
As the story goes, one of the most defining 
events for crystallography was a mishap. 
Rene-Just Haüy, a Parisian priest, had been 
invited to look at a friend’s latest acquisition, 
a beautiful prismatic calcite crystal. In a 
careless moment, the crystal slipped out of 
Haüy’s hands and shattered on the floor. 
At this time, in 1781, characterizations of 
crystals were solely based on their outer 
morphology. But Haüy’s mishap led to a 
deeper understanding of the essential inner 
characteristics of the crystalline state of 
matter: periodicity.

On examination of the crystal’s 
fragments, Haüy noticed that it “had a 
single fracture along one of the edges of the 
base… I tried to divide it in other directions 
and I succeeded, after several attempts, in 
extracting its rhomboid nucleus.” In other 
words, Haüy realized that crystals always 
cleave along crystallographic planes. In 
addition, it was known from previous 
discoveries that in a given crystal species 
the interfacial angles always have 
the same value. Based on these two 
clues, Haüy concluded that crystals 
must be periodic and composed 
of stacks of little polyhedra, 
which he called molécules 
intégrantes. This theory could 
conveniently explain why 
all crystal planes are related 
by small rational numbers, a 
principle we nowadays refer to 
as the law of rational indices.

Considering how closely 
Haüy’s theory resembles the modern 
concept of periodicity, it is a masterpiece 
of imagination. But it posed two major 
questions. The first one again relates to 
outer morphology: What is the complete 

list of symmetries that a crystal can 
in principle possess? It was clear that 
only 2, 3, 4 and 6-fold rotational axes 
were consistent with Haüy’s laws, and 
eventually Moritz Frankenheim (in 1826) 
and Johann Hessel (in 1830) concluded 
that this restriction results in 32 possible 
crystal classes.

The second question concerns the exact 
nature of the molécules intégrantes, which 
in Haüy’s drawings look like little bricks. 
But this proved to be incompatible with 
the observation that crystals are elastic. 
What was missing was the concept of a 
space lattice. That a crystal is best described 
by an array of discrete points generated 
by defined translational operations was 
independently devised by Ludwig Seeber in 

1824 and Gabriel Delafosse in 1840. And 
it was August Bravais who then famously 

derived all 14 possible lattice symmetries 
in 1850.

But those 14 lattices could not 
explain all 32 crystal classes. Bravais 

had ideas about how to reconcile 
this discrepancy but did not 

realize his crucial oversight: In 
addition to pure translations, 
their combination with 
rotations and reflections had 

to be considered. It then 
took geometrical group 
theory to elaborate all 
possible combinations. 
Leonhard Sohncke took 
on this task, presenting 

65 space groups in 1879, 

but left out certain symmetry operations. 
The two scientists who independently 
sought to extend Sohncke’s result were 
Arthur Shoenflies and Evgraf Fedorov. After 
learning about each other’s work, they started 
a lively correspondence, eliminating mistakes 
and finally, in 1891, agreeing on a catalogue 
of 230 space groups.

Compared with the 32 crystal classes, 
these concepts seemed like an unnecessary 
complication. And there was no means 
of testing the notion of a space lattice or 
space groups. Consequently, neither of their 
inventors got due credit at first. “Somehow 
I did not think that I would live to see the 
day when the distribution of atoms as I 
predicted it in my papers would actually be 
determined,” Fedorov commented on the first 
X-ray diffraction experiments. But thanks to 
Max von Laue (Milestone 2) and the Braggs 
(Milestones 3 and 4), the concepts of the 
space lattice and space groups were verified 
earlier than Fedorov had ever hoped for.
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Haüy’s concept of periodicity. Construction of a 
scalenohedron by stacking molécules intégrantes. Figure 
reprinted with permission from A. Authier Early Days of X-ray 
Crystallography p12 (Oxford Univ. Press, 2013). 
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