
Eosinophils are required to suppress Th2
responses in Peyer’s patches during intestinal
infection by nematodes
J Strandmark1, S Steinfelder1, C Berek2, AA Kühl3, S Rausch1,4 and S Hartmann1,4

Infections with enteric nematodes result in systemic type 2 helper T (Th2) responses, expansion of immunoglobulin

(Ig)G1 antibodies, and eosinophilia. Eosinophils have a supportive role in mucosal Th2 induction during airway

hyperreactivity.Whether eosinophils affect the local T-cell and antibody response in the gut-associated lymphoid tissue

during enteric infections is unknown. We infected eosinophil-deficient DdblGATA-1 mice with the Th2-inducing small

intestinal nematode Heligmosomoides polygyrus and found that parasite fecundity was decreased in the absence of

eosinophils. A lack of eosinophils resulted in significantly augmented expression of GATA-3 and IL-4 by CD4þ Tcells

during acute infection, a finding strictly limited to Peyer’s patches (PP). The increase in IL-4-producing cells in

DdblGATA-1 mice was particularly evident within the CXCR5þPD-1þ T-follicular helper cell population and was

associated with a switch of germinal centre B cells to IgG1 production and elevated serum IgG1 levels. In contrast,

infected wild-type mice had a modest IgG1 response in the PP, whereas successfully maintaining a population of IgAþ

germinal center B cells. Our results suggest a novel role for eosinophils during intestinal infection whereby they restrict

IL-4 responses by follicular T helper cells and IgG1 class switching in the PP to ensure maintenance of local IgA

production.

INTRODUCTION

The traditional view of eosinophils as effector cells that evolved
to fight parasitic worms originates from the observation that
during helminth infections their numbers increase markedly in
response to IL-5 produced by CD4þ type 2 helper T (Th2)
cells.1 However, for many helminth infections, convincing
evidence that they are an indispensible part of the host’s
immune defence is lacking.2 Notwithstanding their ability to
contribute to protection against the larval stages of some
helminth species,3,4 their role is often redundant,5 their ablation
of no consequence6 or their presence even of apparent benefit to
the parasite.7

Beyond helminth infections, eosinophilia develops in
Th2-driven immune disorders, most notably asthma,8 but
also others such as eosinophilic gastritis, dermatitis, and

esophagitis, in all of which they have been ascribed a role linked
to immunopathology.9

However, eosinophils are also a prominent part of the
healthy intestine.10 As their granules not only contain cationic
proteins with anti-microbial activity, but also an impressive
range of pre-formed cytokines and chemokines that can rapidly
be released upon appropriate stimulation, eosinophils have
great potential to influence homeostatic processes as well as
early immunological events occurring upon tissue invasion by
pathogens. Accordingly, a more diverse picture of eosinophils
has recently emerged in which they function in a number of
settings, including bacterial and viral clearance,11,12 metabolic
homeostasis,13 and muscle regeneration.14

Recent findings additionally reveal that eosinophils are of
major importance for plasma cell survival and maintenance in
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bone marrow15 and intestine,16 in the latter of which they
contribute to the generation of IgA plasma cells in naive mice,
thus demonstrating an important role for eosinophils in gut
homeostasis.

Whether eosinophils affect antibody responses against
intruding pathogens has not been investigated. Here we show
for the first time that the lack of eosinophils during infection
with an enteric nematode leads to deregulated adaptive local
immune responses in the Peyer’s patches (PP). Eosinophil-
deficient mice infected with the natural murine parasite
Heligmosomoides polygyrus displayed an increased Th2
response accompanied by sharply elevated immunoglobulin
(Ig)G1 class switching by germinal centre B cells in the PP,
leading to increased serum levels of IgG1. The increase in Th2
and associated antibody responses as well as a defect in the
small intestinal mucous shield coincided with a significant
reduction in parasite fecundity.

RESULTS

H. polygyrus infection results in local and systemic
eosinophilia

To gain insight into the distribution of eosinophils in mice
infected with enteric nematodes we compared histological
sections of the gut of naive and H. polygyrus-infected BALB/c
mice at 2 weeks post infection. Eosinophils were readily
detectable in the lamina propria of the proximal small intestine
and were found in higher numbers after infection (Figure 1a).
Furthermore, eosinophils had infiltrated the Peyer’s patches
(PP) andmesenteric lymphnodes (mLN) (Figure 1a). To assess
the kinetics of eosinophil accumulation in more detail we
infected wild-type (WT) BALB/c and DdblGATA-1 mice,
deficient in eosinophils owing to a deletion of a high-affinity
GATA-binding site in the GATA-1 promoter,17 and detected
eosinophils by flow cytometry according to the gating strategy
shown in Figure 1b. The frequency and absolute number
of SSChi CD45þSiglecFþCCR3þ cells with morphological
features of eosinophils (Figure 1c) increased in infected BALB/
cmice and reached levels significantly higher than those seen in
naive controls at 2 weeks post infection in the small intestine,
PP, andmLN (Figure 1d and e). Frequencies of eosinophils also
increased in spleen, bone marrow, and peritoneum (Supple-
mentary Figure S1 online). As expected, DdblGATA-1 mice
were devoid of eosinophils.

We further detected SSChiFceRIþ cells in the lamina propria,
which were slightly elevated in DdblGATA-1 mice infected
with H. polygyrus (Supplementary Figure S1B). These cells
appeared to consist mostly of mast cells as indicated by c-kit
expression (not shown).

In summary, eosinophils rapidly increase locally and
systemically in response to nematode infection in WT mice.

Eosinophils restrict nematode-driven Th2 induction in PP
of WT mice

Eosinophils have been shown to support the induction and
tissue accumulation of Th2 cells during airway hyperreactiv-
ity.18 We therefore asked whether the development of Th2

responses to an intestinal nematode infection was affected in
mice lacking eosinophils and analyzed the T-cell response in
WT and DdblGATA-1 mice acutely infected withH. polygyrus.

Strikingly, as early as 6 days after infection, PP of
DdblGATA-1 mice infected with H. polygyrus showed signifi-
cantly elevated frequencies of CD4þ T cells expressing GATA-
3, the transcriptional regulator of Th2 cells, compared with
infected WT controls (Figure 2a). The stronger Th2 develop-
ment was restricted to the PP, as frequencies of GATA-3þ Th2
cells increased to a similar extent in mLN, spleen and the small
intestine of infected WT, and DdblGATA-1 mice (Figure 2b
and Supplementary Figure S2A). In accordance with the
increased GATA-3 expression, we found that the frequency of
CD4þ T cells expressing IL-4 following PMA/ionomycin
stimulation was significantly higher in the PP of infected
DdblGATA-1 mice compared with infected WT controls at 2
weeks post infection (Figure 2c), whereas IL-4-producing cells
increased comparably in themLN of both strains in response to
infection (Figure 2d).Wenext assessedwhether the production
of other Th2 associated cytokines was affected by eosinophil
deficiency by stimulating cells from the PP andmLNwith anti-
CD3/28 antibodies and measuring secretion of IL-13, IL-5, and
IL-10 in addition to IL-4. In agreement with flow cytometric
data, we measured higher levels of IL-4 secretion by PP cells of
infected DdblGATA-1 mice, although the difference did not
reach statistical significance (Figure 2e). IL-4 secretion from
themLNofDdblGATA-1 andBALB/cmicewas comparable, as
was secretion of all other cytokines by cells from PP and mLN
(Figure 2e-h). Furthermore, production of IL-1b and IL-6, both
implicated in eosinophil-mediated support of PP B-cell
responses15,19 and in limiting Th2 induction,20,21 was normal
in the small intestine of DdblGATA-1 mice infected with
H. polygyrus (Figure 2i and j).

Given the importance of dendritic cells (DCs) in the
instruction of Th cell responses, we assessed the composition
of the CD11chiMHCIIþ DC population in the PP and mLN of
BALB/c and DdblGATA-1 mice and found that CD103þ DC,
previously shown to constitutively produce IL-12 and thereby
suppress helminth-induced Th2 responses,22 were present at
lower levels in the PP of H. polygyrus infected DdblGATA-1
mice compared with BALB/c mice (Figure 2k and i).

We found that PP, but not mLN of DdblGATA-1 mice, were
smaller than the PP of WT controls (Supplementary Figure
S2B). The cellularity of PP corresponded well to previously
published studies16,19 with PP cell counts ofDdblGATA-1mice
being reduced by B50% compared with BALB/c mice.
Frequencies of CD4þ T cells were comparable between
WT and DdblGATA-1 mice, but decreased in the mLN in
response to H. polygyrus infection (Supplementary Figure
S2C). This decrease was compensated for by B220þ B cells,
demonstrating that B-cell strongly infiltrate and/or expand in
themLN in response to H. polygyrus infection (Supplementary
Figure S2D). Finally, the frequencies of Foxp3þ regulatory
T cells were not affected by the absence of eosinophils (Supple-
mentary Figure S2E). To determine whether the increased
expression of GATA-3 in eosinophil-deficient animals was
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restricted to T effector cells, we assessed the expression of
GATA-3 in Foxp3þ regulatory T cells. Frequencies of GATA-
3þFoxp3þ regulatory T cells increased similarly in the PP and
mLN of both strains (Supplementary Figure S2F). In addition,
the frequencies of T-betþ Th1 cells and IFN-g-producing cells
were unaffected by the absence of eosinophils (Supplementary
Figure S2G, H).

To corroborate these results we repeated these experiments
in infected PHIL mice, which lack eosinophils owing to their
expression of a diphtera toxin transgene under the control of
the eosinophil peroxidase promoter.23 In agreement with our
findings in DdblGATA-1 mice we observed a shift toward
GATA-3þ CD4þ T cells in the PP of PHIL mice 14 days
post infection (Supplementary Figure S3A, B). Once again
there was no difference in the Th2-type response when mLN
from PHIL and C57BL/6 WT controls were compared
(Supplementary Figure S3A, B). Similar to our findings in

DdblGATA-1 mice, and corresponding to previous findings,
the cell number isolated from pooled PP of naive and infected
PHIL mice were reduced compared with WT mice
(Supplementary Figure S3C).

Eosinophil-deficient mice thus display altered T-cell
responses during an enteric nematode infection, marked by
a selective increase in GATA-3þCD4þ Th2- and IL-4-
producing cells in the PP.

Increased IL-4 production by TFH cells in infected
eosinophil-deficient mice

Follicular T helper cells (TFH) have been shown to be a major
source of IL-4 in the mLN during helminth infections.24,25

We therefore assessed the phenotype of IL-4 producing
CD4þ T cells in further detail and used the expression of
CXCR5 and PD-126 to define and quantify TFH cells in PP
and mLN.
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Figure 1 Accumulation of eosinophils in response to H. polygyrus infection. (a) Sirius red-stained eosinophils in sections from duodenum, Peyer’s
patches (PP), and mesenteric lymph nodes (mLN) of naive andH. polygyrus-infected (H.p.) WTmice. Arrowheads depict eosinophils. Scale bar 20 mm.
(b) Gating strategy for the detection of eosinophils. (c) Morphology of FACS-sorted CD45þSSChiSiglec-FþCCR3þ cells isolated from the small
intestinal lamina propria (SiLP). (d) Frequencies of eosinophils in SiLP, PP, andmLN ofWT (filled circles) andDdblGATA-1mice (open circles) detected
by flow cytometry. (e) Total numbers of eosinophils in SiLP, PP, and mLN. Mean±s.e.m. is shown. n¼ 3–4. Data are representative of more than two
independent experiments. Asterisks depict significant differencesbetweennaive andWT. *Po0.05, **Po0.01, ****Po0.0001. d.p.i.: days post infection.
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As expected, the PP of naive animals displayed relatively
high frequencies of CXCR5þPD-1þ TFH cells, permitting
continuous IgA class switching at this site27 (Figure 3a). In
contrast, few TFH cells were detected in the mLN of naive mice
(Figure 3b). In response to infection, the number of CXCR5þ

PD-1þ cells in PP and mLN of WT and DdblGATA-1 mice
increased to a similar extent, with slightly lower frequencies
observed in the PP of DdblGATA-1 compared with WT
mice (Figure 3a and b). We compared IL-4 production by
CXCR5þPD-1þ TFH cells and CXCR5-PD-1- non-TFH cells
and found that both of these populations in the PP of infected
DdblGATA-1 mice contained significantly higher frequencies
of IL-4 producing cells compared withWT controls though the
increase in IL-4-producing cells was greater in TFH cells
(Figure 3c). Furthermore, on a per cell basis, TFH cells from
DdblGATA-1mice had significantly increased IL-4 production
as indicated by a higher median fluorescence intensity, whereas
non-TFH cells expressed similar levels of IL-4 in infected WT
and DdblGATA-1 mice (Figure 3e). In contrast, except for
a significant decrease of IL-4þ non-TFH cells in mLN of
DdblGATA-1 mice, the frequency of IL-4-expressing CD4þ

T cells, as well as IL-4 amounts per cell were similar inWT and
DdblGATA-1 mice (Figure 3d and f).

To ensure that the increase in IL-4þ TFH cells was not
compensatory for the slightly lower levels of TFH cells in the PP
ofDdblGATA-1mice, we further expressed IL-4þ TFH cells as
a percentage of CD4þ cells, which were comparable between
strains (Supplementary Figure S2C). Expressed in this way,
the PP ofDdblGATA-1mice still contained significantly higher
frequencies of IL-4þ TFH cells (Figure 3g). As the PP of
DdblGATA-1 mice contain significantly fewer cells compared
with BALB/c mice (Supplementary Figure S2B), this
difference was not apparent when calculating total numbers
of IL-4þ TFH cells (Figure 3h).

IL-10 is a pleiotropic cytokine implicated in immune
regulation and as a switch factor for IgA.28 A small percentage
of TFH cells constitutively expressed IL-10 in PP andmLN, but
this did not differ significantly between mouse strains and was
not affected by H. polygyrus infection. A significant increase of
IL-10 producing non-TFH cells was detected in mLN of both
mouse strains upon H. polygyrus-infection (Figure 3i-j).

We conclude that nematode infection in the absence of
eosinophils leads to a deregulated T-cell response in the PPwith
a prominent increase in IL-4 production by TFH cells.

Eosinophil-deficient mice display increased class
switching to IgG1

Given that TFH-derived IL-4 supports IgG1 and IgE class
switching25 we asked whether the increased availability of IL-4
in nematode-infected eosinophil-deficient mice affected germ-
inal centre formation and class switching to Th2-associated
antibodies following nematode infection.

Indeed, serum levels of total IgG1 and IgE were significantly
increased in eosinophil-deficient mice acutely infected with
nematodes (Figure 4a and b). In contrast, levels of circulating
IgG2a were not affected by H. polygyrus infection and did not
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differ between mouse strains (Figure 4c). Serum levels of IgA
were similar in BALB/c and DdblGATA-1 mice (Figure 4d),
but naive DdblGATA-1 mice displayed significantly reduced
levels of intestinal IgA (Figure 4e), confirming previous

studies.16,19 In line with total serum IgG1 and IgE, the serum of
DdblGATA-1 mice exposed to a challenge infection displayed
significantly higher titers of IgG1 and IgE antibodies recogniz-
ing H. polygyrus excreted/secreted products than did serum
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from challenged WT controls (Figure 4f and g). To determine
whether differences in serum antibody levels were due to
altered germinal center (GC) properties, we next analyzed B
cells in PP and mLN—the two major sites for gut-associated
B-cell class switching.

In accordance with the prominent population of TFH cells
at baseline, the PP of naive mice contained relatively high
levels of PNAhiB220þ germinal centre B cells. Slightly lower
baseline frequencies of PNAhi B220þ cells were seen in the PP
of naiveDdblGATA-1mice compared with naiveWT controls,
but this difference did not reach statistical significance. 14 days

post infection with H. polygyrus there was only a moderate
increase in the frequency of GC B cells in both mouse strains.
Once again the situation in the mLN was quite different. Here
GC B cells were almost absent in naive mice, but increased
significantly and to a similar extent upon infection in both
mouse strains (Figure 4h).

Assessing the expression of activation-induced cytidine
deaminase, an enzyme required for somatic hyper-mutation
and isotype class switching that is confined mainly to GC B
cells,29 we confirmed that H. polygyrus infection only mode-
rately increased class switch recombination in the PP, but
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resulted in significant upregulation of activation-induced
cytidine deaminase in the mLN of infected WT and
eosinophil-deficient mice (Figure 4i). Hence, GC formation
in response to infection was intact in PP and mLN of
eosinophil-deficient mice.

Nextwe assessed the expression of antibody isotypes byGCB
cells in the PP and mLN. WT mice only moderately increased
IgG1 and expanded IgA production in the PP in response to
infection, indicating that the PP are not the main site of IgG1
responses to H. polygyrus in these animals (Figure 5a and b).
In contrast, PP of DdblGATA-1 mice displayed markedly
increased frequencies of IgG1þ GC B cells (Figure 5a and b)
and a sharp decline of IgAþ B-cell frequencies and numbers
(Figure 5c and d) compared with infected WT controls. In
mLN, the infection led to a considerable and similar increase in
IgG1-switched GC B cells inWT and eosinophil-deficient mice
(Figure 5e and f), whereas the small IgAþ B-cell population
decreased in frequency, butwasmaintained in terms of absolute
numbers following infection in both strains (Figure 5g and h).
As TGF-b is of imperative importance for IgA class switching,28

and as eosinophils are known to produce TGF-b30 we
compared the gene expression of TGF-b in the small intestine

early in infection and quantified TGF-b protein in intestinal
tissue at day 14 post infections. Neither TGF-b expression nor
levels of TGF-b protein were reduced in eosinophil-deficient
mice (Figure 5i and j).

Hence, we conclude that during intestinal nematode infection,
IgG1switching takesplacepredominantly in themLN,which isnot
affected by eosinophil deficiency. In the PP, however, eosinophils
are required to limit class switch recombination to IgG1 and thus
are crucial for the maintenance of IgA production.

Importantly, as PP do not increase in size following
H. polygyrus infection (Supplementary Figure S2B), the
increased frequency of IgG1þ B cells in PP of infected
DdblGATA-1 mice is unlikely to represent a difference in
infiltrating cells. Rather, eosinophils influence the flavor of PP
antibody production, maintaining IgA class switch recom-
bination, whereas their absence leads to enhanced class switch
recombination to IgG1 and increased serum IgG1 levels.

Eosinophil reconstitution does not lead to restricted Th2
responses in the PP of DdblGATA-1 mice

To assess whether the finding of elevated Th2 induction and
IgG1 class switching in PP of infectedDdblGATA-1mice could
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be controlled by eosinophil reconstitution, we isolated eosino-
phils from the blood of IL-5 transgenic mice and performed
intravaneous transfers of 5–10� 106 cells prior to and during
H. polygyrus infection. A scheme of the approach used and the
purity of transferred eosinophils after enrichment are shown in
Supplementary Figure S4A and B. Transferred eosinophils
were prominent in the lamina propria of DdblGATA-1 mice 7
days post H. polygyrus infection, but was substantially lower
than equivalent frequencies in infected WTmice (Supplemen-
tary Figure S4C). However, PP cellularity was not restored as a
result of eosinophil transfer to DdblGATA-1 mice (Supple-
mentary Figure S4D), nor did the presence of eosinophils in
the lamina propria of DdblGATA-1 mice restrict the induction
of PP GATA-3þ Th2 cells to levels of BALB/c mice (Supple-
mentary Figure S4E). Similarly, the PP of DdblGATA-1 mice
displayed significantly reduced frequencies of IgAþ B cells
and a trend for higher frequencies of IgG1 B cells following
eosinophil transfers (Supplementary Figure S4F, G).

Hence, the reconstitution of DdblGATA-1 mice with blood-
derived eosinophils was insufficient in preventing the overt Th2
induction and IgG1 class switching in PP.

Parasite fecundity is impaired in eosinophil-deficient mice

The Th2-type response and the associated class switch to IgG1
in response toH. polygyrus infection are central for the defence
against re-infection, and for the control of parasite fecundity in
primary infections.31 We therefore asked whether the marked
increase in PP Th2 reactivity and IgG1 production in the
absence of eosinophils affects worm burden and fitness. There
was no difference in adult worm burdens at 2 weeks post
infection in DdblGATA-1 and PHIL mice compared with WT
controls, suggesting that the development of L3 larvae to adults,
as well as their emergence to the lumen is not affected by the
absence of eosinophils (Figure 6a and c). Protective immunity
to challenge infection was also not affected by the lack of
eosinophils (Figure 6a). However, quantifying egg production
by female worms isolated at 2 weeks post infection revealed that
parasite fecundity, a measure of fitness, was significantly
reduced in both eosinophil-deficient mouse strains compared
with WT controls (Figure 6b and d).

In response to IL-4Ra signaling, macrophages acquire an
alternatively activated phenotype marked by the expression of
resistin-like molecule-alpha (Relm-a) and arginase-1 (arg-1),32

the latter being central to the control of challenge infection with
H. polygyrus.33 We therefore asked whether the decreased
parasite fitness during primary H. polygyrus infections in
the absence of eosinophils was related to changes in alter-
native macrophage activation. The expression of Relm-a and
arginase-1 in small intestinal tissue, however, was similar
in infected WT and DdblGATA-1 mice (Figure 6e and f).

In response to IL-4 and -13, intestinal epithelial cells
differentiate into goblet cells that produce resistin-likemolecule
beta (Relm-b)—a factor impeding intestinal nematodes in
feeding from host tissue.34 It was thus possible that differences
in Relm-b production or intestinal goblet cell numbers could
account for the decreased fecundity of female worms. However,

we found that small intestinal Relm-b expression and goblet cell
numbers were comparable in infected WT and DdblGATA-1
mice (Figure 6g-i). Interestingly, despite similar goblet cell
counts detected in infected WT and DdblGATA-1 mice, we
found that the mucus layer attached to small intestinal villi of
infectedWTmice was practically absent in infected eosinophil-
deficient mice (Figure 6h).

Finally, we assessed the level of infection-induced small
intestinal enteropathy at day 3 and 14 post infection and found
that both WT and eosinophil-deficient mice developed similar
enteritis scores in response to infection (Figure 6j).

Taken together, these data indicate that the action of
eosinophils in H. polygyrus infection is not detrimental for
parasite development during primary infections and dispen-
sable for protection against challenge infections. Instead, they
rather regulate the development of Th2-type responses
associated with IgG1 production in the PP, presumably in
order to maintain a balanced mucosal antibody profile.

DISCUSSION

This study demonstrates a novel role for eosinophils in
regulating adaptive immune responses in the PP compartment
of the gut following small intestinal nematode infection.
Previous studies have shown that at steady state eosinophils are
centrally involved in supporting PP development as well as in
sustaining IgA class switch recombination at this site.16,19

Our study builds on these findings by showing that
deregulation of B-cell responses in the absence of eosinophils
extends to pathogen-induced IgG1 responses. In addition, this
study demonstrates a novel role for eosinophils in regulating
T-cell function in PP upon enteric infection.

During lung inflammation eosinophils support the priming
and accumulation of Th2 cells8,35 and during an oral
sensitization regime, using peanut allergen combined with
the mucosal adjuvant cholera toxin, eosinopohils have been
shown to be critically involved in the induction of systemic Th2
responses.36 Our data, however, show that Th2 induction in the
mLN’s in responses to infection with a natural enteric parasite
were intact in two strains of eosinophil-deficient mice and that
the absence of eosinophils leads to a significant increase in
GATA-3-expressing and IL-4 producing Th2 cells in the PP.
Thus, we show that eosinophils are not a prerequisite for proper
Th2 induction in response to intestinal pathogens and that
they clearly vary in their propensity to support and regulate
Th2 responses under different conditions and in different
compartments.

The effect of eosinophil deficiency on immune responses in
the PP is unlikely to be a direct one as, although they do
infiltrate the PP followingH. polygyrus infection, their numbers
are extremely low. In contrast, eosinophils infiltrate the lamina
propria in vast numbers. Thus, eosinophils are likely to exert
their effect(s) in the lamina propria, ultimately influencing
events in the PP. In our study, frequencies of CD103þCD11b-

DC were found to be higher in the PP, but not the mLN, of
BALB/c mice, as compared with DdblGATA-1 animals,
following infection with H. polygyrus. This subset has been
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implicated in regulation of Th2 responses via the production of
IL-12.22 It is thus possible that eosinophil-mediated support of
CD103þCD11b- DC provide conditions limiting Th2 differ-
entiation in the PP.

Factors responsible for the maintenance of DC populations
and their migration between intestine and gut-associated
lymphoid organs are not well defined and studies are usually
confined to assessing the effect of different stimuli in vitro on
bone marrow derived DC. In this way, it has been shown that
IL-1b induces the production of DC-derived IL-12.37 IL-1b
produced by eosinophils has further been implicated as
responsible for their role in supporting intestinal IgA19 and
intestinal IL-1b has been shown to limit Th2 responses
followingH. polygyrus infection.21 Small intestinal IL-1b levels

of H. polygyrus-infected BALB/c and DdblGATA-1 mice,
however, were similar, suggesting that the differences seen in
frequencies of PP CD103þCD11b- DC and IgAþ P cells of
BALB/c and DdblGATA-1 mice occur independently of IL-1b.

In our study, transfers of eosinophils from IL-5 transgenic
mice did not result in a restriction of PP Th2 responses of
DdblGATA-1 mice comparable to the levels seen in WT mice.
There are several possible explanations for this. The first
possibility is that the long-term presence of eosinophils is
important for PP development and that our relatively short
protocol (starting 8 days pre-infection) was insufficient for the
establishment of a fully ‘‘eosinophil competent’’ environment.
Second, it is possible that the numbers of eosinophils
infiltrating the gut after transfers, being reduced by B50%
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compared with WT mice, may have been insufficient for
controlling the immune reactions in PP. Furthermore,
eosinophils derived from IL-5 transgenic mice may be distinct
from eosinophils found in the healthy intestine. IL-5 is
essentially an inflammatory cytokine and responsible for
eosinophil infiltration to sites of infection and inflammation.
In contrast, homeostatic trafficking of eosinophils is regulated
by eotaxin.10 Thus, eosinophils infiltrating the gut in response
to H. polygyrus infection in WT mice (and the IL-5-elicited
eosinophils transferred in our study) may differ in their actions
from eosinophils present in high numbers in the small intestine
of healthymice. In accordance, it has been shown that activated
Siglec-Fhi eosinophils infiltrate the intestine in high numbers
during experimental colitis and express the degranulation
marker CD63.38 In contrast healthy mice have a steady
population of Siglec-Fint, non-degranulating eosinophils.38

In the light of this, transfers of lamina propria eosinophils
from healthy mice may yield better insight into the influence of
eosinophils on PP immune responses.

It has previously been shown that the microbiota of
eosinophil-deficient mice differs considerably to that of WT
controls16,19 and a recent review discusses the potential of
eosinophils as regulators of the microbiome.39 PP development
is intimately linked to the presence of intestinal microbes and it
is thus possible that PP immune responses are differentially
regulated as a result of distinctions in the microbiome in the
absence of eosinophils.

However, two previous studies in which a decrease in PP
cellularity has been observed in eosinophil-deficient mice may
suggest that this is a stable phenotype of eosinophil deficiency.
Whereas Chu et al.16 report that DdblGATA-1 animals harbor
higher intestinal levels of bacteroides and lower levels of
firmicutes than BALB/c mice, Jung et al.19 report the opposite
observation. Despite this, both studies demonstrate a clear
reduction in PP cellularity of DdblGATA-1 mice, as well as
diminished intestinal levels of IgA. Nevertheless, it remains
possible that distinctions in the microbiota as a result of
eosinophil deficiency may contribute to enhanced Th2
immunity in the PP. Future work will examine this exciting
prospect.

In our study, significantly enhanced IL-4 production was
especially apparent in TFH cells of nematode-infected,
eosinophil-deficient mice. TFH cells are essential in supporting
B-cell class switch recombination and affinitymaturation40 and
following helminth infection, TFH cells increase in draining
lymph nodes and produce high levels of IL-4 that promotes
class switching to IgG1 and IgE.24,25 The PP, on the other hand,
are the main location for induction of IgAþ B cells.27

Previous studies have shown that eosinophils support B-cell
survival15 and IgA class switching in the intestine under
homeostatic conditions.16,19 As B-cell class switching to IgA
almost completely ceased in the PP of eosinophil-deficientmice
following infection with H. polygyrus, our study suggests that
eosinophils are also critically needed for themaintenance of the
PP as a main site for IgA class switching during infection with
an enteric pathogen. Furthermore, we found that the PP was

not a major site for IgG1 class switching in response to
H. polygyrus infection in WT mice. Thus, as DdblGATA-1
displayed frequencies of IgG1þ GC B cells in the PP almost
comparable to the mLN, our data point out the importance of
eosinophils for the compartmentalization of antibody
responses in distinct gut-associated lymphoid tissues. Of note,
IL-4 has been shown to directly limit IgA class switching of
naive human B cells.41 Thus, the increased IL-4 production by
TFH cells detected in our study may, in addition to supporting
IgG1 class switching, contribute directly to the loss of IgA.

Antibodies have an important role in protective immunity
against challenge infections with H. polygyrus but are not
thought to have amajor role in worm expulsion during primary
infections.31 However, mice lacking functional B cells (JH

� /� )
shed significantly more eggs in the feces during a primary
infection compared with WT mice and transfer of naive sera is
sufficient to decrease egg shedding. This suggests that natural
antibodies, as well as other serum components such as
complementmight have a role in reducing parasite fecundity.31

Thus, it is possible that the increase in serum IgG1 seen in the
absence of eosinophils contribute to the observed impaired
fecundity of parasites developing in DdblGATA-1 mice.

Confirming previous studies reporting on a defective mucous
shield in the intestine in absence of eosinophils,16,19 we found
that the mucus layer developing in WT mice in response to
H.polygyrus infectionwas virtually absent in infected eosinophil-
deficientmice. It has been previously suggested thatH. polygyrus
feeds on host epithelial cells.42 If the mucus layer constitutes an
additional nutrient source for H. polygyrus, it is possible that
resource limitation is responsible for the decreased fecundity
seen in worms developing in DdblGATA-1 mice. Of note,
numbers of mucus producing goblet cells as well as expression
levels of the goblet cell-derived anti-nematode effector molecule
Relm-b34 were similar in both strains.

In summary, our data suggest that the gut-draining mLNs are
the principal induction site for Th2 cytokines and associated IgG1
antibody responses to H. polygyrus infection, and that these
responses are unaffected by eosinophil deficiency. Upon nema-
tode infection, eosinophils are, however, essential for the
regulation of Th2 -associated responses in the PP. They prevent
excessive IL-4 and IgG1production in thePP, thereby assuring the
maintenance of IgA class switching, presumably to protect the gut
from bacterial invasion. Thus, our data show a novel regulatory
role for eosinophils in guarding the compartmentalized immune
response upon infection with an intestinal pathogen.

MATERIALS AND METHODS

Mice, infections, and parasite fecundity. DdblGATA-1 mice
(Jackson Laboratory, CA, USA) were bred at the Institute of
Immunology, Freie Universität Berlin. PHIL mice were bred at the
German Arthritis Research Center, Berlin. Age and sex matched
BALB/c and C57BL/6 WT mice were purchased from Janvier Labs
(Saint-Berthevin, France). IL-5 transgenic NJ.1638 were a kind gift
from Professor D. Vöhringer, Universitätsklinikum, Erlangen. All
experiments were performed in accordance with the National Animal
Protection Guidelines and approved by the German Animal Ethics
Committee for the protection of animals (GO113/15).
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H. polygyrus was maintained by passage in C57BL/6 mice
(H0099/13). In total, 6–8-week old mice were infected by oral gavage
with 200 L3 larvae. On indicated days, mice were killed by isofluorane
inhalation followed by cervical dislocation.
Adult parasite fecundity was determined by counting eggs shed

by female worms kept individually for 24 h (eight per donor mouse) in
96-well plates in Roswell Park Memorial Institute medium (RPMI)
containing 1% fetal bovine serum (FCS) 200Uml-1 penicillin and
200mgml-1 streptomycin (all from PAA, Wien, Austria).

Preparation of single-cell suspensions. Spleens, mLN, and PP were
isolated and placed in cold RPMI1640 containing 1% FCS, 100Uml-1

penicillin and 100mgml-1 streptomycin (PAA).
PP were digested in 1ml RPMI1640 containing 0,1mgml-1 Liberase

(Roche, Basel, Switzerland) and 0,1mgml-1 DNase (Sigma, St Louis,
MO,USA), in addition to 1%FCS, 100Uml-1 penicillin and 100mgml-1

streptomycin (PAA) at 37 1C on a shaker for 30min. Spleens, mLN, and
pre-digested PP were forced through 70mm cell strainers (BD
Bioscience, San Jose, CA, USA) to obtain single-cell suspensions.
For isolation of small intestinal lamina propria cells, the entire small

intestine was excised and placed in ice cold HBSS (w/o Ca2þ , Mg2þ )
containing 2% FCS and 10mM HEPES (PAA). Tissues were
thoroughly washed in HBSS/FCS/HEPES (Hank’s Balanced Salt
Solution/FCS/ 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid)
followed by cutting into 1 cm pieces and placed in 20ml HBSS/FCS/
HEPES containing 0,154mgml-1 DTE (Sigma). Tissues were incu-
bated in a tube shaker water bath (200 rpm, 37 1C) for 15min. This was
repeated twice before adding intestinal pieces to 20ml HBSS/FCS/
HEPES containing 5mM ethylenediaminetetraacetic acid followed by
stirring at room temperature for 15min. This was repeated three more
times. Residual ethylenediaminetetraacetic acid was removed by
rinsing intestinal pieces in RPMI 1640 before placing them in 10ml
37 1C RPMI1640 containing 0,1mgml-1 Liberase and 0,1mgml-1

DNAse in addition to 10% FCS. Following incubation, tubes were
vortexed vigorously to disrupt remaining tissue pieces and the whole
suspension was forced up and down through an 18G needle, then
filtered over a 70mmcell strainer andwashed twicewithHBSS/HEPES.
Cell suspensions were layered on a percoll gradient and lamina propria
cells collected from the 40/70% interface.

Antibody detection by enzyme-linked immunosorbent assay. Total
antibody titers were detected in sera by sandwich enzyme-linked
immunosorbent assay. Intestinal IgA was measured in supernatants
from 2 cm of duodenal organ cultures (opened longitudinally and
cultured for 24 h at 37 1C).
To determine parasite-specific antibody titers, plates were coated

with H. polygyrus excretory/secretory products at a concentration of
10 mgml-1 and serially diluted sera from H.polygyrus-challenged mice
were added.

Cytokine detection enzyme-linked immunosorbent assay. Cyto-
kines weremeasured in supernatants of stimulated cells using enzyme-
linked immunosorbent assay detection kits for mouse IL-4, IL-13, IL-5
(ebioscience, San Diego, CA, USA), and IL-10 (BD bioscience).
Intestinal production of IL-1b and IL-6 was determined in

homogenized duodenum and normalized to protein content based
on BCA protein detection (Thermo Fisher, Rockford, IL) and TGF-b
was detected in the supernatants of duodenal organ cultures and
normalized to tissue weight.

Flow cytometry. For surface and intracellular staining, the following
monoclonal antibodies were used: B220-PE-Cy7 (RA-B2), T-bet-PE-
Cy7 (MI24), PD-1-eFluor780 (J43), IL-10-eFluor660 (JES5-16E3),
GATA-3-eFluor660 (TWAJ), CD45-eFluor450 (30-F11), IFN-g-
eFluor450 (XMG1.2), FoxP3-eFluor450 (FJK-16s), IgM-eFluor450
(eB121-15F9); FceRI-APC (MAR-1); c-Kit-fluoroscein isothiocyanate
(2B8); MHCII-PE-Cy5 (M5/114.15.2), CD11c-eFluor450 (N418);
CD103-PE (2E7); CD8a-Biotin (53-6.7); (all from eBioscience).

IL-4-PE (11B11), Siglec-F-PE (E50-2440); CCR3-Alexa647 (83103);
CXCR5-biotin (2G8) (all from BD biosciences). CD4-PerCP (RM4-5);
IgG1-APC (RMG1-1); CD11b-APC-Cy7 (M1/70) (all from BioLe-
gend, San Diego, CA, USA). Fluoroscein isothiocyanate-labeled
polyclonal goat anti mouse IgA was from Southern Biotech and
biotinylated peanut agglutinin was from Biozol (Eching, Germany).
Streptavidin labeled in PE, PE-Cy7, and fluoroscein isothiocyanate
were from eBioscience. Dead cells were excluded using eFluor 506
fixable viability dye from eBioscience.
For intracellular staining of cytokines and transcription factors, cells

were fixed and permeabilized using the fix/perm eBioscience buffer kit.
Cells were analyzed using a Canto II flow cytometer (BD Bioscience)
and FlowJo software 9.8.5 (Tree star Inc., Ashland, OR, USA)

Eosinophil cell sorting and cytospin. Small intestine lamina propria
single-cell suspensions were prepared as described above and pooled
from 3–4 mice. Eosinophils (CD45þ , SSChi, SiglecFþ , CCR3þ ) were
sorted with a FACSAria cell sorter (BD Bioscience). In total, 5� 104

sorted cells were added to cytospin columns and slides were stained in
Diff quick (LT-SYS, Berlin, Germany).

Eosinophil transfer. Blood containing 10–30% eosinophil was taken
from IL-5 transgenic mice and enriched for eosinophils via magnetic
bead lymphocyte depletion. In brief, erythrocytes were lysed with
hypotonic buffer and T cells and B cells were depleted using the
following reagents from miltenyi: anti-CD3-Biotin; anti-biotin
magnetic beads; anti-CD19 magnetic beads. Eosinophil purity was
checked by flow cytometry and was typically 80%.

RT-PCR. RNA was isolated from intestinal tissue using the innuPREP
RNA kit following manufacturer’s instructions (Analytik Jena,
Jena,Germany). In total, 2 mg of RNAwas reverse transcribed to cDNA
using a High Capacity RNA to cDNA kit (Applied Biosystems, Foster
City, CA). The relative expression of b-glucuronidase (Gusb), ari-
ginase-1 (Arg-1), resistin-like molecule-alpha (Relm-a), and Relm-b
was determined via real-time PCR using 10 ng of cDNA and FastStart
Universal SYBRGreenMasterMix (Roche). Primer pairs used for gene
amplification were as follows: Gusb fwr: GCTCGGGGCAAATTC
CTTTC, rev: CTGAGGTAGCACAATGCCCA. Arg-1 fwr: CAGAAG
AATGGAAGAGTCAG, rev: CAGATATGCAGGGAGTCACC.
Relm-a (Retnla) fwr: TCCCAGTGAATACTGATGAGA, rev: CCAC
TCTGGATCTCCCAAGA. Relm-b (Retnlb) fwr: GGCTGTGGATC
GTGGGATAT, rev: GAGGCCCAGTCCATGACTGA. Activation-
induced cytidine deaminase (Aicda) fwr: CCAGGAACCGCTACT
CGTTT, rev: GGTCCGTCTCAGGCACTATG. TGFb fwr: CTGCTG
ACCCCCACTGATAC, rev: AGCCCTGTATTCCGTCTCCT. Effi-
ciencies for each primer pair were determined by generating a standard
curve andmRNAexpressionwas normalized to the housekeeping gene
Gusb and calculated by Roche Light Cycler 480 software, using naive
BALB/c cDNA as a calibrator.

Histology. Formalin-fixed, paraffin-embedded sections (1–2 mm) of
duodenum were de-waxed and stained with hematoxylin and eosin
for overview, with periodic acid Schiff for goblet cell quantification and
by Direct red 80 (Sigma) for the detection of eosinophils. Enteritis was
scored using hematoxylin and eosin -stained section as described
before.35 PASþ goblet cells were counted along five villi per section.
Images were acquired using the AxioImager Z1 microscope

(Carl Zeiss MicroImaging, Inc., Göttingen, Germany). All evaluations
were performed blind.

Statistics. Experiments were performed as indicated and expressed as
mean±s.e.m. Statistical analysis was performed using GraphPad
Prism software. Unless otherwise indicated, level of significance was
tested by one-way analysis of variances followed by Holm-Sidak post
hoc test for multiple comparison.

SUPPLEMENTARYMATERIAL is linked to the online version of the paper

at http://www.nature.com/mi

ARTICLES

MucosalImmunology | VOLUME 10 NUMBER 3 |MAY 2017 671

http://www.nature.com/mi


ACKNOWLEDGMENTS

The authors thank Yvonne Weber, Marion Müller, Bettina Sonnenburg,

Christiane Palissa and Beate Anders for providing their excellent technical
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