	5	1 0		0	1	1	

Illumina ID	Log2 FC	P-value	ENTREZ	Symbol	Description
Upregulated g	enes in re	esponsive vs re	esistant co	mparisons	
PROM1	2.84	0.039668414	8842	PROM1	Prominin 1 (PROM1), mRNA
IRX2	2.32	0.003410016	153572	IRX2	Iroquois homeobox 2 (IRX2), mRNA
SFRP1	2.31	0.038195927	6422	SFRP1	Secreted frizzled-related protein 1 (SFRP1), mRNA
SLPI	2.11	0.044623642	6590	SLPI	Secretory leukocyte peptidase inhibitor (SLPI), mRNA
RBP1	1.81	0.019037657	5947	RBP1	Retinol binding protein 1, cellular (RBP1), mRNA
CBS	1.54	0.027181514	875	CBS	Cystathionine-B-synthase (CBS), mRNA
AKR1C3	1.33	0.017252118	8644	AKR1C3	Aldo-keto reductase family 1, member C3 (3-α hydroxysteroid dehydrogenase, type II) (AKR1C3), mRNA
HBA2	1.32	0.028969714	3040	HBA2	Hemoglobin, α 2 (HBA2), mRNA
BEX2	1.24	0.022108561	84707	BEX2	Brain expressed X-linked 2 (BEX2), mRNA
SELM	1.19	0.004761542	140606	SELM	Selenoprotein M (SELM), mRNA
ZDHHC8	1.14	0.00890043	29801	ZDHHC8	Zinc finger, DHHC-type containing 8 (ZDHHC8), mRNA
HS 143018	1 11	0.004880672	NA	NA	BX105338 Soares pregnant uterus NhHPLI Homo saniens cDNA clone IMAGn998C114347 mRNA sequence
ZNF462	1 10	0.01458557	58499	ZNF462	Zinc-finger protein 462 (ZNE462) mRNA
SNORD13	1.10	0.022404087	692084	SNORD13	Small nucleolar RNA (/D by 13 (SNORD13) non-coding RNA
TMPRSS2	1.00	0.022404007	7113	TMPRSS2	Transmambrane protesse serine 2 (TMPRSS2) mRNA
HS 103557	1.00	0.020000002	NA	NA NA	CDNA FLI32401 fiz clong SKMUIS2000330
HS 103767	1.07	0.0270700003	NA	NA	CDNA FLJ26188 fis. clona ADC04821
TIMD1	1.00	0.012013042	7076	TIMD1	TIMP motallopartidase inhibitor 1 (TIMP1) mPNA
I IIVIF I	1.02	0.043030035	7070	I IIVIF I	The metanopeptudase miniputor 1 (Ther I), meter
Downregulate	d genes ir	n responsive vs	s resistant	comparisons	
TRIM37	-1.00	0.000206185	4591	TRÎM37	Tripartite motif-containing 37 (TRIM37), transcript variant 2, mRNA
HIST1H2AE	-1.02	0.022459891	3012	HIST1H2AE	Histone cluster 1, H2ae (HIST1H2AE), mRNA
C3ORF14	-1.02	0.022097993	57415	C3orf14	Chromosome 3 open reading frame 14 (C3orf14), mRNA
FAM84B	-1.03	0.023693796	157638	FAM84B	Family with sequence similarity 84, member B (FAM84B), mRNA
UTP18	-1.03	0.002675404	51096	UTP18	UTP18, small subunit (SSU) processome component, homolog (yeast) (UTP18), mRNA
DCK	-1.03	0.012380724	1633	DCK	Deoxycytidine kinase (DCK), mRNA
NXPH1	-1.05	0.002890777	30010	NXPH1	Neurexophilin 1 (NXPH1), mRNA
LFNG	-1.07	0.047483137	3955	LFNG	LFNG O-fucosylpeptide 3-β-N-acetylglucosaminyltransferase (LFNG), transcript variant 2, mRNA
ZNF239	-1.07	0.001903216	8187	ZNF239	Zinc-finger protein 239 (ZNF239), transcript variant 4, mRNA
H2AFJ	-1.08	0.041969375	55766	H2AFJ	H2A histone family, member J (H2AFJ), mRNA
GCHFR	-1.09	0.010568552	2644	GCHFR	GTP cyclohydrolase I feedback regulator (GCHFR), mRNA
PLA2G7	-1.09	0.03216043	7941	PLA2G7	Phospholipase A2, group VII (platelet-activating factor acetylhydrolase, plasma) (PLA2G7), mRNA
GHR	-1.13	0.022948324	2690	GHR	Growth hormone receptor (GHR), mRNA
CKS2	-1.13	0.017517717	1164	CKS2	CDC28 protein kinase regulatory subunit 2 (CKS2), mRNA
XYLT2	-1.14	0.009490739	64132	XYLT2	Xylosyltransferase II (XYLT2), mRNA
EPN3	-1.15	0.010136038	55040	EPN3	Epsin 3 (EPN3), mRNA
ZNF296	-1.16	0.002323186	162979	ZNF296	Zinc-finger protein 296 (ZNF296), mRNA
NCAM2	-1.17	0.005972664	4685	NCAM2	Neural cell adhesion molecule 2 (NCAM2), mRNA
RPL29	-1.17	0.01188073	6159	RPL29	Ribosomal protein L29 (RPL29), mRNA
LACTB2	-1.17	0.026369951	51110	LACTB2	Lactamase, β 2 (LACTB2), mRNA
NDST4	-1.19	0.037971974	64579	NDST4	N-deacetylase/N-sulfotransferase (heparan glucosaminyl) 4 (NDST4), mRNA
SLC35B1	-1.20	0.014488949	10237	SLC35B1	Solute carrier family 35, member B1 (SLC35B1), mRNA
HUS1B	-1.21	0.04567654	135458	HUS1B	HUS1 checkpoint homolog b (S. pombe) (HUS1B), mRNA
ADORA2A	-1.21	0.032715778	135	ADORA2A	Adenosine A2a receptor (ADORA2A), mRNA
NME1	-1.24	0.023241599	4830	NME1	Non-metastatic cells 1. protein (NM23A) expressed in (NME1), transcript variant 1. mRNA
NME1-NME2	-1.25	0.003986265	654364	NME1-NME2	NME1-NME2 readthrough transcript (NME1-NME2) mRNA
SH3BGRL	-1 29	0.007446003	6451	SH3BGRL	SH3 domain binding dutamic acid-rich protein like (SH3BCRL) mRNA
MRPL27	-1.33	0.006798205	51264	MRPL27	Mitachondrial ribosomal protein L27 (MRPL27) nuclear gene encoding mitachondrial protein
	1.00	0.000/00100	01201		transcript variant 3, mRNA

Description	Synaptopodin 2-like (SYNPO2L), mRNA Spermatogenesis associated 20 (SPATA20), mRNA Neuropilin (NRP) and tolloid (TLL)-like 2 (NETO2), mRNA Heat shock 70 kDa protein 2 (HSPA2), mRNA NAD(P)H dehydrogenase, quinone 1 (NQO1), transcript variant 1, mRNA Achaete-scute complex homolog 2 (Drosophila) (ASCL2), mRNA Exocyst complex component 2 (EXOC2), mRNA r-myc myelocytomatosis viral related oncogene, neuroblastoma derived (avian) (MYCN), mRNA Heme-binding protein 1 (HEBP1), mRNA r-myc myelocytomatosis viral related oncogene, neuroblastoma derived (avian) (MYCN), mRNA Heme-binding protein 1 (HEBP1), mRNA r-myc myelocytomatosis viral related oncogene, neuroblastoma derived (avian) (MYCN), mRNA Heme-binding protein 1 (HEBP1), mRNA romit (PHB), mRNA Contactin-associated protein-like 2 (CNTNAP2), mRNA Mitochondrial intermeding frame 152 (G9orf152), mRNA Mitochondrial intermeding frame 152 (G9orf152), mRNA Mitochondrial intermeding frame 153 (MPEP), nuclear gene encoding mitochondrial protein, mRNA Mitochondrial intermeding frame 153 (G9orf152), mRNA Mitochondrial intermeding frame 153 (G9orf153), mRNA Mitochondrial intermeding frame 153 (G9
Symbol	comparisons SYNPO2L SPATA20 NETO2 HSPA2 HSPA2 HSPA2 NQ01 ASCL2 EXOC2 MYCN HEBP1 HBP1 HBP1 PHB CNTNAP2 CONTAP2 CONTAP2 CONTNAP2 CONTNAP2 CONTNAP2 CONTNAP2 CONTNAP2 CONTNAP2 CONTAP2 CONTAP2 CONTNAP2 CONTNAP2 CONTNAP2 CONTNAP2 CONTNAP2 CONTNAP2 CONTNAP2 CONTNAP2 CONTAP2 CONTNAP2 CONTNAP2 CONTNAP2 CONTNAP2 CONTAP2 CONTNAP2 CONTAP2 CONTNAP2 CONTNAP2 CONTNAP2 CONTNAP2 CONTNAP2 CONTNAP2 CONTAP2 CONTNAP2 CONTNAP2 CONTNAP2 CONTAP2 CONTNAP2 CONTNAP2 CONTNAP2 CONTNAP2 CONTAP2 CONTAP2 CONTNAP2 CONTA
ENTREZ	resistant 79933 64847 81831 3306 1728 430 55770 4613 55770 4613 5245 52865 52865 52865 52865 52865 52865 52865 10140 22977 6558 4680
P-value	1 responsive vs 0.008825857 0.00882596146 0.004263183 0.004263183 0.006649819 0.0055557 0.006649739 0.006564739 0.006604739 0.006604739 0.006564799 0.0066044726 0.006564799 0.00260344726 0.00260344726 0.00260344726 0.00293447 0.002903447 0.002903447 0.002903447 0.002903447 0.002903447 0.002903447 0.002903447 0.002903447 0.002903447 0.002903447 0.002903447 0.002903447 0.002903447 0.007436886
Log2 FC	ad $genes$ i_{II} -1.36 -1.36 -1.48 -1.48 -1.57 -1.57 -1.57 -1.58 -1.58 -1.56 -1.77 -1.79 -1.79 -1.96 -1.96 -1.96 -1.96 -1.96 -1.96 -1.29 -2.04 -2.04 -2.17 -2.29 -2.17 -2.29 -2.17 -2.29 -2.17 -2.17 -2.17 -2.17 -2.17 -2.17 -2.17 -2.26 -2.17 -2.26 -2.17 -2.26 -2.17 -2.26 -2.17 -2.26 -2.17 -2.26 -2.17 -2.26 -2.17 -2.26 -2.26 -2.17 -2.26 -2.17 -2.26 -2.17 -2.26 -2.17 -2.26 -2.17 -2.26 -2.17 -2.26 -2.17 -2.26 -2.17 -2.26 -2.17 -2.26 -2.17 -2.26 -2.17 -2.26 -2.17 -2.26 -2.17 -2.26 -2.337 -2.337 -2.36
Illumina ID	Downregulat, SYNPO2 L SPATA20 NETO2 L HSPA2 NQO1 ASCL2 EXOC2 MYCN HEBP1 HEBP1 HEBP1 HEBP1 HEBP1 HEBP1 HEBP1 HEBP1 HEBP1 CNTNAP2 CONTAP2 CONTNAP2 CONTNAP2 CONTNAP2 CONTAP2 CONTNAP2 CONTAP2 CONTNAP2 CONTAP2 CONTNAP2 CONTNAP2 CONTNAP2 CONTNAP2 CONTNAP2 CONTNAP2 CONTNAP2 CONTNAP2 CONTNAP2 CONTAP2 CONTNA

For resistance, there are many suggested mechanisms of action that have included the hypothesis that they may exist, a reduction of antibody affinity because of MUC4 overexpression.^{30,31} We have previously suggested the existence of a *HER2* gene mutation located in the immunoagent's corresponding binding site as a mechanism for trastuzumab resistance. However, DNA sequencing was unable to validate the initial findings of temperature gradient capillary electrophoresis except for one case, which had a single missense point mutation.³² Downstream signaling pathway members have also been suggested as a potential source for trastuzumab resistance and have included the genes p27 Kip1, PTEN, PI3K, mTOR and Akt.^{33–35} Crosstalk with other pathways including insulin-like growth factor receptor-1, ER pathway and VEGF has also been suggested to be involved in trastuzumab resistance.³⁶⁻³⁸ However, these studies were all preclinical or in cell lines.

Partially based on these previous findings, we therefore sought to examine whether a distinctive genetic profile existed that would be able to discriminate HER2 patients into good and poor clinical outcomes and into trastuzumab responsive or resistant. A strength of this study was the use of actual, well annotated, clinical biospecimens. We based this assumption on the hypothesis that the phenotypic diversity of HER2 + breast tumors might be accompanied by a corresponding diversity in gene expression patterns that we could capture using cDNA microarrays.

Although initially stratifying patients into responsive or resistant groups was somewhat artificial, we found from our data that a 2-year cut-off was reasonable. In the group treated with trastuzumab, the three patients who had tumor recurrence did so within 19 months while the other nine patients had no recurrence at all after at least a 33-month follow-up. For the untreated trastuzumab group, a 2-year cut-off was reasonable based on similar clinical outcomes. For those patients with tumor recurrence, all did so within a 24-month timeframe. Patients who were disease free had no recurrence after at least a 49-month follow-up period.

Although the sample size was too small for a definitive conclusion, we believe that our findings shed meaningful insights into the clinical care of breast cancer patients that warrant further investigation. From the clinical data, it was expected that clustering based on trastuzumab-treated (responsive vs recurrence) and trastuzumab-non-treated (recurrence vs no recurrence) would have distinctive profiles. In addition, to a lesser extent, it was expected that the other clinicopathologic variables would have some differences in the expression profiles as they related to hormonal receptor status and tumor stage but not age, race or menopausal status. There was little overlap between the treated, and untreated trastuzumab groups with those in the 'other' groups. This implies that clinicopathologic differences may involve alter-

T Khoury et al

Fable 5 Continued

Table 6	6 List of differentially	v expressed genes	with at least twofold chan	ge obtained from com	parisons of no recurrence	vs recurrence in the TNT group
		· · · · · · · · · · · · · · · · · · ·		9	T	0 1

Illumina ID	Log2 FC	P-value	ENTREZ	Symbol	Description
Upregulated	genes in n	o recurrenc	e vs recuri	rence comparis	rons
ALB	3.40	0.022763	213	ALB	Homo sapiens albumin (ALB), mRNA
LOC647450	2.71	0.014532	647450	LOC647450	Predicted: homo sapiens similar to Ig κ chain V-I region HK101 precursor (LOC647450), mRNA
LOC652493	2.68	0.012371	652493	LOC652493	Predicted: homo sapiens similar to Ig κ chain V-I region HK102 precursor (LOC652493), mRNA
LOC651751	2.57	0.000492	651751	LOC651751	Predicted: homo sapiens similar to Ig κ chain V-II region RPMI 6410 precursor (LOC651751), mRNA
CEACAM6	2.57	0.031912	4680	CEACAM6	Homo sapiens carcinoembryonic antigen-related cell adhesion molecule 6 (nonspecific cross-reacting antigen) (CEACAM6), mRNA
LOC642113	2.41	0.01145	642113	LOC642113	Predicted: homo sapiens similar to Ig κ chain V–III region HAH precursor (LOC642113), mRNA
LOC652694	2.39	0.002864	652694	LOC652694	Predicted: homo sapiens similar to Ig κ chain V–I region HK102 precursor (LOC652694), mRNA
HLA-DRB5	2.38	0.029661	3127	HLA-DRB5	Homo sapiens major histocompatibility complex, class II, DR β 5 (HLA-DRB5), mRNA
LOC649923	2.16	0.006045	649923	LOC649923	Predicted: homo sapiens similar to Ig gamma-2 chain C region (LOC649923), mRNA
LOC652775	2.01	0.002943	652775	LOC652775	Predicted: homo sapiens similar to Ig κ chain V–V region L7 precursor (LOC652775), mRNA
LOC652102	1.74	0.000466	652102	LOC652102	Predicted: homo sapiens similar to Ig heavy chain V–I region HG3 precursor (LOC652102), mRNA
IGLL1	1.62	0.014304	3543	IGLL1	Homo sapiens immunoglobulin λ-like polypeptide 1 (IGLL1), transcript variant 2, mRNA
ACOX2	1.60	0.000967	8309	ACOX2	Homo sapiens acyl-coenzyme A oxidase 2, branched chain (ACOX2), mRNA
MGC29506	1.59	0.014185	51237	MGC29506	Homo sapiens hypothetical protein MGC29506 (MGC29506), mRNA
HLA-DQA1	1.51	0.015729	3117	HLA-DQA1	Predicted: homo sapiens major histocompatibility complex, class II, DQ α 1, transcript variant 10 (HLA-DQA1), mRNA
LYZ	1.47	0.042465	4069	LYZ	Homo sapiens lysozyme (renal amyloidosis) (LYZ), mRNA
HLA-DRB4	1.46	0.013791	3126	HLA-DRB4	Homo sapiens major histocompatibility complex, class II, DR β 4 (HLA-DRB4), mRNA
HLA-DRA	1.44	0.023102	3122	HLA-DRA	Homo sapiens major histocompatibility complex, class II, DR α (HLA-DRA), mRNA
SLC5A1	1.39	0.021721	6523	SLC5A1	Homo sapiens solute carrier family 5 (sodium/glucose cotransporter), member 1 (SLC5A1), mRNA
HLA-DMA	1.39	0.009901	3108	HLA-DMA	Homo sapiens major histocompatibility complex, class II, DM α (HLA-DMA), mRNA
GZMK	1.36	0.014311	3003	GZMK	Homo sapiens granzyme K (granzyme 3; tryptase II) (GZMK), mRNA
C6ORF192	1.34	0.027143	116843	C6ORF192	Homo sapiens chromosome 6 open reading frame 192 (C6orf192), mRNA
SOSTDC1	1.30	0.007454	25928	SOSTDC1	Homo sapiens sclerostin domain containing 1 (SOSTDC1), mRNA
MGP	1.24	0.047067	4256	MGP	Homo sapiens matrix Gla protein (MGP), mRNA
LOC644151	1.24	0.013498	644151	LOC644151	Predicted: homo sapiens similar to calpain 8 (LOC644151), mRNA
CAMK1G	1.21	0.00353	57172	CAMK1G	Homo sapiens calcium/calmodulin-dependent protein kinase IG (CAMK1G), mRNA
HLA-DRB3	1.21	0.016937	3125	HLA-DRB3	Homo sapiens major histocompatibility complex, class II, DR β 3 (HLA-DRB3), mRNA
FAM46C	1.20	0.020803	54855	FAM46C	Homo sapiens family with sequence similarity 46, member C (FAM46C), mRNA
HLA-DMB	1.18	0.009027	3109	HLA-DMB	Homo sapiens major histocompatibility complex, class II, DM β (HLA-DMB), mRNA
CFD	1.17	0.043992	1675	CFD	Homo sapiens complement factor D (adipsin) (CFD), mRNA
VIPR1	1.17	0.007108	7433	VIPR1	Homo sapiens vasoactive intestinal peptide receptor 1 (VIPR1), mRNA
JSRP1	1.16	0.000782	126306	JSRP1	Homo sapiens junctional sarcoplasmic reticulum protein 1 (JSRP1), mRNA
HLA-DRB6	1.14	0.037486	3128	HLA-DRB6	Homo sapiens major histocompatibility complex, class II, DR β 6 (pseudogene) (HLA-DRB6), non-coding RNA
CPVL	1.09	0.022705	54504	CPVL	Homo sapiens carboxypeptidase, vitellogenic-like (CPVL), transcript variant 1, mRNA
MYB	1.08	0.026033	4602	MYB	Homo sapiens v-myb myeloblastosis viral oncogene homolog (avian) (MYB), transcript variant 2, mRNA
PIM2	1.05	0.002093	11040	PIM2	Homo sapiens pim-2 oncogene (PIM2), mRNA
CD79A	1.01	0.005757	973	CD79A	Homo saplens CD/9a molecule, immunoglobulin-associated α (CD/9A), transcript variant 1, mRNA
LPXN	1.01	0.015139	9404	LPXN	Homo sapiens leupaxin (LPXN), mKNA
Downregulat	ed genes n	o recurrenc	e vs recuri	rence comparis	ions in the second s
CASC3	-1.10	0.04282	22794	CASC3	Homo sapiens cancer susceptibility candidate 3 (CASC3), mRNA
SNCG	-1.26	0.00869	6623	SNCG	Homo sapiens synuclein, gamma (breast cancer-specific protein 1) (SNCG), mRNA
HIST1H2BD	-1.35	0.008322	3017	HIST1H2BD	Homo sapiens histone cluster 1, H2bd (HIST1H2BD), transcript variant 2, mRNA
HIST1H4H	-1.52	0.005711	8365	HIST1H4H	Homo sapiens histone cluster 1, H4 h (HIST1H4H), mRNA
ERBB2	-1.66	0.037147	2064	ERBB2	Homo sapiens v-erb-b2 erythroblastic leukemia viral oncogene homolog 2, neuro/glioblastoma derived oncogene homolog (avian) (ERBB2), transcript variant 2, mRNA
PNMT	-1.87	0.028033	5409	PNMT	Homo sapiens phenylethanolamine <i>N</i> -methyltransferase (PNMT), mRNA

Response c response vs r Log2 FC	omparison 10n-response) P-value	Recurrence c (non-recurrence Log2 FC	omparison vs recurrence) P-value	ENTREZ	Symbol	Description
-0.19683	0.606672	-0.11521	0.63171	207	AKT1	v-akt murine thymoma viral oncogene homolog 1
-0.01103	0.906703	-0.00329	0.961472	1432	MAPK14	Mitogen-activated protein kinase 14 (MAPK14), transcript variant 2, mRNA
0.226083	0.330387	-0.04211	0.845958	1956	EGFR	Epidermal growth factor receptor (erythroblastic leukemia viral (v-erb-b) oncogene homolog. avian) (EGFR), transcript variant 4. mRNA
-0.90661	0.403709	1.287734	0.149019	2099	ESR1	Estrogen receptor 1 (ESR1), mRNA
0.029502	0.85344	-0.2347	0.383516	2475	FRAP1	FK506 binding protein 12-rapamycin-associated protein 1 (FRAP1), mRNA
0.012733	0.921703	-0.1173	0.346272	5291	PIK3CB	Phosphoinositide-3-kinase, catalytic, polypeptide (PIK3CB), mRNA
0.144322	0.178427	0.158198	0.109441	5294	PIK3CG	Phosphoinositide-3-kinase, catalytic, γ polypeptide (PIK3CG), mRNA
-0.13906	0.313648	-0.04858	0.647994	5715	PSMD9	Proteasome (prosome, macropain) 26S subunit, non-ATPase, 9 (PSMD9), mRNA
-0.25588	0.403664	-0.25154	0.194387	5728	PTEN	Phosphatase and tensin homolog (PTEN), mRNA
0.096765	0.691444	0.150408	0.519489	7422	VEGFA	Vascular endothelial growth factor A (VEGFA), transcript variant 3, mRNA
-0.06244	0.746305	-0.21658	0.461031	10534	SSSCA1	Sjogren syndrome/scleroderma autoantigen 1 (SSSCA1), mRNA

MAPK14

EGFR ESR1

T

The 15 The log2 Fold change and P-value for the list of literarure compiled genes

Illumina ID

native molecular mechanisms and therefore perhaps, underlying distinctive gene sets.

Multiple genes had variable expression profiles in both the trastuzumab-treated and -untreated groups. Although the predominant genes that were differentially expressed in the trastuzumab-treated group involved DNA binding, those in the untreated group were found to be annotated to immunity and defense. Therefore, we suggest that the mechanism (DNA binding) by which patients who were treated with trastuzumab and subsequently developed recurrence may be different from those who were not treated and had a poor clinical outcome (immunity and defense). However, given the small sample size, these findings should be interpreted with caution as a larger group will be needed to validate these findings.

We further examined the genes that were previously reported to be involved in trastuzumab resistance including PTEN, PIK3, mTOR, MAPK and VEGF and found no significant changes.³³⁻³⁸ There are three possible explanations; these genes may not exert their role at the transcriptional level, the study sample size was too small or an actual absence in the role of trastuzumab resistance. The latter might be true because our study was conducted on actual patients and their tissues rather than in the pre-clinical setting. AKT, IGF-R1, p27 Kip1 and MUC4 were filtered out. In addition, we looked into HER2 pathway members. Interestingly, we found that known participants in this pathway were significantly dysregulated in the trastuzumab-treated group. However, only the PTPN11 gene in the HER2 pathway showed significant alterations at the single gene level, indicating that there were modest but consistently coordinated changes in the HER2 pathway components that can lead to significant dysregulation. Remarkably, the HER2 pathway was not found to be significantly dysregulated in all other seven comparisons.

Of particular note was our observation on the expression levels of tissue inhibitor metallopeptidase 1, which was found to be upregulated in patients noted to be responsive to trastuzumab (Table 5). Tissue inhibitor metallopeptidase 1 is one of the naturally occurring inhibitors of matrix metalloproteinases that affects cellular proliferation, apoptosis and angiogenesis, both dependent on and independent of its matrix metalloproteinase-inhibiting function. The prognostic value of tissue inhibitor metallopeptidase 1, on mRNA or protein level, was extensively studied in breast cancers with conflicting results.³⁹ However, all of these studies did not correlated tissue inhibitor metallopeptidase 1 with HER2 overexpression. In our study, tissue inhibitor metallopeptidase 1 was upregulated in the responsive patients. Therefore, tissue inhibitor metallopeptidase 1 can be included with the gene set that could potentially predict trastuzumab responsiveness.

In conclusion, there were distinctive gene signatures for trastuzumab resistance in trastuzumab-

VEGFA SSSCA1

TEN

IK3CG

IK3CB SMD9

RAP1

treated patients and poor clinical outcome in those patients not treated with this agent. Additional studies with larger group will be needed to validate our results and to pare down the number of genes that could serve as reliable predictors for trastuzumab resistance. Such a gene set may have clinical utility in the planning of which therapeutic strategy to use as well as a prognostic tool for HER2-positive breast cancer patients

Acknowledgement

We thank the Alpha Foundation for its financial support.

Disclosure/conflict of interest

The authors declare no conflict of interest.

References

- 1 Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2001;2: 127–137.
- 2 Pinkas-Kramarski R, Soussan L, Waterman H, *et al.* Diversification of Neu differentiation factor and epidermal growth factor signaling by combinatorial receptor interactions. EMBO J 1996;15:2452–2467.
- 3 Yaziji H, Goldstein LC, Barry TS, *et al.* HER-2 testing in breast cancer using parallel tissue-based methods. JAMA 2004;291:1972–1977.
- 4 Owens MA, Horten BC, Da Silva MM. HER2 amplification ratios by fluorescence *in situ* hybridization and correlation with immunohistochemistry in a cohort of 6556 breast cancer tissues. Clin Breast Cancer 2004;5:63–69.
- 5 Slamon DJ, Clark GM, Wong SG, *et al.* Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987;235: 177–182.
- 6 Camirand A, Lu Y, Pollak M. Co-targeting HER2/ErbB2 and insulin-like growth factor-1 receptors cause synergistic inhibition of growth in HER2-overexpressing breast cancer cells. Med Sci Monit 2002;8:521–526.
- 7 Lu Y, Zi X, Zhao Y, *et al.* Insulin-like growth factor-I receptor signaling and resistance to trastuzumab (Herceptin). J Natl Cancer Inst 2001;93:1852–1857.
- 8 Harris LN, You F, Schnitt SJ, *et al.* Predictors of resistance to preoperative trastuzumab and vinorelbine for HER2-positive early breast cancer. Clin Cancer Res 2007;13:1198–1207.
- 9 Joensuu H, Kellokumpu-Lehtinen PL. Adjuvant docetaxel or vinorelbine with or without trastuzumab for breast cancer. N Engl J Med 2006;354:809–820.
- 10 Piccart-Gebhart MJ, Procter M, Leyland-Jones B, *et al.* Trastuzumab after adjuvant chemotherapy in HER2positive breast cancer. N Engl JMed 2005;353: 1659–1672.
- 11 Romond EH, Perez EA, Bryant J, *et al.* Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 2005;353:1673–1684.
- 12 Pegram MD, Konecny GE, O'Callaghan C, et al. Rational combinations of trastuzumab with chemo-

therapeutic drugs used in the treatment of breast cancer. J Natl Cancer Inst 2004;96:739–749.

- 13 Nahta R, Esteva FJ. Herceptin. mechanisms of action and resistance. Cancer Lett 2006;232:123–138.
- 14 Pegram MD. Can we circumvent resistance to ErbB2targeted agents by targeting novel pathways? Clin Breast Cancer Suppl 2008;8(Suppl 3):S121–S130.
- Breast Cancer Suppl 2008;8(Suppl 3):S121–S130.
 15 Telli ML, Hunt SA, Carlson RW, et al. Trastuzumabrelated cardiotoxicity: callin into question the concept of reversibility. J Clin Oncol 2007;25:3525–3533.
- 16 Tan-Chiu E, Yothers G, Romond E, *et al.* Assessment of cardiac dysfunction in a randomized trial comparing doxorubicin and cyclophosphamide followed by paclitaxel, with or without trastuzumab as adjuvant therapy in node-positive, human epidermal growth factor receptor 2-overexpressing breast cancer: NSABP B-31. J Clin Oncol 2005;23:7811–7819.
- 17 Hillner BE, Smith TJ. Do the large benefits justify the large costs of adjuvant breast cancer trastuzumab? J Clin Oncol 2007;25:611–613.
- 18 Gentleman RC, Carey VJ, Bates DM, et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 2004;5:R80.
- 19 Du P, Kibbe WA, Lin SM. Lumi. A pipeline for processing Illumina microarray. Bioinformatics 2008;24: 1547–1548.
- 20 Smyth GK. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 2004; 3:R3.
- 21 Eisen MB, Spellman PT, Brown PO, *et al.* Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 1998;95:14863–14868.
- 22 Subramanian A, Tamayo P, Mootha VK, *et al.* Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005;102:15545–15550.
- 23 Tavassoli FA, Schnitt SJ. Pathology of the Breast. Elsevier: New York, 1992.
- 24 Perou CM, Sørlie T, Eisen MB, *et al.* Molecular portraits of human breast tumours. Nature 2000;17: 747–752.
- 25 T Sørlie T, Perou CM, Tibshirani R, *et al.* Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 2001;98:10869–10874.
- 26 Van de Vijver MJ, He YD, van't Veer LJ, *et al.* A geneexpression signature as a predictor of survival in breast cancer. N Engl J Med 2002;347:1999–2009.
- 27 Paik S, Shak S, Tang G, *et al.* A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 2004;351:2817–2826.
- 28 Hudis CA. Trastuzumab-mechanism of action and use in clinical practice. N Engl J Med 2007;357: 39–51.
- 29 Weiner LM, Adams GP. New approaches to antibody therapy. Oncogene 2000;19:6144–6151.
- 30 Moniaux N, Andrianifahanana M, Brand RE, *et al.* Multiple roles of mucins in pancreatic cancer, a lethal and challenging malignancy. Br J Cancer 2004;91: 1633–1638.
- 31 Carraway KL, Perez A, Idris N, et al. Muc4/sialomucin complex in the mammary gland and breast cancer. J Mammary Gland Biol Neoplasia 2001;6:323–337.
- 32 Khoury T, Mojica W, Hicks DG, *et al.* Trastuzumab binding site mutations in HER2 positive invasive breast cancer: a potential predictor of less aggressive

disease and trastuzumab resistance. Breast Cancer Res Treat 2006;100(Suppl 1):S31 (abstract 308).

- 33 Nahta R, Takahashi T, Ueno NT, *et al.* P27Kip1 downregulation is associated with trastuzumab resistance in breast cancer cells. Cancer Res 2004;64:3981–3986.
- 34 Nagata Y, Lan KH, Zhou X, *et al.* PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell 2004;6:117–127.
- 35 Lu CH, Wyszomierski SL, Tseng LM, et al. Preclinical testing of clinically applicable strategies for overcoming trastuzumab resistance caused by PTEN deficiency. Clin Cancer Res 2007;13:5883–5888.
- 36 Nahta R, Yuan LXH, Zhang B, et al. Insulin-like growth factor-I receptor/ human epidermal growth factor receptor 2 heterodimerization contributes to trastuzu-

mab resistance of breast cancer cells. Cancer Res 2005;65:11118–11128.

- 37 Chung Y-L, Sheu M-L, Yang S-C, *et al.* Resistance to tamoxifen-induced apoptosis is associated with direct interaction between Her2/neu and cell membrane estrogen receptor in breast cancer. Int J Cancer 2002;97:306–312.
- 38 du Manoir JM, Francia G, Man S, Mossoba M, *et al.* Strategies for delaying or treating *in vivo* acquired resistance to trastuzumab in human breast cancer xenografts. Clin Cancer Res 2006;12:904–916.
- 39 Sieuwerts AM, Usher PA, Meijer-van Gelder ME, *et al.* Concentrations of TIMP1 mRNA splice variants and TIMP-1 protein are differentially associated with prognosis in primary breast cancer. Clin Chem 2007;53: 1280–1288.