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Severe viral respiratory infections: are bugs
bugging?
M Vissers?, R de Groot"? and G Ferwerda'?

Viral respiratory tract infections (RTI) pose a high burden on the youngest members of our society. Several risk factors are
known for severe viral respiratory disease. However, a large proportion of the severe RTI cannot be explained by these
risk factors. A growing body of evidence shows that the composition of the microbiota has a major influence on the
training of both the mucosal and the systemic immune response and can thus potentially determine susceptibility for
severe viral infections. In this review, we discuss the current evidence regarding the influence of bacterial colonization on

the severity of viral respiratory infections.

INTRODUCTION

Acute respiratory tract infections (RTI) are the leading
cause of mortality and morbidity in infants and young
children."” Both bacteria and viruses can cause serious RTI.
Vaccination and the availability of antibiotics substantially
reduced the mortality caused by bacterial RTI in developed
countries. However, due to the limited availability of antiviral
medications and effective vaccines the burden of viral RTI
remains high. The leading cause of serious viral RTI in
young children is respiratory syncytial virus (RSV),” but
influenza virus, rhinovirus, parainfluenza virus, adenovirus,
and human metapneumovirus can also cause severe respiratory
disease.*”

Children are frequently infected with these respiratory
viruses, especially during the winter season. In most children,
this leads to relatively mild symptoms, presenting as a common
cold. However, some children have a more severe course of
disease and develop lower respiratory tract symptoms, such as
pneumonia and bronchiolitis. These children need to be
hospitalized for supportive care and in severe cases mechanical
ventilation is needed. This striking diversity in severity of
infection is especially evident in RSV infections. Known
risk factors to develop severe infection are prematurity, age
(< 6 months), congenital heart disease and chronic lung disease
(bronchopulmonary dysplasia), presence of siblings, and
breastfeeding (<1 month).>*~® The contribution of these risk
factors to the development of severe disease is not fully

understood.” In addition, a large proportion of children with
severe disease who required hospitalization are previously
healthy and have no known risk factors.'>!"

In recent years, a growing body of evidence has shown that
colonization of mucosal tissues can influence the immune
system both locally and systemically. We hypothesize that the
composition of the microbiome may affect the severity of viral
infection. This article aims to discuss the available evidence
regarding the microbiome as a determinant for disease severity
of viral RTL

THE MICROBIOME AFFECTS THE IMMUNE SYSTEM BOTH
LOCALLY AND SYSTEMICALLY

Mucosal surfaces of the human body provide residence to
complex microbial ecosystems, together called the “micro-
biota”. The presence of these bacteria is crucial for our well
being. Microbiota have an important role in the digestive
process in the intestines, produce vitamins, and provide a
barrier to protect against translocation by and infection with
pathogens.'?

Vertebrates have co-evolved with bacteria present in their
bodies for nearly half a billion years. Resident bacteria
profoundly shape the immune system, while the immune
system has to control the microbiota. This has resulted in a
mutualistic and symbiotic partnership between the human
immune system and these commensal microorganisms."

"Department of Pediatrics, Laboratory of Pediatric Infectious Diseases, Radboud university medical center, Nijmegen, The Netherlands and 2Nijmegen Institute for
Infection, Inflammation and Immunity, Radboud university medical center, Nijmegen, The Netherlands. Correspondence: G Ferwerda (Gerben.Ferwerda@radboudumc.nl)

Received 6 August 2013; accepted 9 October 2013; published online 13 November 2013. doi:10.1038/mi.2013.93

MucosallImmunology | VOLUME 7 NUMBER 2 | MARCH 2014

227


mailto:Gerben.Ferwerda@radboudumc.nl

REVIEW

Gut microbiota influence the immune system both locally
and systemically

The area in the human body with the highest diversity and
density of microbes is the gastrointestinal tract.'* Although
there is an enormous variety in taxa and composition between
individuals, the gut microbiota is typically dominated by
strict anaerobes like Firmicutes (e.g., Lactobacillus, Bacillus,
and Clostridium) and Bacteroidetes (e.g., Bacteroides).">'®
In lower abundances Proteobacteria (e.g., Escherichia) and
Actinobacteria (e.g., Bifidobacterium) can be found." The
composition of the microbiota of the adult gut is mainly
influenced by dietary patterns.'” However, broad-spectrum
antibiotics, inflammation, or other stress inducers may
influence the composition as well."”

The influence of the gut bacteria on the immune system
has been extensively studied and reviewed.'” ' Disruption of
the balance in the microbiota (dysbiosis) has been associated
with inflammation-linked disorders, e.g., inflammatory bowel
disease and airway allergies. A growing body of evidence
suggests that the composition of gut commensals has systemic
effects and influences the immune response at distant mucosal
locations.

Clarke et al.”* have shown that peptidoglycan from the gut
translocates to the bloodstream and to the bone marrow. This
systemically present peptidoglycan primes the immune system,
enhancing neutrophil killing of two important pathogens,
Streptococcus pneumoniae and Staphylococcus aureus. Com-
mensal gut bacteria influence the balance of T-cell subsets,
which reaches far beyond the extent of the intestinal lamina
propria. In germ-free (GF) mice, colonization with segmented
filamentous bacteria skews the immune system towards a pro-
inflammatory response, inducing T helper type 17 (Th17) cells
and some Thl cells leading to arthritis and experimental
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autoimmune encephalomyelitis.”»** In contrast, colonization
with certain Clostridial strains skews towards an anti-
inflammatory response, inducing regulatory T cells (T,eg),
which reduce serum immunoglobulin E (IgE) responses
after immunization.”®> Colonization with polysaccharide
A-producing Bacteroides fragilis results in higher numbers
of circulating CD4 + T cells and a higher Thl response in
circulation.”®

Multiple studies have shown that the gut microbiota also
have an influence on the immune response of the airways.”” The
hygiene hypothesis proposes that disruption of the gut
microbiota by, e.g., antibiotics, dietary changes, or a reduction
in infections due to decreased exposure, induces a disturbance
of the immunological tolerance, resulting in enhanced allergic
airway diseases. This is supported by experiments showing that
antibiotics disturb the microbiota of the gut of mice, which
subsequently induces a reduction in Th1 response and a more
severe allergic response in the airways.*®

Collectively, these data suggest that the commensals of
the intestines are crucial for training of the immune system
both locally and systemically (Figure 1).

Microbiota of the respiratory tract

Respiratory viruses enter the human body through the upper
respiratory tract. The bacteria present in the airways may
therefore be of importance for the host response towards a viral
infection. At present, there are a limited number of papers
studying respiratory tract microbiota in healthy adults. An
overview of these papers can be found in Table 1.

It has been shown that Firmicutes and Actinobacteria
dominate the nostrils. These are mainly Staphylococcus,
Corynebacterium, and Propionibacterium on genus level, which
are typical skin lineages.>>> The oropharynx contains, on
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Bacteria and bacterial ligands can trainimmune cells both locally and systemically. The intestines have a very high diversity and abundance of

commensals. Bacteria that invade the inner mucus layer are attacked by antimicrobial peptides and antibodies. Bacterial components are being released
and these components can enter the lamina propia where they can locally train the immune cells or enter the bloodstream and train immune cells
systemically. These systemically trained immune cells can enter other parts of the human body, e.g., the upper respiratory tract mucosa. The respiratory
tractis also colonized by commensals and local training occurs in the lamina propia of the respiratory tract. The local or systemical training ofimmune cells
can enhance or reduce viral pathogenesis, depending on the specific virus and bacteria involved. MAMP, microbe-associated molecular pattern.
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In contrast to the gut, not much is known about the influence
of the nasopharyngeal microbiota on the local immune system.
Larsen et al>® stimulated monocyte-derived dendritic cells
(DCs) with selected airway commensal bacteria (e.g., Viello-
nella), pathogenic bacteria (e.g., Haemophilus and Moraxella),
and bacteria present in both healthy and sick lungs (e.g.,
Actinomyces). All bacteria activated DCs to a comparable level
based on the surface expression of CD83, CD86, and CD40.
However, pathogenic bacteria induced a 3-5-fold greater
production of interleukin (IL)-23, IL-10, and IL-12p70. Co-
culture experiments showed that Prevotella reduced IL-12
production by Haemophilus by 50%.

The development of GF mice has proven to be pivotal in
studying interactions between commensals and the immune
system. So far, to our knowledge, no studies have been
performed that recolonized only the respiratory tract. This
would enable us to study the effect of specific airway
commensals on the development of the respiratory immune
system.

THE MICROBIOME HAS AN INFLUENCE ON SEVERITY OF
VIRAL INFECTIONS

As stated above, the presence of the microbiota is crucial for the
development and maintenance of the human immune system.
At the same time, the state of the immune system is important
for the susceptibility towards viral infections. Commensal
bacteria may either inhibit or enhance viral infections in direct
or indirect ways.

Gut commensals directly enhance local enteric virus
infections

Recently, two studies have shown that commensal bacteria
in the gut can enhance enteric viral infections in a direct
manner.”"”* Kane et al.>* showed that mouse mammary tumor
virus, a virus that is transmitted from mother to young through
milk and invades through the gut, covers itself with lipopo-
lysaccharide (LPS) from the commensal bacteria present in the
gut. This virus-LPS complex is able to stimulate Toll-like
receptor 4 (TLR4), which induces IL-6, which subsequently
induces IL-10. The LPS-covered virus infects the cells, but due
to the IL-10 production the antiviral response is shut off.
Antibiotics kills these gut bacteria and thereby prevents viral
infection and transmission of the virus.”® Kuss et al.”' showed
that multiple viruses use ligands from the commensal bacteria
to enhance their infection. Both poliovirus and reovirus are able
to bind LPS and enhance attachment to their target cells and
infect them. They showed that this enhanced infection was due
to N-acetylglucosamine-containing surface polysaccharides.”!

Gut commensals protect against systemic and respiratory
viral infections

As there have been millions of years of co-evolution between
enteric viruses, commensal gut bacteria, and the hosts
intestines, it is not surprising to find viruses that use commensal
bacteria to aid their pathogenesis. What might be more striking
is that the gut microbiota also has a systemic influence on viral
infections.
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Splenic DCs from GF mice are inhibited in their type I
interferon (IFN) production and thus are not able to prime and
activate natural killer (NK) cells.”® As a consequence, their
antiviral immunity is severely compromised. Another study
also showed that antibiotic treatment of mice led to decreased
type I IFN expression and thereby a reduction in the expression
of antiviral genes.”* This resulted in delayed viral clearance after
a systemic infection (lymphocytic choriomeningitis virus) and,
interestingly, a respiratory infection (influenza). The investi-
gators concluded that host microbiota provide a tonic immune
stimulation that establishes the activation threshold of the
innate immune system for optimal antiviral immunity.

The influence of the commensal gut microbiota on the
occurrence of RTI has been shown before. Clinical studies
indicate that probiotics do not influence the incidence of RTI
but do reduce the severity of the symptoms and the duration of
the illness.”*® In mice, the intake of Lactobacillus plantarum
enhances the type I IFN response after influenza infection and
thereby lowers viral titers in the lungs.”” Other Lactobacillus
strains can enhance tumor necrosis factor o and IFN-y
production by nasal lymphocytes to influenza infection.”®

A recently published study indicates that mice given
antibiotics have a disturbance in their gut microbiota. Lower
influenza-specific antibody titers and lower CD4+ and
CD8+ T-cell responses result in higher viral titers in the
lungs of these mice.”” Moreover, it was shown that both
intranasal and intrarectal administration of LPS repairs this
immune impairment. This mechanism may be a two-hit model
in which the intact microbiota first provide signals, e.g., LPS,
which lead to pro-IL-1B and pro-IL-18 expression, and
secondly, the influenza infection induces the inflammasome,
which then converts the pro-forms into IL-1f and IL-18. DCs
are then directed towards the lymph nodes and are able to
prime the T cells present there. The effect of the commensal gut
microbiota towards RTI can also be indirect. Tanaka et al.*’
showed that indigenous microbiota of mice maintained the
mouse cytomegalovirus (MCMYV)-specific CD8 + memory
cells in the lungs, probably due to cross-reactivity of the
antigenic epitope of MCMYV T cells and the enormous variety of
peptides in the microbiota. Whether this would be beneficial
(faster clearance of MCMV upon reinfection) or possibly
detrimental (enhanced immunopathogenesis upon reinfec-
tion) is not known.

Respiratory tract microbiota could have a dual role in viral
infections

Comparable to the intestinal tract, the commensals, viruses,
and host respiratory tract also have a long history of
co-evolution, and it may be expected that certain viruses
make use of the present commensal bacteria to facilitate
infection. Literature on the influence of the specific respiratory
tract microbiota on viral RTT is limited. Bacteria or bacterial
ligands can either enhance or reduce viral infection rate (top
part of Figure 2) or they can influence the subsequent immune
response of the host towards a viral infection in either an
enhancing or reducing way (bottom part of Figure 2).
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Figure2 Bacteria orbacterialligands can influence viral pathogenesis in
multiple ways. They can influence viral infection rate itself, as can be seen
in the upper part of the figure. Bacteria or bacterial components are able to
enhance or inhibit viral infection rate, depending on the specific virus and
ligands involved. It can also influence viral pathogenesis in an indirect
manner. Most respiratory viruses induce immunopathogenesis. The lower
part of the figure shows how bacteria or its components can influence the
subsequent immune response of the host towards the viral infection,
thereby influencing the pathogenesis. LPS, lipopolysaccharide; MDP,
muramy! dipeptide.

As discussed in the section on the influence of intestinal
microbiota on enteric viruses, certain viruses are able to coat
themselves with LPS thereby enhancing their infection
rates.”">*> However, at this point this has not been described
for respiratory viruses. Viral replication in the respiratory tract
can be enhanced by Staphylococcal enterotoxins or exposure to
S. pneumoniae.°™** One study showed that LPS could also
reduce viral infection rates. In vitro pre-stimulation of human
macrophages with LPS induced an antiviral response, which
reduced RSV and influenza infection by 80%.°> LPS seems
to be a ligand that can influence viral pathogenesis in multiple
ways. Therefore, the receptor for LPS, TLR4, is of interest.
TLR4 has also been described as being a receptor that is
able to recognize the F-protein of RSV.®* Whether or not
this dual function of TLR4 is also of importance for the
interaction between commensal bacteria and viral infections is
not known.

In vitro studies in human primary cells have shown that the
pro-inflammatory response to a viral infection can be enhanced
by a specific bacterial ligand, muramyl dipeptide (MDP).®®
Multiple respiratory viruses, including RSV, are able to induce
type I IFNs, upregulating the receptor for MDP, namely NOD2
(nucleotide-binding oligomerization domain-containing pro-
tein 2). Subsequent stimulation by MDP leads to a severely
enhanced pro-inflammatory response, which could potentially
facilitate the immunopathogenesis of RSV infection.

Respiratory commensal bacteria can also reduce the immune
response to a viral infection. The presence of a commensal
nasopharyngeal microbiota protected mice against RSV-
induced airway hyper-responsiveness. Mice were infected with
RSV and subsequently treated with antibiotics, which depleted
the nasopharynx from Streptococcus viridans. This led to
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increased numbers of inflammatory lymphocytes, decreased
T, and transforming growth factor-f production and
enhanced airway hyper-responsiveness. This effect was limited
within local tissues and not systemic.*® Influenza-infected mice
showed an enhanced recruitment of inflammatory monocytes
to the lungs when they were stimulated with MDP. This
resulted in a reduced pulmonary inflammation, viral load, and
mortality.®”

Pre-stimulation of cultured human airway epithelial cells
with Haemophilus influenzae induced an upregulation of
intercellular adhesion molecule-1 and TLR3. This resulted in an
increased binding of rhinovirus and a subsequent stronger IL-8
response.®® This study shows that certain pathogens can induce
a stronger infection as well as an enhanced immune response.

Although indirect, there is also some evidence from clinical
studies. Some studies have shown that the effect of the
pneumococcal conjugate vaccine is broader than just a
reduction in pneumococcal carriage and infection.”””® The
reduction in pneumococcal carriage and infection also results
in a reduction of 31% in viral RTIL. Individuals with acute
viral infections are more often and more heavily colonized
by specific bacteria.”'~”> Therefore, it can be argued that coloni-
zation with S. pneumoniae increases the risk to get infected with
respiratory viruses or that its presence enhances symptoms.
However, it cannot be excluded that viral infection also affects
colonization rate and spread of pneumococcus.

So far, literature clearly shows that commensal microbiota
affect our susceptibility to viral infections. An overview on
current studies on the influence of the respiratory microbiota
on respiratory viral infections can be found in Table 2. This
effect can either be indirect, by modulating the immune system,
or direct, e.g., viruses that use bacterial ligands to enhance their
infection (Figure 2). Current evidence suggests that the
influence of the gut microbiota on systemic immunity is
mostly protective against viral infections, whereas local
commensal bacteria and local immune responses, both in
the intestines and in the respiratory tract, can either enhance or
eliminate the viral infection.

THE FORMATION AND IMPLICATIONS OF THE NEONATAL

MICROBIOTA

As shown above, it is well accepted that the presence of
commensal microbiota has a major influence on the training of
the immune system. Moreover, we provided an overview of the
literature demonstrating the influence of this commensal
microbiota on viral infections. However, viral RTI pose a big
disease burden to very young infants. In this part of the
review, we will summarize the literature regarding the initial
colonization and how this influences the developing immune
system.

The microbiome of infants is subject to enormous changes
During and immediately after birth, the newborn becomes
colonized. Newborns receive their first colonizers from their
passage through the mother’s vaginal tract, contact with their
surroundings, nurses, parents, visitors, and by feeding.
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The initial colonizing microbiome is crucial for the
development of the immune system

Certain parts of the innate and adaptive immune system of
infants are still immature after birth (extensively reviewed by
Martin et al.>®). The development of a stable microbiome
occurs therefore during a time that corresponds to a critical
period of immune development and maturation. While a
fetus is in the womb, pro-inflammatory responses are
suppressed so as to avoid adverse immunological reactions
between mother and child. Children are therefore born with
immunological tolerance, making it possible to be colonized by
bacteria.

The introduction of GF mice in research clearly shows how
important commensal bacteria are for the development of the
immune system. GF mice have poorly developed gut-associated
lymphoid tissue, less intraepithelial lymphocytes, smaller
Peyer’s patches, hardly any mature isolated lymphoid follicles
and low IgA levels.”?

Mice studies have shown that a short GF period after birth
changes the numbers of T, NK, and NKT cells and cytokine
levels permanently.”" In contrast to adult mice, colonization of
neonatal GF mice protected them from accumulation of NKT
cells in the colonic lamina propia and the lungs. This resulted in
a decreased pathology when inflammatory bowel disease or
allergic asthma was induced.” So a small time window exists in
which one can be efficiently colonized, which will modify future
immune responses and pathology.

A study in infants showed that breast-fed infants have gut
microbiota that are richer in virulence genes, and this is
correlated with upregulation of immunity-related genes.”®
Another study showed that infants who were early and
intensely colonized by Bacteroides fragilis had a downregulated
LPS responsiveness.’

Strachan®® was the first to publish that hay fever and eczema
(both allergic diseases) were less common in children from
larger families. This resulted in the formulation of the “hygiene
hypothesis”, which poses that a lack of early childhood
exposure to infectious agents and symbiotic microorganisms
increases susceptibility to allergic diseases, even at distant
locations like, e.g., the skin or the upper airways, by suppressing
the natural development of the immune system. Epidemio-
logical studies have shown a correlation between the prevalence
of asthma and airway allergies and variations in the gastro-
intestinal tract bacteria, e.g., lower amounts of Lactobacilli and
Bifidobacteria.”” Several reviews on the use of probiotics in
humans to prevent respiratory infections or allergic airway
disease show that studies so far have given rise to conflicting
evidence.”®*® The majority of the reviewed studies have shown
a beneficial effect on respiratory infections or allergic airway
disease.'**"'*° However, there are also studies that show no
difference.'**'” One study performed in mice even showed a
more severe allergic airway response after neonatal treatment of
mice with Lactobacillus casei.'® Most probiotic trials have tried
to reduce respiratory burden via oral intake of probiotics.*®'*
However, some studies have shown that nasal administration of
probiotics might be more efficient.!'®!!!
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There is alack of data on the development of the microbiome
and the immune system in young infants. However, it is clear
that the initial colonization is crucial for the development of the
immune system. In the future, it will be crucial to study the
initial colonization and immune development of infants in
more detail.

CONCLUDING REMARKS AND FUTURE DIRECTIONS

The influence of the intestinal microbiome on the immune
system is widely accepted. Evidence suggests that the intestinal
microbiome has an influence on systemic immunity and
immunity in distant locations, such as the respiratory tract.
However, the respiratory tract by itself is also colonized with
commensal bacteria, and it is to be expected that these
commensals also influence the local respiratory immunity. A
growing body of evidence suggests that microbiota influence
viral infections in several ways. This influence can be either
detrimental or beneficial for viral infections. Again, the basis for
this evidence is stronger for intestinal microbiota as compared
with that for the respiratory tract. However, by comparison
with the intestinal tract one would assume that the respiratory
microbiota influences viral RTI. They could enable or prevent
direct virus infection, prime the immune system for a viral
infection, or perhaps enhance the immune response once a
virus has infected epithelial cells. For multiple respiratory
viruses, part of the disease pathogenesis is an enhanced
immune/inflammatory response. Animal models should be
developed to specifically study the influence of the nasophar-
yngeal microbiota both on local immune development as well
as the severity of RTI. Whether the influence comes from
functional bacterial groups or perhaps “keystone species”'* is
not known and could be different for each type of viral
infection. Research into which specific bacteria are involved will
be crucial for future understanding.

Timing and composition of the initial colonization in infants
has lifelong consequences for the immune response. The
development of the immature immune system happens
simultaneously with the quickly changing composition of
the microbiota. Therefore, one can imagine that the initial
colonization and also the presence of specific bacterial strains
during a viral RTT influences the disease severity. Studies in
infants have shown that not only pneumococcal vaccination
but also the use of probiotics can protect against severe viral
RTI. Consequently, host microbiota can no longer be ignored
when studying host-viral interactions. A more thorough
understanding of the ontogeny of the microbiome in infants
is critically required.

Advances in both sequencing technologies and the devel-
opment of important mice models herald a new era in
characterizing the role of the microbiota in the severity of
infections. Comprehension of the impact of the microbiota on
the susceptibility to severe RTI, together with a better
understanding of the dynamics and kinetics of colonization
during infancy, will allow new possibilities for the treatment
and detection of highly susceptible infants.
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