
Negative regulation of human mononuclear
phagocyte function
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At mucosal surfaces, phagocytes such as macrophages coexist with microbial communities; highly controlled

regulation of these interactions is essential for immunehomeostasis. Pattern-recognition receptors (PRRs) are critical in

recognizing and responding to microbial products, and they are subject to negative regulation through various

mechanisms, including downregulation of PRR-activating components or induction of inhibitors. Insights into these

regulatory mechanisms have been gained through human genetic disease–association studies, in vivo mouse studies

utilizing disease models or targeted gene perturbations, and in vitro and ex vivo human cellular studies examining

phagocytic cell functions. Although mouse models provide an important approach to study macrophage regulation,

human and mouse macrophages exhibit differences, which must be considered when extrapolating mouse findings

to human physiology. This review discusses inhibitory regulation of PRR-induced macrophage functions and the

consequencesof dysregulationof these functions andhighlightsmechanisms that havea role in intestinalmacrophages

and in human macrophage studies.

INTRODUCTION

Following microbial exposure, the peripheral immune system
must mount responses to limit infection and clear microbes.
Mucosal surfaces, such as the intestine, continually interact
with microbes1 and therefore must balance the mechanisms
defending against pathogens or excessive entry of resident
microbiota withmechanismsmaintaining tolerance to resident
microbiota. To maintain this balance, anti-microbial responses
undergo tight regulation. Uncontrolled inflammation can lead
to the development of autoimmune and inflammatory diseases.
However, overactive inhibitory mechanisms can increase
susceptibility to infections and decrease microbial clearance,
which can lead to persistent inflammation. Initial microbial
recognition and responses occur through innate cells,
particularly phagocytes. Consistently, depleting or altering
the proportion and phenotype of these cells modulates severity
of multiple autoimmune and inflammatory diseases, including
at mucosal surfaces.2–5 Phagocytes are comprised of myeloid-
derived cells such as macrophages, dendritic cells (DCs)
and neutrophils;6 this review will focus on regulation in
macrophages, although the regulation in DCs can be similar7

and will occasionally be highlighted.

Macrophages regulate microbes at multiple levels, including
through immune mediator secretion, microbial killing, pyr-
optosis, adaptive immune instruction, and wound healing.6

Macrophages recognize and respond to microbial components
through pattern-recognition receptors (PRRs), including Toll-
like receptors (TLRs), nucleotide-binding-domain containing
receptors (NLRs), retinoic-acid-inducible-gene I-like receptors,
and C-type lectins.8 Distinct PRR can share specific signaling
pathways but can also signal through diverse intermediates. For
example, TLR2, TLR5, TLR7, and TLR9 utilize the myeloid
differentiation primary response gene 88 (MyD88)-dependent
pathway, which activates nuclear factor (NF)-kB and mitogen-
activated protein kinase (MAPK).9 Interleukin-1 receptor (IL-1R)
and IL-18R also utilize this pathway. By contrast, TLR3 signals
through MyD88-independent or Toll/interleukin1-domain-con-
taining adaptor-inducing interferon-b (TRIF) pathways.9 TLR4
utilizes both MyD88-dependent and -independent pathways.9

Although multiple PRR share pathways, the outcomes can vary
dramatically.9 Contributions to this variability include different
adaptor molecule combinations, subcellular PRR localization
and strength of signaling; however, many mechanisms
accounting for the distinct outcomes are unclear.9
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PRR engagement inmacrophages induces pro-inflammatory
and anti-inflammatory cytokines; the balance between
these cytokines influences outcomes.9 Pro- and anti-
inflammatory cytokines can be distinctly regulated, as can
pro-inflammatory cytokines themselves (e.g., distinct inflam-
masome-mediated regulation of IL-1 and IL-18 secretion).
Importantly, PRR-induced cytokine regulation varies over
time. For example, initial pro-inflammatory cytokine induction
can be followed by anti-inflammatory cytokines and other
inhibitory mechanisms, thereby contributing to inflammation
resolution.Notably, altered expression of various PRR-pathway
inhibitors is observed in tissue and sera in many human
inflammatory diseases. However, the role of these alterations is
often unknown and may be either secondary to direct
dysregulation or to compensatory regulation.

Human polymorphisms in regions containing PRR-pathway
genes and their regulators inmacrophages have been associated
with multiple autoimmune/inflammatory diseases, including
inflammatory bowel disease (IBD). Polymorphisms in regions
involving PRR or PRR-initiated signaling pathways (e.g.,
NOD2, IRF5, NFKB1, RELA, REL, RIPK2, CARD9, PTPN22),
paracrine/autocrine cytokine pathways modifying PRR signal-
ing (e.g., IL-23R, IL-12, IL-10, IL-18RAP/IL1R1, IFNGR2/
IFNAR1, JAK2, STAT3, TYK2), and autophagy pathways
(e.g., ATG16L1 and IRGM) are associated with IBD.10 Mouse
studies provide essential mechanistic insight into how path-
ways in phagocytic cells mediate dysregulation in vivo;
conditional ablation of pertinent genes in myeloid cells further
elucidates select myeloid cell functions.7 While sharing
similarities, mouse and human phagocytic cells also exhibit
differences in microbial responses, cytokine induction and
differentiation patterns.6,11–13 These differences must be
considered when extrapolating mouse results to human
studies.12 Consequently, parallel primary human macrophage
studies are necessary. This review will focus on the inhibitory
mechanisms regulating phagocytic cell functions and will
particularly emphasize human studies and relevance to human
inflammatory diseases. Where applicable, we will highlight the
relevance of suchmechanisms tomucosal surfaces, particularly
the intestine.

MONOCYTE MIGRATION AND TISSUE-DEPENDENT

DIFFERENTIATION

Monocytes are derived from a granulocyte monocyte-forming
unit that differentiates in the bone marrow through cytokines,
including monocyte-stimulating factor and granulocyte/
monocyte-stimulating factor;13 the transcription factor PU.1
regulates this differentiation.13 Differentiated monocytes exit
the bonemarrow, enter the blood, and thenmigrate into tissues.
In humans, circulating blood monocytes undergo apoptosis
after 3–4 days,14 and must differentiate to prolong survival.15

Under homeostasis, monocytes enter tissues and become
macrophages where they acquire functions integral to and
characteristic of the tissues inwhich they reside.13Macrophages
are larger, more effective phagocytes, and survive longer than
monocytes, living for up to several months.14

PRR-INDUCED MACROPHAGE FUNCTIONS MUST BE

TIGHTLY CONTROLLED

Initial PRR-induced responses are critical in controlling
microbial insults;1 however, these responses must be tightly
regulated to prevent excessive cytokine secretion leading to
systemic inflammatory response syndromes, including ‘‘endo-
toxin shock’’ or ‘‘sepsis,’’ which can result in tissue injury and
death. Upon chronic microbial stimulation, PRR-induced
cytokines, chemokines, and activation markers are down-
regulated.16–20 This process, termed ‘‘endotoxin tolerance’’, has
been most commonly described with chronic TLR4 stimula-
tion.19 Mucosal macrophages encounter ongoing microbial
exposure, and may be particularly subject to this type of
regulation; multiple mechanisms contribute to reducing
responsiveness tomicrobial products. Although somemechan-
isms limit acute PRR-mediated outcomes, these and other
inhibitory mechanisms can be enhanced or induced following
chronic microbial product stimulation. These mechanisms
include downregulation of expression and/or function of PRR
or critical intermediates in PRR-initiated pathways, modula-
tion of strength of signaling, regulation by microRNAs,
epigenetic regulation of gene promoters, as well as regulation
by the inflammasome and autophagy (Figure 1 and Table 1).
Below, we will emphasize select inhibitory mechanisms and
highlight where appropriate their relevance to homeostasis at
mucosal surfaces, including the intestine.

Regulating expression of PRR signaling pathway genes

PRR-initiated macrophage responses can be inhibited by
downregulating the expression and/or function of PRR
complexes or PRR-initiated signaling pathways (Figure 1
and Table 1). Although these mechanisms may decrease
excessive inflammation and sepsis, they may also adversely
affect bacterial clearance. PRR expression downregulation or
receptor complex affinity alterations for microbial ligands
during endotoxin tolerance have been observed in some, but
not all, human and mouse macrophage studies.21–23 However,
overexpressing TLR4 or TLR adaptor molecules fails to reverse
downregulated cytokine secretion in certain situations,24–26

indicating that redundant endotoxin tolerance-inducing
mechanisms can compensate for dysregulated modulation
of receptor expression. Consistent with the requirement for
TLR downregulation to limit intestinal PRR responses,
epithelial cells and colitis-associated tumors from IBD patients
and lamina propria macrophages from ulcerative colitis (UC)
patients show increased TLR4 expression.27,28 This may
increase inflammation, as mice overexpressing TLR4 in
epithelial cells are more susceptible to dextran sodium sulfate
(DSS)-colitis and colitis-associated cancer.29

Downregulation or limited activation of PRR signaling
intermediates, such as interleukin-1 receptor-associated kinase
(IRAK)-1 and NF-kB (Figures 1 and 2 and Tables 1 and 2),
further attenuates PRR-initiated responses. IRAK-1 partici-
pates in MyD88-dependent9,30 and some MyD88-independent
pathways.30,31 IRAK-1 degradation following PRR stimulation
limits subsequent inflammation in humanmonocytic cells.20,31
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Furthermore, in non-monocytic cells, such as mouse enter-
ocytes, failure to downregulate IRAK-1 upon postnatal PRR
ligand exposure may contribute to necrotizing enterocolitis.32

Consistent with IRAK-1 signaling downregulation preventing
excessive inflammation, mice deficient in IRAK-4, a kinase that
activates IRAK-1, are protected against endotoxin shock but are
more susceptible to bacterial infections.33 IRAK-1 polymorph-
isms resulting in increased expression and/or kinase activity are
associated with more severe sepsis.34,35 By contrast, human
IRAK-4 loss-of-expression mutations increase invasive pneu-
mococcal disease risk.36 Downstream NF-jB signaling is
critical for PRR-induced responses and its modulation changes
PRR-initiated outcomes. For example, decreased phosphoryla-
tion and nuclear translocation of NF-kB subunits down-
regulates TLR4-mediated signaling in human intestinal
macrophages.26 Although NF-kB activation is generally
associated with inflammation, its outcomes are more complex;
for example, NF-kB directly contributes to anti-microbial
responses. Moreover, NF-kB has various regulatory roles,
which vary in different intestinal cell subsets, and different NF-
kB subunits have distinct functional roles. For example, while
p50/p65 NF-kB heterodimers generally induce inflammatory

pathways and these individual subunits are essential for proper
anti-microbial responses,37,38 p50/p50 homodimers inhibit
inflammatory responses,39,40 and contribute to endotoxin
tolerance in mouse macrophages.41,42 Similarly, mice deficient
in IKKb (Ikappa B kinase beta) in myeloid cells are more
susceptible to endotoxin shock.43 Moreover, mice deficient in
p50 and heterozygous for p65 develop spontaneous typhlo-
colitis.44 However, p65 knock down attenuates experimental
colitis,45 and increased PRR-induced NF-kB activation in
epithelial cells exacerbates colitis but only if accompanied with
MAPK activation and tumor necrosis factor (TNF)-a produc-
tion.46 Another complexity is that p50 is processed from the
NFKB1 gene product p105,39 which exhibits additional
regulatory functions, as p105-deficient mice expressing p50
still show increased lung and liver inflammation.47 Impor-
tantly, NFKB1 polymorphisms are associated with UC10 and
necrotizing enterocolitis,48 and polymorphisms in the NF-kB
subunits REL and RELA are associated with IBD;10 the
functional consequences of these polymorphisms are unclear.
In IBD patients, increased p65 expression and NF-kB-binding
activity is seen in intestinal macrophages and epithelial
cells.49,50 Therefore, regulating the expression and function
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Figure 1 Mechanisms downregulating pattern-recognition receptor (PRR)-mediated macrophage responses. Signaling through PRR (e.g., Toll-like
receptor 4 (TLR4)) activates distinct inflammatory pathways. The myeloid differentiation primary response gene 88 (MyD88)-dependent pathway
signals through IRAK-1, nuclear factor (NF)-kB and mitogen-activated protein kinase (MAPK) pathways, while the MyD88-independent TRIF pathway
signals through interferon regulatory factors (IRFs). Multiple mechanisms limit excessive macrophage responses induced by these pathways.
They include: (1) downregulationof receptors and signalingmolecules (e.g., PRRs, IRAK-1); (2) inductionof decoy receptors (e.g., SIGIRR); (3) induction
of intracellular or surface molecules that inhibit MyD88-dependent or -independent pathways; (4) induction of secretory molecules, including
anti-inflammatory mediators (interleukin (IL)-10, transforming growth factor (TGF)-b, IL-1Ra), which suppress inflammation through multiple
mechanisms; (5) signaling through alternative subunits or altering strength of signaling of molecules; (6) targeting of inflammatory RNAs by microRNAs
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of PRR-signaling pathway intermediates in macrophages
occurs on multiple levels. As both loss- and gain-of-function
of these molecules can lead to inflammation, fine tuning their
regulation is crucial for proper immune homeostasis.

Inhibitory molecules regulate PRR signaling by various
mechanisms

PRR-induced inflammation can be downregulated through
inhibitors targeting PRR-initiated pathways (Figure 2 and
Table 2). Some inhibitors are constitutively expressed and
inhibit basal cytokine expression and/or initial PRR signaling
modulation, whereas others are upregulated after PRR stimu-
lation. Furthermore, inflammation can be regulated by several
inhibitory waves following PRR stimulation.51 Inhibitors are
often increased in inflamed tissues, as the immune system
attempts to control the inflammation. Below, we will discuss
examples of inhibition of PRR-initiated responses by surface
receptor and intracellular inhibitory molecules. A summary of
these and other inhibitors is shown in Figure 2,Tables 1 and 2.

Inhibitory surface receptors or secreted decoy receptors
regulate PRR-induced inflammation. For example, initial
studies found that ST2 sequesters MyD88 and Mal to prevent
TLR4-dependent NF-kB signaling, cytokine induction, and
endotoxin tolerance in vivo in mice,52,53 as well as in human
monocytes.54 Subsequently, membrane-bound ST2 (ST2L) was
identified as a receptor for IL-33,55 and controversy ensued as to
the composite effects of IL-33/ST2L interactions in inhibiting
or activating cytokine-inducing pathways. These interactions

may differentially affect inflammation in distinct cell types and
tissues, including in the intestine.56,57 In mice, IL-33 binds to
ST2 on Th2 (T helper type 2) cells,57 and this interaction
promotes Th2-mediated colitis.56 ST2 also exists as a soluble
isoform, which is a decoy receptor that binds to IL-33 and
inhibits its signaling,58 adding further complexity to the ST2-
mediated regulation of inflammatory responses. Polymorph-
isms in a region containing ST2 (IL1RL1) are associated with
Crohn’s disease (CD).59 In UC patients, inflamed mucosa and
sera express increased soluble ST2, whereas ST2L expression on
the surface of epithelial cells is downregulated, adding further
complexity to elucidating the ultimate role of ST2 in IBD.56

IRAK-1 inhibition regulates not only PRR-, but also IL-1R-
and IL-18R-induced pathways.9 Basal expression of the IRAK-
1-activation inhibitor, IRAK-M, in mouse and human
macrophages controls initial PRR-mediated inflamma-
tion.31,60,61 Chronic infection or PRR stimulation further
upregulates IRAK-M in macrophages,31,60,62,63 which, in turn,
downregulates cytokine induction following PRR restimula-
tion.31,60,62 This partially occurs by preventing IRAK-1 and
IRAK-4 dissociation from MyD88, thereby abrogating further
IRAK-1-dependent signaling.60 IRAK-M deficiency increases
severity of endotoxin shock60 and of mucosal injury models in
mice, including in the lung64 and colon.65 Loss-of-function
polymorphisms have been associated with inflammatory/
autoimmune diseases such as asthma,66 and dysregulated
IRAK-M levels are seen in various diseases, including asthma,67

necrotizing enterocolitis,68 tuberculosis,69 and cystic fibrosis.62
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Figure 2 Inhibitory molecules operate by numerous mechanisms to limit pattern-recognition receptor (PRR)-induced macrophage functions.
Intracellular inhibitors regulate inflammatory responses on multiple levels by interfering with PRR-initiated signaling. Selected mechanisms of action of
intracellular inhibitors are also summarized in Table 2. Inflammatory intermediates are indicated in green and inhibitory molecules in red. ABIN, A20
binding inhibitor of NF-kB; ERK, extracellular signal–regulated kinase; GAS, growth-arrest specific; IFNR, interferon receptor; IRF, interferon regulatory
factor; ITAM, immunoreceptor tyrosine activation motif; JAK, Janus tyrosine kinase; MKP, mitogen-activated protein kinase phosphatase;
MyD88, myeloid differentiation primary response gene 88; NF-kB, nuclear factor kB; NLR, nucleotide oligomerization domain-like receptor;
PI3K, phosphatidylinositol 3-kinase; SHIP, SH2-containing inositol 50-phosphatase; SOCS, suppressor of cytokine signaling; TLR, Toll-like receptor;
TRAF, TNF receptor–associated factor.
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TLR3 and TLR4 activate the MyD88-independent TRIF
pathway, which induces Type I interferons (IFNs) and IFN-g.
Autocrine interferon-mediated inflammation is, in turn,
regulated by the suppressor of cytokine signaling (SOCS)
proteins, in particular SOCS-1, which primarily inhibits
interferon-initiated JAK/STAT (Janus tyrosine kinase/signal
transducer and activator of transcription factor) pathways.70–74

SOCS-1-deficient mice show early death due to multi-organ
inflammation,73 and decreased survival to sublethal TLR4
stimulation.72 Initial papers described SOCS-1 as down-
regulating TLR4-induced NF-kB;72,75 however, subsequent
studies found the SOCS-1-deficient mouse phenotype was
mostly attributable to excessive type I IFN inflammatory effects,
rather than defects in direct TLR4 signaling inhibition by
SOCS-1.76,77 Mutations decreasing SOCS-1 expression are
associated with immune dysregulation, including increased
serum Immunoglobulin E78 and asthma.79 SOCS-1 upregula-
tion can be mediated by the three TAM receptors expressed
primarily in myeloid cells: Tyro3, Axl, and Mer.80,81 Axl also
upregulates the transcriptional repressor Twist1 in human
macrophages.82 Mer-deficient mice are more susceptible to
endotoxin shock.83 Deficiency in all the three TAM receptors
and the subsequent lack of SOCS-1 induction results in
uncontrolled macrophage-mediated pro-inflammatory cyto-
kine secretion and autoimmunity.81 Besides inhibiting PRR-
mediated inflammation,80 TAM receptors regulate DC che-
motaxis84 and apoptotic cell phagocytosis and clearance by
macrophages.85–87 Defects in TAM receptor-induced phago-
cytosis contribute to autoimmunity in TAM-deficient mice.85

Consistently, apoptotic cell ingestion is associated with anti-
inflammatory cytokine production and tolerance.88 Increased
levels of Protein S, a TAM receptor ligand, are seen in
inflammatory diseases such as SLE (systemic lupus erythe-
matosus) and UC;89,90 the role of this elevation in the disease
process is unclear.

An important inhibitor targeting multiple pathways, A20,
was initially implicated in terminating TNF-induced NF-kB
activation in mice91 through ubiquitinating a TNF signaling
intermediate receptor-interacting protein (RIP) and targeting it
for degradation.92 Subsequent studies demonstrated that A20
also inhibits PRR-initiated pathways such as the TLR4 pathway
through ubiquitinating TRAF6 (TNF receptor–associated
factor 6),93 the TLR3 pathway by preventing IRF3 (interferon
regulatory factor 3) dimerization,94 and the nucleotide-binding
oligomerization domain-containing protein 2 (NOD2) path-
way by ubiquitinating and degrading the NOD2 downstream
effector RIP2.95 A20-deficient mice die prematurely due to
severe multi-organ inflammation.91 Moreover, selective A20
deficiency in DCs induces spontaneous colitis.96 Polymorph-
isms in the A20 region, including loss-of function mutations,
are associated with multiple autoimmune/inflammatory dis-
eases, including CD,97 SLE,98,99 and rheumatoid arthritis
(RA).100,101 IRF4 inhibits PRR pathways in mouse and human
monocytic cells by preventingRIP2102 andMyD88 signaling,103

and decreasing JNK and NF-kB activation.104 Consistently,
IRF4� /� mice demonstrate more severe endotoxin shock.103

Furthermore, IRF4 upregulation upon chronic NOD2 stimula-
tion contributes to protection from experimentally induced
colitis,102 and IRF4 expression is increased in the mucosa of
IBD patients.105

SH2-containing inositol 5’-phosphatase (SHIP-1) inhibits
MyD88-independent pathways by dephosphorylating and
inhibiting tank binding kinase 1 (TBK1), thereby modulating
IFNb induction.106 SHIP-1 also limits phosphatidylinositol 3-
kinase (PI3K) signaling.107 SHIP-1-deficient mice are hyper-
responsive to lipopolysaccharide (LPS) stimulation and
defective in endotoxin tolerance.107 However, over time
SHIP-1 deficiency promotes anti-inflammatory M2 macro-
phage polarization, possibly to counteract the inflammatory
phenotype.108 SHIP-1� /� mice exhibit ileitis109 and increased
macrophage infiltration into bone marrow and spleen, which
ultimately decreases survival.110 Increased SHIP-1 expression is
observed in the intestinal mucosa of IBD patients;111 it is
unclear if this increase reflects a compensatory mechanism to
counteract the inflammation.

FCg receptors and b2-integrins containing ITAM domains
downregulate multiple PRR pathways by inducing PRR
signaling inhibitors, including SOCS-1, A20, and IL-10 in
primary human macrophages.112 Consistently, ITAM receptor
induction protects from inflammation, including experimental
colitis.113,114 Which specific ITAM-containing receptors med-
iate inhibitory effects and whether ITAM domain-containing
peptides can be used therapeutically in inflammatory diseases
has yet to be defined.

Secreted inhibitory mediators downregulate PRR-induced
pro-inflammatory pathways in an autocrine and/or
paracrine fashion

PRR stimulation results in secretion of autocrine/paracrine
factors that can feed back to inhibit PRR pathways directly or
indirectly, thereby suppressing inflammatory outcomes. For
example, PRR-induced transforming growth factor (TGF)-b
can inhibit pro-inflammatory cytokines by degrading their
transcripts and suppressing their translation.115 TGF-b also
inhibits NF-kB signaling,26 downregulates CD40116 and
induces SHIP-1.107 IL-10 also regulates inflammation through
multiple mechanisms. IL-10 decreases transcript and protein
expression of numerous genes, including pro-inflammatory
cytokines,115,117–119 and leads to degradation of the MyD88-
dependent signaling intermediates IRAK-1 and IRAK-4.120

IL-10 also upregulates inhibitors such as soluble TNFR, IL-1Ra
and SOCS-3121 and upregulates STAT3 and PI3K pathways,122

which can inhibit inflammatory pathways.123–130 Moreover,
IL-10 inhibits additional myeloid cell functions, including
phagocytosis and antigen presentation.123 Autocrine IL-10 and
TGF-b signaling frequently combine to effectively suppress
inflammation, including in human macrophages and at
mucosal sites.18,126,131 Mouse studies have long confirmed
the importance of these secretory mediators in homeostasis at
mucosal surfaces: IL-10 and TGF-b-deficient mice develop
spontaneous colitis.132 Depleting macrophages in IL-10-
deficient mice attenuates the colitis,133 demonstrating that
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dysregulated macrophage function contributes to disease.
Besides downregulating inflammation in macrophages proper,
IL-10 production by gutmacrophages suppresses inflammation
by modulating other cell subsets, such as intestinal FoxP3þ T
cells.134 Mice with deletion or loss-of-function of the TGF-b
receptor in myeloid cells show impaired DSS-colitis resolu-
tion,135 indicating that besides producing TGF-bmyeloid cells
must also respond to TGF-b to limit intestinal inflammation.
Consistently, TGF-b is required for downregulating
pro-inflammatory cytokines in human lamina propria macro-
phages.136 Importantly, human polymorphisms in regions
including IL10, IL10R, and SMAD3 are associated with
autoimmune/inflammatory diseases, including IBD.10,137,138

An additional PRR-induced secretory mediator, IL-1Ra,
inhibits IL-1R signaling.139 As autocrine/paracrine IL-1
dramatically enhances overall cytokine secretion by human
macrophages, IL-1Ra ultimately downregulates multiple
cytokines (Figure 1).140 Consistently, IL-1Ra deficiency or
blockade worsens experimental colitis141 and increases
endotoxin susceptibility in mice,142 and loss-of-function
IL-1Ra polymorphisms are associated with autoimmune
diseases143 (Table 1).

Emerging evidence shows that in specific circumstances,
cytokines with pro-inflammatory roles such as IL-1b,126

interferons,82,144 and TNF-a,61,145,146 can, in fact, also down-
regulate PRR- and FCgR-mediated inflammation in human
macrophages. Mechanisms mediating these anti-inflammatory
responses can include induction of certain inhibitory proteins
and inhibitory signaling pathways (e.g., GSK3 (glycogen
synthase kinase-3) signaling).61

Distinct isoforms and strength of signaling modulate PRR-
induced macrophage outcomes

Targeting of MAPK and PI3K signaling pathways is being
studied in therapeutic trials.147,148 As modulating the quality
and/or quantity of these pathways determines whether they
activate or inhibit PRR-initiated pathways (Figure 1), an
improved understanding of their signaling would more
accurately predict therapeutic outcomes.

Extracellular signal–regulated kinase (ERK) can inhibit LPS-
induced pro-inflammatory cytokines in mouse macro-
phages.149,150 However, this inhibition has not generally been
observed in human studies.151,152 More recent studies in
human macrophages identified that PRR-induced ERK indeed
inhibits pro-inflammatory cytokines but that this inhibition is
masked by autocrine IL-1, which then increases the strength of
MAPK signaling and modifies the downstream outcomes.153

Differential susceptibility to lowering ERK signaling can be
observed betweendifferent pro-inflammatory cytokines aswell,
such that IL-1b secretion decreases upon ERK inhibition more
readily than TNF-a in LPS-stimulated mouse macrophages.154

Therefore, the strength of MAPK signaling can dramatically
influence whether pro-inflammatory cytokine secretion is
inhibited or enhanced in macrophages.

PI3K can both downregulate124–130 and upregulate155,156

pro-inflammatory signaling. PI3K consists of multiple

subunits,157 which could contribute to these observed
differences,124,130,158,159 as could differential strength of
PI3K signaling induced by distinct PRR. Furthermore, the
subunits targeted vary between different pharmacological PI3K
inhibitors and the inhibitor concentrations used. In human
disease, targeting the PI3K substratemTOR (mammalian target
of rapamycin) induces tolerance during transplantation by
upregulating regulatory T cells.148 However, rapamycin inhibits
PRR-mediated tolerance in human macrophages,126 and
mTORC1 deficiency in DCs exacerbates DSS-induced colitis.160

Therefore, although PI3K and mTOR signaling can negatively
regulate PRR-initiated inflammatory pathways in macrophages,
this signaling in T cells can lead to distinct outcomes.

microRNAs inhibit PRR signaling on a transcriptional level

A rapidly developing field of PRR-signaling regulation is
microRNAs (Figure 1). MicroRNAs regulate inflammation
through targeting the 3’ untranslated region of transcripts
leading to either their stabilization or degradation.161 Such
regulation is central to fine-tuning inflammatory responses.
Interestingly, microRNAs can modify expression levels of both
the positive and negative PRR-signaling regulators, including
MyD88 signaling intermediates, transcription factors, cyto-
kines, and inhibitors. Multiple microRNAs have been asso-
ciated with TLR signaling,161 with miR-146 andmiR-155 being
prominent in regulating inflammation.161 For example, miR-
146 inhibits IRAK-1 expression in human macrophages,
thereby decreasing NF-kB activation and pro-inflammatory
cytokine induction.162 Polymorphisms altering miR-146
expression are associated with SLE and RA.163 Similarly,
miR-23b, which suppresses multiple pro-inflammatory mole-
cules, ameliorates mouse lupus, RA, and MS models and is
downregulated in human autoimmune diseases, including
RA.164 By contrast, microRNAs such as miR-155 that down-
regulate PRR-signaling inhibitors are increased inmacrophages
from RA patients. Consistently, miR-155-deficient mice are
protected against experimental arthritis.165 Interestingly,
microRNAs can act as TLR7 and TLR9 agonists, inducing
paracrine inflammatory responses.166 Multiple human
inflammatory diseases, including UC167 and RA,168 show
dysregulated microRNA profiles. Expression and function of
microRNAs can vary in human and mouse immune cells;169

elucidating these differences is crucial to understanding the
mechanisms through which distinct microRNAs regulate
separate human macrophage functions.

Epigenetic regulation of PRR signaling

Immune cell phenotypes can be broadly modulated by
epigenetic modifications (Figure 1). Upon PRR restimu-
lation of mouse and human macrophages following chronic
LPS stimulation, some genes are repressed (‘‘tolerant’’),
whereas others remain transcribed (‘‘non-tolerant’’);16,17 such
outcomes are partially regulated through epigenetic modifica-
tions. The tolerant genes largely include inflammatory genes,
while the non-tolerant genes mediate microbial killing and
inhibit inflammation.16 Importantly, in mucosal tissues such as
the intestine, which chronically encounter microbial products,
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the epigenetic regulation mediating this dual transcriptional
and functional regulation may ultimately enhance anti-
microbial function while minimizing tissue inflammation
and injury. In mouse lamina propria myeloid cells, bacter-
ial-induced IL-10was found to downregulate IL-12p40 through
histone deacetylase 3 (HDAC3)-mediated histone deacetyla-
tion.170 However, overall epigenetic regulation of intestinal
macrophages is poorly defined. In primary human DCs and
THP-1 macrophages, acute LPS stimulation results in histone
acetylation and H3K4 methylation (both activating transcrip-
tion) in pro-inflammatory cytokine and activation marker
genes.171,172 However, during endotoxin tolerance, inhibitory
histone methylation (e.g., H3K27) is observed on pro-inflam-
matory genes in these cells.172–174 Interestingly, a polymorph-
ism in TLE1, a HDAC-interacting transcription factor, is
associated with CD.175 On the other hand, HDAC inhibitors
improve experimental colitis and kidney disease in mice176,177

and are undergoing evaluation as therapy for inflammatory
diseases, such as systemic onset juvenile idiopathic arthritis178

and IBD.179 The therapeutic properties of HDAC inhibitors are
incompletely understood and may involve mechanisms
independent of inflammatory gene regulation, including
protein acetylation and the induction of apoptosis.180

Inflammasomes regulate PRR-induced inflammation and
are associated with human inflammatory diseases

Microbial stimuli can activate inflammasomes, macromole-
cular complexes containing NLR family members activating
caspase-1, which cleaves pro-IL-1b and -IL-18 into their active
forms (Figure 1).181 Multiple NLRs contribute to inflamma-
some diversity,181 although not all NLR proteins form
inflammasomes. Tight balance of inflammasome regulation
is crucial; inhibition or deletion of inflammasome components
can either ameliorate or exacerbate animal inflammatory
disease models. For example, ASC-deficient mice are more
resistant to endotoxin shock,182 and caspase-1 deficiency
attenuates DSS colitis.183 However, NLRC4 and NLRP6
deficiency exacerbates experimental mouse colitis, partially
through dysregulated inflammatory cytokines, including IL-18,
and altered intestinal microbiota.184,185 Furthermore, poly-
morphisms in NLRs and molecules regulating inflammasome
activation are associated with the autoinflammatory dis-
eases.186–188 Inflammasome-associated pathways also mediate
mucosal-associated inflammatory diseases as evidenced by the
association of NLRP1 to vitiligo and systemic sclerosis,189,190

NOD2 to CD,191,192 and CARD9, IL-18RAP/IL12RL2/IL18R1/
IL1RL1 and IL1R2 regions to IBD.10,59Unlike the activating role
of many NLRs, most, but not all,193 reports find that NLRP12
inhibits inflammation.194,195 Consistently, NLRP12-deficient
mice are more susceptible to DSS-induced colitis and colitis-
associated tumorigenesis,196 although not to airway hyper-
sensitivity.197 NLRP12 loss-of-function mutations are asso-
ciated with inflammatory diseases,198,199 including atopic
dermatitis.200 Studies defining diseases that benefit from
targeting either the inflammasome directly or the products
of inflammasome activation (e.g., IL-1, IL-18) are ongoing.201

Autophagy regulates multiple macrophage functions

PRR stimulation induces autophagy, which facilitates cellular
organelle and bacterial clearance.202 In vivomouse studies and
human genetic association studies have demonstrated that
autophagy-associated genes and pathways are essential for
intestinal homeostasis;203–207 loss-of-function polymorphisms
in the autophagy genes ATG16L1 and IRGM are associated
with CD.10,208 These polymorphisms impair bacterial killing
in some,203,207,209 but not all, situations.207,210 ATG16L1
hypomorphic mice have dysregulated Paneth cell morphology
and exhibit microbiota-driven intestinal inflammation.205,211

Moreover, ATG16L1 can contribute to anti-viral activity in
macrophages in an autophagy-independent manner.212 Inter-
estingly, besides mediating bacterial killing, autophagy down-
regulates cytokine production from myeloid cells. Recent
mouse studies demonstrate that autophagy promotes absent in
melanoma 2 (AIM2) and NLRP3 inflammasome degrada-
tion213 and decreases IL-1 secretion.214,215 Human peripheral
blood mononuclear cells studies show that autophagy also
downregulates IL-1 through degrading IL-l transcripts.216

Therefore, autophagy regulates at least two distinct and critical
PRR-mediated functions: (1) microbial clearance and (2)
cytokine downregulation (Figure 1). These dual functions are
crucial in the intestine, thereby highlighting fundamental
mechanisms through which autophagy can contribute to
intestinal immune homeostasis.

PRR SIGNALING IN INTESTINAL MACROPHAGES IS

MEDIATED BY DIVERSE LOCAL FACTORS

In previous sections, we discussedmechanisms inhibiting PRR-
mediated functions and emphasized in select places how some
of these mechanisms contribute to intestinal macrophage
function and intestinal homeostasis; here we focus specifically
on aspects of the unique phenotype observed in intestinal
macrophages and on additional factors and mechanisms
contributing to this phenotype. Intestinal macrophages con-
stitute one of the largest reservoirs of myeloid cells.25,217

Macrophages are located throughout the intestinal tract,25,218

but most prominently in the lamina propria, beneath the
protective epithelial layer, making macrophages particularly
important in bacterial recognition following bacterial translo-
cation during events such as epithelial injury.25 Relative to
peripheral monocyte-derived cells, intestinal macrophages
secrete low levels of pro-inflammatory cytokines upon PRR
stimulation but upregulate bacterial killing.136,219,220 This limits
unnecessary inflammation and tissue damage while simulta-
neously protecting against overgrowth of resident microbiota
and pathogenic bacteria. As peripheral monocytes enter
the intestinal lamina propria, multiple local mechanisms
contribute to their differentiation into intestinal macro-
phages.25 Contributing factors include microbial components
(e.g., PRR ligands, polysaccharide A221), anti-inflammatory
mediators (e.g., TGF-b, IL-10), nutrients, and apoptotic cells.
Notably, during acute infection or tissue injury, intestinal
macrophages can mount inflammatory responses.220 This
inflammation can be mediated by peripheral monocyte
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recruitment to the intestine; the intestinal microenvironment
can then influence subsequent differentiation patterns.222–227

Consistently, altered proportions, functions, and/or differen-
tiation of intestinal myeloid cells can lead to intestinal
inflammation inmice,222,228–236 andmyeloid cell dysregulation
in human intestine is observed in IBD.237,238

Consistent with decreased pro-inflammatory cytokine
secretion, intestinal macrophages demonstrate downregulated
CD14,MD2, TLR2, TLR4,MyD88, and IRAK-1, and decreased
NF-kB activation, although certain PRR (e.g., TLR3, 5–9) are
expressed.26,136 Chronic PRR stimulation could contribute
to downregulated inflammation in intestinal macrophages.
For example, chronic NOD2 stimulation downregulates
cytokines in myeloid-derived cells31,102,126 and protects mice
from experimental colitis.102 Interestingly, intestinal myeloid
cells from germ-free mice show downregulated PRR-mediated
cytokine secretion,170,220 although these mice were exposed to
PRR ligands through food and bedding. To clearly dissect the
role of chronic PRR stimulation in the downregulated cytokines
observed in intestinalmacrophages, germ-freemicewill need to
be examined under conditions of food and bedding devoid of
microbial products, combined with recurrent intestinal injury.
Stromal and epithelial cell secretions (e.g., TGF-b, IL-10,
retinoic acid, and thymic stromal lymphopoietin) can also
downregulate intestinal myeloid cell responses.26,136,239–242 For
example, TGF-b signaling in DCs regulates intestinal inflam-
mation in mice,243 and intestinal stromal cell-derived TGF-b
downregulates CD14 expression, NF-kB activation, and
PRR-induced cytokine secretion in peripheral human mono-
cytes.26,136,240 Nutrients, including vitamin D and retinoic acid
that are abundant in the intestine, also contribute to intestinal
macrophage tolerance. VitaminDdownregulates PRR-induced
pro-inflammatory cytokines from human monocytes.244 Con-
sistently, vitamin D administration attenuates experimental
mouse colitis.245,246 Furthermore, higher vitamin D plasma
levels correlate to decreased CD risk.247 Conversely, compared
with healthy controls, CD patients exhibit vitamin D defi-
ciency,248 which is multi-factorial in etiology, and correlates to
disease severity.249 Similarly, in addition to its immunoregu-
latory roles in T cells,250 retinoic acid downregulates pro-
inflammatory cytokines in PRR-stimulated human DC.251

Finally, intestinal macrophages ingest apoptotic cells, which
leads to TGF-b and prostaglandin production.252–254 Impor-
tantly, mice lacking intermediates in apoptosis-inducing
pathways, such as TAM receptors, C1q, MFG-E8, and
TIM-4, develop autoimmunity.86,255–257 Moreover, autophagy
clears apoptotic debris,258 highlighting one mechanism
through which autophagy dysfunction may contribute to
IBD susceptibility.203–207

Despite downregulated cytokines, human intestinal
macrophages upregulate bactericidal activity. Intestinal factors
can mediate both processes. PRR16,17 and Vitamin D259,260

stimulation of human and mouse macrophages upregulates
multiple anti-microbial pathways. Interestingly, some studies
show bactericidal defects in CD patient macrophages.261 As
heterogeneous mechanisms lead to CD, bactericidal defects

likely exist in a subset of CD patients, such as those carrying
polymorphisms in bactericidal pathways (e.g., NOD2,
ATG16L1, IRGM, and NCF-2).10,262 Targeting mechanisms
mediating the dichotomy of downregulated inflammatory and
upregulated bactericidal pathways in human intestinal
macrophages might be particularly beneficial in IBD therapy.

HUMAN AND MOUSE MACROPHAGES DEMONSTRATE

DISTINCT REGULATION IN VARIOUS PATHWAYS

Human and murine-based studies are essential and comple-
mentary to definingmechanisms of disease pathogenesis. There
are multiple, fundamental differences between human and
mouse PRR signaling outcomes,11,12 including distinct PRR
and cytokine stimulation responsivity,31,102,263–267 and differ-
ential PRR utilization.268 These differences are critical when
extending mouse findings to human physiology and disease.
Reasons for inter-species differences include distinct function
and/or expression of relevant genes, dissimilar life spans,
distinct microbial colonization, and altered environmental
exposures. Furthermore, human genetic diversity is greater
than that of experimental inbred mice, adding significant
complexity, but also unique opportunities, in pursuing human
immunology.

Different factors regulate mouse and human macrophage
polarization

As macrophages enter or are activated in various microenvir-
onments, they differentiate into distinct subtypes, characterized
by differential surface marker, cytokine, and protein expres-
sion. Two broad categories of polarized mouse macrophages
include classically activatedmacrophages (M1), associated with
pro-inflammatory cytokine secretion, and alternatively acti-
vated macrophages (M2), associated with an anti-inflamma-
tory phenotype.6 Distinct factors mediate mouse and human
macrophage polarization and macrophage phenotypes. M1-
and M2-like human macrophages exist269,270 but are less well
defined than their mouse counterparts. IFN-g stimulation of
mouse, but not human M1 macrophages, dramatically induces
NOS2, and IL-4-stimulated human macrophages produce
significantly less arginase than mouse M2 macrophages.270

Human macrophage polarization likely involves specific
transcription factors. Although in one study, IRF5 mediated
M1, and IRF4 mediated M2 polarization of human macro-
phages,269 another study found contrasting results.271 Notably,
IRF5 is central to macrophage function as evidenced by IRF5
polymorphism associations with numerous autoimmune/
inflammatory diseases exhibiting dysregulated cytokine expres-
sion272 and the dramatic contribution of IRF5 polymorphisms
to human variance in PRR-induced cytokine secretion.273

Another IRF family member, IRF8, has been recently shown to
promote mouse M1 polarization;274 IRF8 effects on human
macrophage polarization are still unclear. Further studies are
needed to better define the regulation of human macrophage
polarization and how this polarization contributes to immune
homeostasis.
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Mouse and human macrophages demonstrate differences
in inflammasome activation

PRR stimulation induces pro-IL-1b, but a second signal, such as
adenosine triphosphate (ATP), is required to activate P2�7
receptors. This results in potassium efflux and calcium influx,
which activates the inflammasome and induces caspase-1-
mediated processing of pro-IL-1b and -IL-18 to their active
forms.275–277 Tissue damage releasesATP,278 thereby providing
a second signal to mouse macrophages.279 However, PRR-
ligand stimulated human monocytes secrete autocrine ATP;280

therefore, PRR-stimulation alone induces IL-1b in these cells.
Some studies demonstrate that PRR-stimulated humanmacro-
phages do not secrete IL-1b,281,282 with a second stimulus
necessary for IL-1b secretion.283 However, others detect active
IL-1b in PRR-stimulated human macrophages due to the suffi-
ciency of PRR stimulation for ATP production.140,153,284–286

These differences might partially reflect different culture
conditions used to generate macrophages; growth factor
and cytokine differences can profoundly influence human
macrophage responses.287 Improved insight into differential
regulation of IL-1 in human and mouse macrophages will be
important, as IL-1 contributes to multiple human diseases,201

and autocrine/paracrine IL-1b dramatically amplifies PRR-
induced cytokine secretion in human macrophages.140,153

Human variance adds complexity to examination of
PRR-induced macrophage functions

Mouse studies minimize variance in PRR-induced inflamma-
tory outcomes through inbreeding, housing in conditions that
reduce environmental differences, and utilizing age-, gender-,
and littermate-matched mice. However, humans show
significant variance in their genetic background,288 environ-
mental exposures,289,290 and intestinalmicrobiota,291–294which
translates into broad inter-individual immunological differ-
ences. For example, there is dramatic inter-individual variation
in cytokine and inhibitor molecule induction upon PRR
stimulation in human macrophages.31,61,273,295–298 Such var-
iance likely affects the balance between susceptibility to
infections versus autoimmune/inflammatory diseases. Genes
identified to regulate variance in human cytokine secretion
include IRF5, IL-1Ra, and TLR1. IRF5 polymorphisms account
for up to 53% of variance in PRR-induced TNF-a secretion
from human monocyte-derived cells;273 this dramatic con-
tribution likely results from the distinct genotypes being
commonly distributed across the population and from the
dramatic gene-dose-dependent regulation mediated by IRF5
polymorphisms. IL-1Ra polymorphisms mediate 5% of var-
iance in constitutive IL-1b plasma levels,299 and TLR1
polymorphisms contribute to variance in IL-6 secretion during
sepsis.297 Perhaps not coincidentally, these polymorphisms
contribute to susceptibility and/or outcomes in multiple
inflammatory/autoimmune diseases associated with dysregu-
lated cytokine production.272,297,299 Importantly, inhibitory
mechanisms regulating PRR-initiated pathways demonstrate
varying contributions in myeloid cells from different indivi-
duals (e.g., IRAK-M and SHIP-1).31,61 Of note is thatmutations

modulating inflammatory pathway intermediates, such as
MyD88300 and TRIF,301 may dramatically affect cytokine
induction, but if relatively rare, will not significantly influence
overall inter-individual heterogeneity. Another consideration
is that some PRR-pathway polymorphisms (e.g., NOD2,302,303

TLR4304), have different frequencies across distinct
ancestries, which will therefore influence the inter-individual
differences upon PRR stimulation between population groups.
Host–microbe interactions are central in natural selection and
functional variation; the inter-individual variability inherent in
human immunological studies can ultimately be leveraged to
define underlying mechanisms of autoimmune-mediated
diseases.305

Another contribution to variance in human immune
responses is inter-individual differences in microbial composi-
tion. Multiple mouse studies have implicated intestinal
microbiota in regulating immunity and disease development,
includingmucosal diseases.185,221,306–308 Altered human intest-
inal microbial composition is also associated with dysregulated
immunity and disease;291–294 it is unclear to what degree these
microbial changes are a consequence or a cause of the inter-
individual immunological differences.

Taken together, mouse models have provided tremendous
insight into defining the importance of various pathways and
functions in myeloid-derived cells in health and in disease
development. Furthermore, humanized mice can be used to
address select in vivo myeloid cell functions given successful
reconstitution of human myeloid cells into mice.309 However,
in applying the information from mouse studies to human
immune function, it is critical to understand the similarities and
differences between mouse and human immune pathways.

FUTURE PERSPECTIVES

Despite significant advances in understanding human
macrophage regulation and functions, multiple questions
remain. What are the functional outcomes of the many
disease-associated polymorphisms in macrophages? Which
factors influence human macrophage polarization? How do
monocytes acquire distinct resident phenotypes as they enter
tissues? How do intestinal macrophages determine when to
maintain tolerance and when to mount inflammatory
responses to resident or pathogenic bacteria?

Human heterogeneity poses a specific challenge when
conducting human macrophage studies; sampling from
well-powered cohorts is essential. Moreover, limited tissue
access restricts the number of functional immunological
readouts; high throughput approaches minimizing sample
sizes are continuously being developed and improved. Uniform
sample processing, standard operating techniques and normal-
ization of immune readouts based on criteria, including age,
gender, ancestry, or specific genotypes, will be essential
for future studies. Despite these challenges, elucidating the
inhibitory mechanisms in primary human macrophages is
essential to fully understand mechanisms mediating both
health and disease.
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