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 INTRODUCTION 
 The human intestine is colonized by 100 trillion microorgan-

isms belonging to each of the three domains of life. 1  Of these, 

bacteria are the most abundant — the colon is home to approxi-

mately 10 11  to 10 14  bacterial cells per ml of stool 2  and has a 

diversity of at least 1,000 species. 3  Through recent advances 

in surveying unculturable intestinal communities using 16S 

ribosomal DNA (16S rDNA) sequencing 4  and microarray-based 

methods, it has become clear that the major bacterial phyla in 

the mammalian intestine include Bacteroidetes (Bacteroidetes 

class), Firmicutes (Clostridia class), Proteobacteria ( � ,  � ,  � , and 

 �  classes), Actinobacteria, and Fusobacteria. 5,6  Some intestinal 

bacteria are mutualists that promote normal mammalian physi-

ology including proper digestion, 7  metabolism, 8  epithelial cell 

function, 9  angiogenesis, 10  enteric nerve function, 11  and immune 

system development. 12  Although bacterial communities in the 

intestine promote normal immune homeostasis, patients with 

inflammatory bowel disease 13  or allergies 14  have altered intesti-

nal bacteria, indicating that microbial populations might influ-

ence disease pathogenesis. 15,16  

 Antibiotic treatment has the adverse effect of altering intesti-

nal microbial communities 17  and antibiotic exposure is linked 

to increased risk of  Clostridium difficile  colitis 18  and asthma 16  

in humans. In keeping with these findings, antibiotic treatment 

in animal model systems has identified complex proinflamma-

tory and immunoregulatory roles for intestinal communities 

in modulating cytokine responses, 19 – 21  altering resistance to 

enteric pathogens, 19,22 – 25  maintaining mucosal homeostasis, 26,27  

and controlling allergic inflammation. 28  However, while the use 

of oral broad-spectrum antibiotics in humans and animal mod-

els is common, knowledge of how antibiotics modify intestinal 

bacterial communities is limited. 

 Previous studies using culture and fluorescent  in situ  hybridi-

zation-based methods have provided some insights into antibi-

otic effects on a limited subset of intestinal bacteria. 23,29  More 

recently, molecular based examination of antibiotic treatment 

in humans showed effects on intestinal communities, but was 

confounded by interindividual variability. 30  Animal models have 

proven well suited for metagenomic studies because they allow 

for control of host genetic background, feeding practices, and 
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antibiotic administration. In one such study of bacterial recovery 

after antibiotic perturbation, single-antibiotic effects were char-

acterized at the phylum level at a single time point and anatomic 

location. 31  Other groups have reported the general effects of oral 

antibiotic treatment on intestinal bacteria, including signifi-

cant changes to lactobacilli, enterococci / group D streptococci, 

Firmicutes, Bacteroidales, or segmented filamentous bacteria, 

depending on the specific antibiotic and treatment protocol. 22 – 25  

However, the interpretation of these studies is limited as in-depth 

temporal and spatial analyses of the effects of antibiotic treat-

ment on microbial communities were not undertaken. 

 Here, we characterized the effects of two different antibiotic 

treatment protocols on murine intestinal bacterial communities 

and immune cell homeostasis. We found that published protocols 

involving administration of multiple antibiotics (ampicillin, gen-

tamicin, metronidazole, neomycin, and vancomycin) in drinking 

water altered intestinal microbiota, but were complicated by the 

development of severe dehydration in the host. For this reason, we 

developed an oral gavage-based protocol that facilitated control-

led antibiotic dosing without the development of dehydration. 

Using DNA bar-coding and pyrosequencing of 16S rDNA gene 

segments, we examined temporal effects of antibiotics on bacterial 

communities and found significant reductions in the frequency 

of bacteria belonging to the Firmicutes phylum and persistence 

of the Bacteroidetes and Proteobacteria phyla over time. In addi-

tion, we performed spatial analysis of luminal and mucosal-asso-

ciated bacterial communities following antibiotic treatment and 

found significant effects in the cecum, proximal colon, and distal 

colon including reductions in mucosal-associated  Lactobacillus  

species. Finally, we examined the effects of oral antibiotic treat-

ment on mucosal immune cell homeostasis and found that anti-

biotic administration by gavage resulted in reduced production of 

RELM � , as well as reduced interferon- �  (IFN � ) and interleukin 

(IL)-17A production by mucosal CD4     +      T lymphocytes.   

 RESULTS  
 Administration of antibiotics in drinking water alters 
bacterial communities but results in severe dehydration 
 Antibiotic treatment has been used extensively to probe the 

effects of microbial signals in disease, including murine models 

of intestinal inflammation 19,20,26,27  and allergy. 28,32  However, to 

date there has been limited analysis of how oral antibiotics spe-

cifically influence intestinal bacterial communities. We sought to 

characterize the effects of published antibiotic treatment proto-

cols on intestinal bacterial communities through analysis of bac-

terial 16S rDNA compositions. Following published protocols, 

conventionally reared animals were given access to autoclaved 

water or autoclaved water containing ampicillin, gentamicin, 

metronidazole, neomycin, and vancomycin. 19,20,23,26 – 28  Stool 

pellets were collected at day 10 post-treatment initiation and total 

DNA was extracted for quantitative analysis of 16S rDNA genes 

by real-time RT-PCR. We observed a greater than two log reduc-

tion in bacterial 16S rDNA copies after 10 days of antibiotic treat-

ment as compared with control-treated animals ( Figure 1a ). 

 To examine the effects of antibiotics on the composition of bac-

terial communities in stool pellets, we used 454 / Roche (Branford, 

CT) pyrosequencing of 16S rDNA segments and determined 

taxonomic assignments for each sequence using RDP Classifier . 

Antibiotic administration resulted in reduced frequencies of 

bacteria belonging to the Bacteroidetes phylum (Bacteroidaceae 

family) and Firmicutes phylum (Lachnospiraceae family). 

Antibiotic administration also resulted in increased frequencies 

of other members of the Firmicutes phylum (Leuconostocaceae 

and Streptococcaceae families) as well as members of the 

Proteobacteria phylum (Enterobacteriaceae and Moraxellaceae 

families) ( Figure 1b , H2O vs. ABX). 

 We next investigated the origin of the bacterial 16S rDNA 

present in stool pellets after antibiotic treatment. To determine 

whether these sequences represented a living community that 

persisted after antibiotic treatment, we analyzed stool pel-

lets from germ-free animals and found bacterial community 

sequences similar to those present in stool pellets from anti-

biotic-treated animals ( Figure 1b , GF). We hypothesized that 

antibiotic treatment reduced intestinal bacteria to levels at which 

residual DNA in autoclaved food became the major contribu-

tor of 16S rDNA sequences. To test this, DNA was extracted 

from sterile mouse chow and 16S communities were shown to 

be indistinguishable from those found in stool pellets from anti-

biotic-treated or germ-free animals ( Figure 1b ) indicating that 

stool pellets from these animals were contaminated with bacte-

rial 16S rDNA normally present in autoclaved food. 

 We further sought to investigate the effects of antibiotics 

on intestinal immune homeostasis. Unfortunately, we found 

that animals fed antibiotics in drinking water rapidly showed 

signs of dehydration including weight loss, decreased skin 

turgor, and hard stools whereas animals fed autoclaved water 

showed no signs of dehydration ( Figure 1c ). Similar antibi-

otic treatment protocols without gentamicin or with added 

sweetener also resulted in dehydration (data not shown). 

These data reveal a previously unreported adverse effect of 

antibiotic treatment that confounds the interpretation of sub-

sequent immunologic or other studies. 33    

 Development of a new, broad-spectrum antibiotic treatment 
regimen not confounded by animal dehydration 
 We developed an alternate protocol in which animals were orally 

gavaged with autoclaved water or autoclaved water containing 

ampicillin, gentamicin, metronidazole, neomycin, and van-

comycin once daily for 10 days. Daily weights and stool pellet 

samples were taken and animals were sacrificed on day 10 for 

histologic, microbiologic, and immunologic analyses. Animals 

treated with antibiotics by oral gavage maintained their body weight 

( Figure 2a ) and showed no signs of dehydration. Treated animals 

also developed loose stools (data not shown) as seen with anti-

biotic treatment in human patients. 34  

 To examine the effects of this treatment regimen on intesti-

nal bacteria, 16S rDNA copy number was quantified in stool 

pellet samples using real-time RT-PCR. We observed an initial 

increase in 16S rDNA copies in stool pellets from antibiotic-

treated animals at day 1 post-treatment initiation suggesting a 

flushing of bacterial DNA into the stool, likely representing dead 

bacteria ( Figure 2b , day 1). After 9 days, we observed a 10-fold 
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reduction in total 16S rDNA in stool pellets of treated animals 

( Figure 2b ) consistent with a reduction in total bacterial load. 

 We next undertook gross anatomic and histologic analyses of 

antibiotic-treated animals. Treated animals showed character-

istic enlarged ceca, similar to those seen in germ-free animals 

( Figure 2c ), 35  as well as expansion of the lamina propria and ente-

rocyte hyperplasia resulting in increased intestinal villus width and 

length ( Figure 2d and e ). Further, examination of RELM � , a protein 

secreted from intestinal goblet cells in response to intestinal colo-

nization, 36  showed a trend toward reduction at day 1 that reached 

statistical significance by day 5 ( P     �    0.001) and day 9 ( P     �    0.005) 

post-treatment initiation ( Figure 2f ). Thus, antibiotic treatment by 

oral gavage resulted in bacterial depletion without dehydration, 

and this was accompanied by anatomic, histologic, and immuno-

logic changes characteristic of reduced microbial stimulation.   

 Antibiotic treatment results in two phases of bacterial 
community restructuring 
 The temporal effects of antibiotic treatment on bacterial com-

munities were examined using pyrosequencing of bacterial 

16S rDNA gene segments. We analyzed 49,994 sequences from 

144 samples representing stool pellet, luminal, and mucosal-

 associated bacterial communities originating from the cecum, 

proximal large intestine, and distal large intestine of nine ani-

mals (four naive and five antibiotic treated). To characterize 

the global effects of antibiotic treatment on the full intestinal 

microbiome, we compared bacterial communities in control- or 

antibiotic-treated animals by quantifying similarities based on 

phylogenetic distances using UniFrac as described previously. 37 –

 39  UniFrac distances were calculated in two different ways, using 

only presence / absence information (unweighted) or taking into 

account the abundance of each bacterial lineage (weighted), and 

principal coordinate analysis was used to cluster communities 

along orthogonal axes of maximal variance. 

 In unweighted UniFrac analysis, the first coordinate separated 

the stool pellet, luminal, and mucosal-associated samples on the 

basis of antibiotic treatment, and explained 26.8 %  of the variance 

( Figure 3a ). Weighted UniFrac analysis also separated samples on 

the basis of antibiotic treatment, with 75.4 %  of the variance repre-

sented by the first principal coordinate ( Figure 3b ). These find-

ings indicated that antibiotic treatment resulted in new luminal 

and mucosal-associated bacterial communities that were distinct 

from those seen in control-treated animals both in the propor-

tions of the different groups, and in the types of bacteria present. 

Treated samples grouped tightly in our weighted analysis with 

respect to the second coordinate axis ( Figure 3b , 14.1 %  of group 

variance) indicating that intestinal communities in treated ani-

mals were more similar than those existing before treatment. 

 To examine the temporal effects of antibiotic treatment, we 

used analysis of stool pellets. Stool pellet analysis is noninvasive, 

representative of luminal community composition, 5  and allows 

for longitudinal analyses . We found that samples from day 0 
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      Figure 1             Antibiotic delivery in drinking water modulates intestinal communities but results in animal dehydration. ( a ) 16S rDNA gene copies as 
quantified by real-time RT-PCR from stool pellets collected from naive (H2O;  n     =    5) or antibiotic-treated (ABX;  n     =    5) animals ( ±  s.e.m). ( b ) Family-
level phylogenetic classification of 16S rDNA frequencies in stool pellets collected from naive animals (H2O;  n     =    5), antibiotic-treated animals (ABX; 
 n     =    5), germ-free animals (GF;  n     =    3), or autoclaved animal food (Chow;  n     =    3). ( c ) Weights of animals fed unsupplemented (H2O;  n     =    4) or antibiotic-
supplemented (ABX;  n     =    4) water ( *  *  *  P     �    0.001;  ± s.e.m). Antibiotic-treated animals were switched to unsupplemented water at day 14 (dashed line).  
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and day 1 had distinct graphical locations in both unweighted 

and weighted UniFrac analyses ( Figure 3a and b ). This finding 

indicated an initial shift in community structure that occurred 

quickly after initiation of antibiotic treatment. Furthermore, 

unweighted and weighted UniFrac analyses revealed that the 

second and third coordinates, respectively, separated longitu-

dinal pellet samples on the basis of treatment day ( Figure 3c 

and d ) indicating a second, more gradual change in community 

structure over time. This trend reached statistical significance 

in antibiotic-treated ( P     �    0.0001, unweighted and weighted) 

but not control-treated animals. In summary, UniFrac analysis 

of bacterial communities from control- or  antibiotic-treated 
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        Figure 2             Antibiotic administration by gavage mimics molecular, anatomic, histologic, and immunologic characteristics of reduced microbial stimulation 
without animal dehydration. ( a ) Weights of animals gavaged with unsupplemented (H2O;  n     =    4) or antibiotic-supplemented (ABX;  n     =    5) water ( ± s.e.m). 
( b ) 16S rDNA gene copies as quantified from stool pellets collected before (day 0) or over the course of antibiotic treatment (days 1, 5, and 9) ( n     =    5; 
 ± s.e.m). ( c ) Cecal images from control-treated (H2O), day 10 antibiotic-treated (ABX), or germ-free animals (GF) (bar, 1   cm). ( d ) Photomicrographs of 
hematoxylin-and-eosin-stained cecal sections from control-treated (H2O), day 10 antibiotic-treated (ABX), or germ-free animals showing expansion of 
the lamina propria and enterocyte hyperplasia in ceca from antibiotic-treated and germ-free animals (bar, 50    � m). ( e ) Quantification of cecal villus 
length and width from control-treated (H2O;  n     =    4), day 10 antibiotic-treated (ABX;  n     =    5), or germ-free (GF;  n     =    3) animals ( *  *  *  P     �    0.001;  ±  s.e.m). 
( f ) Quantification of RELM �  protein in stool pellets by western blot over the course of antibiotic treatment ( n     =    5) ( *  *  P  � 0.01;  ± s.e.m).  
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animals revealed a dramatic shift in community structure that 

occurred quickly after antibiotic initiation, followed by a more 

gradual alteration in community structure over time.   

 Antibiotic treatment causes reductions in Firmicutes with the 
persistence of Bacteroidetes and Proteobacteria phyla over time 
 Phylogenetic placements allow the identification of bacterial 

taxa affected by antibiotic treatment. Temporal analysis of stool 

pellet samples revealed a significant shift in community com-

position on day 1 post-antibiotic treatment initiation ( Figure 

3e, f ) that was not observed in control-treated animals (data not 

shown). The timing of this shift is consistent with the flushing 

of 16S rDNA into stool observed during quantitative analysis 

( Figure 2b , day 1) and the graphical separation between day 

0 and day 1 samples from treated animals in UniFrac analyses 

( Figure 3a, b ). These findings indicate that even short antibiotic 

courses can result in dramatic alterations to intestinal bacterial 

communities. Temporal analysis of stool pellet samples over 

the course of treatment further revealed a gradual change in 

bacterial proportions over time ( Figure 3e ) that was consistent 

with the gradual alteration in community structure observed by 

UniFrac ( Figure 3c, d ). 

 After 9 days of antibiotic treatment, there were several statisti-

cally significant differences between stool pellets from antibiotic- 

or control-treated animals. These included reductions in the 

Porphyromonadaceae family,  Marinilabilia  genus, Bacteroidales 

order, Bacteroidetes phylum,  Weissella  genus,  Butyrivibrio  

genus,  Lachnospiraceae incertae sedis  genus, Lachnospiraceae 

family,  Anaerotruncus  genus,  Ruminococcaceae incertae sedis  

genus, Ruminococcaceae family, and  TM7 genera incertae 
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            Figure 3             Global restructuring of intestinal bacterial communities over time. ( a ) Unweighted or ( b ) weighted UniFrac analysis of stool pellet, luminal 
content, and mucosal-associated samples from control- or antibiotic-treated animals. ( c ) Unweighted or ( d ) weighted UniFrac analysis of stool pellet 
samples from control-treated (H2O;  n     =    4) or antibiotic-treated (ABX;  n     =    5) animals from day 1 to day 9 post-treatment initiation. Colored symbols 
represent treatment day, white squares represent means, and red line represents linear regression analysis ( ± s.e.m, significance determined by 
regression analysis). ( e ) Genus-level phylogenetic classification of 16S rDNA frequencies in stool pellets collected from control-treated (H2O;  n     =    4) 
or antibiotic-treated (ABX;  n     =    5) animals from day 0 to day 9. ( f ) Average frequency of bacterial groups before (antibiotic day 0) or during (antibiotic 
days 1 and 9) antibiotic treatment. Mann – Whitney  P  values of changes in group frequency with antibiotic treatment. Frequency reductions on antibiotic 
treatment in red, increases in green, nonsignificant changes blank.  
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sedis  ( P  values listed in  Figure 3f ; groups significantly reduced 

shaded in red). Upon antibiotic treatment, there were increases 

in the frequency of bacteria belonging to the  Bacteroides  genus, 

 Parabacteroides  genus,  Prevotella  genus, Prevotellaceae  family, 

 Xylanibacter  genus,  Erysipelotrichaceae incertae sedis , and 

 Akkermansia  genus ( P  values listed in  Figure 3f ; groups sig-

nificantly increased shaded in green). We did not detect any 

statistically significant differences in bacterial frequencies over 

the course of treatment in stool pellets from control-treated ani-

mals (data not shown). In summary, we found that antibiotic 

treatment caused significant changes in stool pellet bacterial 

communities and that these changes occurred in at least two 

phases, one that occurred immediately after initiating treatment 

and one that progressed over the course of treatment.   

 Antibiotic treatment results in significant alterations to 
luminal and mucosal-associated bacterial communities 
along the length of the colon 
 Bacterial communities are distinct along the length of the intes-

tinal tract, 5  and between luminal and mucosal sites. 40  Therefore, 

we analyzed the spatial effects of antibiotic treatment on luminal 

bacterial communities longitudinally along the colon (cecum, 

proximal colon, distal colon) ( Figure 4a ). In the lumen, anti-

biotic treatment was associated with lower frequencies of bac-

teria belonging to the Porphyromonadaceae family,  Alistipes  

genus,  Marinilabilia  genus, Rikenellaceae family, Bacteroidales 

order, Bacteroidetes phylum,  Mucispirillum  genus,  Butyrivibrio  

genus,  Coprococcus  genus,  Lachnospiraceae incertae sedis , 

Lachnospiraceae family,  Anaerotruncus  genus,  Faecalibacterium  

genus,  Ruminococcaceae incertae sedis , Ruminococcaceae fam-

ily, and Clostridiales order ( P  values listed in  Figure 4b ; groups 

significantly reduced shaded in red). Antibiotic treatment also 

resulted in significant increases in the frequency of bacteria 

belonging to the  Bacteroides  genus,  Parabacteroides  genus, 

 Prevotella  genus,  Xylanibacter  genus, Burkholderiales order, 

 Enterobacter  genus, and  Akkermansia  genus ( P  values listed in 

 Figure 4b ; groups significantly increased shaded in green). 

 Comparison of naive mucosal-associated bacterial communi-

ties to naive luminal communities revealed statistically higher 

frequencies of bacteria belonging to the  Mucispirillum  genus 

( P     �    0.012) and  Lactobacillus  genus ( P     �    0.001), and lower fre-

quencies of the  Alistipes  genus ( P     �    0.017) ( Figure 4c  vs. 4a). 

Upon antibiotic treatment, there were significant reductions 

in the frequency of mucosal-associated bacteria belonging to 

the  Marinilabilia  genus, Rikenellaceae family, Bacteroidales 

order, Bacteroidetes phylum,  Mucispirillum  genus,  Lactobacillus  

genus,  Acetitomaculum  genus,  Bryantella  genus,  Butyrivibrio  

genus,  Coprococcus  genus,  Lachnospiraceae incertae sedis , 

Lachnospiraceae family,  Anaerotruncus  genus, Ruminococcaceae 

family, and the Clostridiales order as compared with samples 

from control-treated animals ( P  values listed in  Figure 4d ; 

groups significantly reduced shaded in red). Upon antibiotic 

treatment, there were also significant increases in the frequency 

of mucosal-associated bacteria belonging to the  Bacteroides  

genus,  Parabacteroides  genus,  Prevotella  genus, Prevotellaceae 

family,  Xylanibacter  genus, and the Burkholderiales order 

( P  values listed in  Figure 4d ; groups significantly increased 

shaded in green). We were unable to amplify enough sequences 

from proximal colon mucosal-associated samples for statistical 

analysis. In summary, phylogenetic analyses revealed significant 

changes to luminal and mucosal-associated bacterial communi-

ties following antibiotic treatment.   

 Antibiotic treatment results in altered cytokine production by 
mucosal CD4     +      T lymphocytes 
 Microbial signals are known to influence many facets of immune 

function. 19 – 21,41 – 43  We therefore sought to examine whether 

administration of antibiotics influenced intestinal immune cell 

homeostasis. Animals were treated with antibiotics by gavage 

for 10 days, total RNA was isolated from sections of small intes-

tine, and cytokine transcripts were quantified using real-time 

RT-PCR. Transcript levels of  ifng  and  il17a  were significantly 

reduced in the small intestine of antibiotic-treated animals as 

compared to controls ( Figure 5a ). Flow cytometric analysis 

revealed a reduced frequency of CD4     +      T lymphocyte expres-

sion of IFN �  or IL-17A in the small intestinal lamina propria 

( Figure 5b ). In addition, in the mesenteric lymph nodes which 

drain the small and large intestine, the frequency of CD4     +      

T lymphocytes that expressed IFN �  or IL-17A was significantly 

lower following antibiotic treatment ( Figure 5c, d ). Collectively, 

these data support a role for microbial signals in the mainte-

nance of normal intestinal effector T lymphocyte populations.    

 DISCUSSION 
 We have developed an antibiotic treatment regimen that sig-

nificantly alters intestinal bacterial communities and immune 

cell homeostasis without animal dehydration. We used deep 

sequencing to quantify temporal and spatial effects of antibio-

tics on intestinal bacterial communities and show significant 

changes in several bacterial groups that correlate with altered 

cytokine production by CD4     +      T lymphocytes in intestinal-asso-

ciated lymphoid tissues. 

 We initially treated animals with antibiotics in drinking water 

in a similar manner to previously published protocols. 19,20,23,26 – 28  

This treatment protocol reduced intestinal bacteria to the extent 

that DNA from food composed the majority of recovered 16S 

rDNA sequences. However, this protocol was associated with 

animal dehydration that may complicate the interpretation of 

subsequent immunologic studies. 33  These findings also high-

light the presence of sterile, microbial-derived signals in the 

mammalian intestine and emphasize the importance of con-

trolling for DNA contamination from food in future immu-

nologic and metagenomic studies. As an alternative, we chose 

acute administration of broad-spectrum antibiotics by gavage, 

while allowing animal access to untreated drinking water; 

more closely mimicking antibiotic administration in humans. 

Animals treated by gavage did not show signs of dehydration 

and developed loose stools similar to known consequences of 

antibiotic treatment in patients. 34  Antibiotic treatment by oral 

gavage reduced absolute bacterial numbers and mimicked ana-

tomic, histologic, and immunologic  characteristics of reduced 

bacterial stimulation. 
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       Figure 4             Antibiotics modify luminal and mucosal-associated bacterial communities along the length of the colon. ( a ) Genus-level phylogenetic 
classification of 16S rDNA frequencies in luminal samples collected from control-treated (H2O;  n     =    4) or day 10 antibiotic-treated (ABX;  n     =    5) animals 
from the cecum (Ce), proximal colon (Prox), or distal colon (Dist). ( b ) Average frequency of bacterial groups in samples from control-treated (H2O; 
 n     =    4) or antibiotic-treated (antibiotic day 10;  n     =    5) animals. ( c ) Genus-level phylogenetic classification of 16S rDNA frequencies in mucosal-associated 
samples collected from control-treated (H2O;  n     =    4) or day 10 antibiotic-treated (ABX;  n     =    5) animals from the cecum (Ce), proximal colon (Prox), or 
distal colon (Dist). ( d ) Average frequency of bacterial groups in mucosal-associated samples from control-treated (H2O;  n     =    4) or antibiotic-treated 
(antibiotic day 10;  n     =    5) animals. Mann – Whitney  P  values of changes in group frequency with antibiotic treatment. Frequency reductions on antibiotic 
treatment in red, increases in green, nonsignificant changes blank.  
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 We carried out a temporal and spatial analysis of antibiotic 

effects on bacterial communities using pyrosequencing of bac-

terial 16S rDNA gene segments. UniFrac analysis revealed that 

samples from antibiotic-treated animals grouped separately 

from, and clustered more tightly than, samples from control-

treated animals indicating that antibiotic treatment promoted 

a novel community structure that was more similar between 

antibiotic-treated as compared with control-treated animals. 

Day 1 stool pellet samples from treated animals grouped closely 

with later time points consistent with an initial, fast phase of 

community alteration. This finding was emphasized in temporal 

analysis of stool pellet bacterial frequencies during treatment 

and suggests that even short exposure to oral antibiotics creates 

distinct intestinal bacterial communities. UniFrac and phylo-

genetic analyses of stool pellet communities over the course of 

antibiotic treatment further revealed progressive alterations in 

community structure, indicating that intestinal bacterial com-

munities are continuously modified over the course of antibiotic 

treatment. 

 The influence of antibiotic treatment by oral gavage on stool 

bacterial communities was noticeably different from that 

observed during antibiotic administration in animal drinking 

water. For example, sequences from the Bacteroidetes group 

represented a relatively small proportion of sequences recov-

ered from mice treated continuously with antibiotics whereas 

a higher proportion of Bacteroidetes sequences were recov-

ered from animals treated with antibiotics by gavage. These 

differences likely arose due to differences in the duration of 

treatment (4 weeks vs. 10 days), in the method of antibiotic 

administration (continuous vs. gavage), in animal hydration 

state (nonphysiologic vs. physiologic), and in the relative con-

tribution that 16S rDNA from food makes to measured bacterial 

frequencies (higher with more efficient microbial depletion). 

This finding highlights the importance of controlling for 16S 

rDNA in food in future metagenomic studies. 

 Previous studies have shown that antibiotic-treated animals 

develop allergic responses, 28  and antibiotic use in children is 

associated with increased risk of developing asthma later in life. 16  

In addition, early colonization with  Bacteroides fragilis  has been 

implicated as a risk factor for asthma development in humans. 44  

We therefore examined the effects of antibiotic treatment on 

members of the Bacteroidies phylum. We found that members of 

the Bacteroidies phylum, namely the Bacteroidales order, repre-

sented 60 – 70 %  of intestinal bacteria in control-treated animals. 

After 1 day, these bacteria represented a combined frequency of 

greater than 95 %  in samples from antibiotic- but not control-

treated animals, and subsequently stabilized at a frequency of 

approximately 90 %  in all sampled compartments. Outgrowths of 

the Bacteroidies phylum were not observed in previous metage-

nomic studies that examined recovery of intestinal microbiota 

after antibiotic exposure, 31  likely representing differences in 

antibiotic type and administration protocols and highlighting 

the utility of temporal analyses in metagenomic studies. It is 

intriguing to speculate that rapid increases in Bacteroidies fre-

quency after antibiotic initiation may be responsible for associa-

tions between early antibiotic exposure in humans and increased 

susceptibility to allergic inflammation. 

 We also detected significant reductions in the frequency of 

bacteria belonging to the Firmicute phylum in samples from 

antibiotic-treated as compared to control-treated animals. This 
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    Figure 5             Antibiotic treatment alters mucosal CD4     +      T lymphocyte homeostasis. ( a ) Cytokine mRNA expression on day 10 as assessed by real-time 
RT-PCR of small intestine samples from control-treated (H2O;  n     =    4) or antibiotic-treated (ABX;  n     =    5) animals ( *  *  *  P     �    0.001;  ± s.e.m). ( b ) Expression 
of IFN �  or IL-17A by CD4     +      T lymphocytes in the small intestinal lamina propria of control-treated (H2O) or day 10 antibiotic-treated (ABX) animals 
as analyzed by flow cytometry. ( c ) Expression of IFN �  or IL-17A by CD4     +      T lymphocytes in the mesenteric lymph nodes of control-treated (H2O) or 
day 10 antibiotic-treated (ABX) animals as analyzed by flow cytometry. ( d ) Statistical analysis of mesenteric lymph node CD4     +      T lymphocyte cytokine 
expression from control-treated (H2O;  n     =    4) or antibiotic-treated (ABX;  n     =    5) animals ( *  P     �    0.05;  ± s.e.m).  
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bacterial phylum has been shown to be present at increased fre-

quencies in obese patients as compared to healthy individuals 45  

and may provide the host an enhanced ability to extract energy 

from otherwise indigestible dietary polysaccharides. 46  As such, 

antibiotic treatment may result in a reduced capacity for energy 

harvest by the host, which has implications for prolonged antibi-

otic treatment in patients. In addition, these findings highlight a 

possible role for antibiotics as a means of modulating intestinal 

bacterial communities in future treatments for obesity. 45  

 Consistent with previous studies, we observed increased 

frequencies of  Enterobacteriaceae , as well as other members of 

the Proteobacteria phyla, in samples from antibiotic-treated as 

compared to control-treated animals. 31  The Enterobacteriaceae 

include a number of nosocomial pathogens, with considerable 

antibiotic resistance, including  Escherichia ,  Enterobacter , and 

 Salmonella . Given that DNA transfer between intestinal bac-

teria has a role in shaping bacterial communities 3,47  and in the 

development of pathogenic, antibiotic-resistant organisms, 48  

Enterobacteriaceae that survive in an antibiotic-exposed intes-

tine may act as a clinically relevant reservoir that could seed sub-

sequent infections with antibiotic-resistant bacteria. Outgrowth 

of  C. difficile , a common cause of antibiotic-associated colitis 

that is thought to colonize the intestine when indigenous micro-

biota are disrupted by antibiotic use, 18  was not observed as a 

result of our antibiotic treatment protocol. However, this result 

is not unexpected as metronidazole and vancomycin, two antibi-

otics commonly used to treat  C. difficile  colitis in humans, were 

included in the antibiotic cocktails used in this study. 

 We extended our analysis to spatial examinations of antibiotic 

effects along the length of the intestine, and between luminal 

and mucosal-associated bacterial communities. We found that 

luminal and stool pellet bacterial communities from naive ani-

mals were similar, suggesting that examination of stool pellets 

is an adequate, rough approximation of luminal communities. 5  

However, we did find that naive animals showed significantly 

higher frequencies of  Lactobacillus  species in mucosal-associ-

ated as compared with luminal communities, suggesting that 

distinct bacterial communities at different anatomical locations 

may be relevant for normal mammalian physiology. 

 Upon antibiotic treatment, there were significant changes 

to both luminal and mucosal-associated bacterial communi-

ties including increases in the Bacteroidies and Proteobacter 

phyla, and reductions in the Firmicute phylum. In particular, 

significant reductions in the frequency of mucosal-associated 

 Lactobacillus  species were observed in antibiotic-treated as com-

pared with control-treated animals.  Lactobacillus  species have 

been used as  “ probiotic ”  bacteria with mixed effectiveness in 

treating human diseases. 49,50  It may therefore be useful to exam-

ine whether reductions in this potentially beneficial mucosal-

associated bacterial group are responsible for changes in immune 

homeostasis observed following antibiotic treatment. 

 Finally, we examined the effects of acute antibiotic treatment 

on mucosal immune cell homeostasis. We found that produc-

tion of IFN �  and IL-17A by mucosal CD4     +      T lymphocytes was 

reduced in antibiotic-treated as compared to control-treated 

animals. We have previously shown that intestinal microbes 

negatively regulate IL-17A in the large intestine as germ free 

and antibiotic-treated animals show increased Th17 cell popu-

lations. 20  Other reports indicate that germ-free and antibiotic-

treated mice show lower frequencies of Th17 cells in the lamina 

propria of the small intestine as compared to conventionally 

reared animals, 41 – 43  indicating that Th17 cell differentiation 

by microbial signals may be dependent on anatomic location. 

Other potential reasons for reported differences in Th17 cell 

responses in germ-free animals include diet, non-live microbial 

exposure, indigenous viral stimulation, or other facility-specific 

environmental signals. We now extend these observations by 

showing that antibiotic treatment reduces mucosal IFN �  and 

IL-17A production by CD4     +      T lymphocytes in both the lamina 

propria of the small intestine and the mesenteric lymph nodes. 

This observation may provide mechanistic insights into the 

known susceptibility of animals treated with short courses of 

antibiotics to enteric bacterial infections. 19,22 – 25  

 In summary, we describe the development and characteriza-

tion of a new antibiotic treatment protocol that modifies intes-

tinal microbiota without animal dehydration. We use deep 

sequencing to show that antibiotic treatment causes significant 

temporal and spatial alterations in bacterial groups that have 

been proposed to have causative or therapeutic roles in human 

diseases. We further find that antibiotic treatment causes signifi-

cant alterations in the expression of proinflammatory cytokines 

by CD4     +      T lymphocytes in gut-associated lymphoid tissues. It is 

hoped that these findings will provide a resource and framework 

for analysis and manipulation of intestinal microbial communi-

ties in murine models of human infection and disease.   

 METHODS     

  Animals   .   Conventionally reared, 6- to 8 – week-old female C57BL / 
6 mice were obtained from Charles River Laboratory, Wilmington, 
MA  and maintained in a specific pathogen-free facility. Animals 
were housed by litter and fed autoclaved LabDiet 5010 mouse chow 
(LabDiet, Richmond, IN) and autoclaved water. Germ-free animals 
were sterilely maintained in plastic isolator units and fed autoclaved 
LabDiet 5021 mouse chow (LabDiet) and autoclaved water. Isolators 
were checked weekly and consistently cultured negative for microbial 
contaminants. All experiments were approved by and performed fol-
lowing the guidelines of the University of Pennsylvania Institutional 
Animal Care and Use Committee.   

  Antibiotic treatment   .   For continuous antibiotic treatment animals were 
provided with autoclaved drinking water, or autoclaved drinking water 
supplemented with ampicillin (1   mg   ml     −    1 ), gentamicin (1   mg   ml     −    1 ), 
metronidazole (1   mg   ml     −    1 ), neomycin (1   mg   ml     −    1 ), and vancomycin 
(0.5   mg   ml     −    1 ). For antibiotic treatment by oral gavage, animals had access 
to autoclaved food and water and were subjected to oral gavage daily for 
10 days with 200    � l of autoclaved water or autoclaved water supplemented 
with ampicillin (1   mg   ml     −    1 ), gentamicin (1   mg   ml     −    1 ), metronidazole 
(1   mg   ml     −    1 ), neomycin (1   mg   ml     −    1 ), and vancomycin (0.5   mg   ml     −    1 ).   

  16S rDNA sample acquisition and quantification of 16S rDNA   .   Stool 
pellet, luminal content, and washed mucosal-associated tissue samples 
were collected and total DNA was extracted using the QIAamp DNA 
Stool Mini Kit (stool pellet / luminal samples; Qiagen, Valencia, CA) or 
the DNeasy Blood and Tissue Kit (tissue samples; Qiagen). 
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 Quantification of 16S rDNA was performed by real-time 
RT-PCR using degenerate bacterial 16S rDNA-specific prim-
e rs  ( 5  �  - AG AG T T TG ATC C TG G C TC AG - 3  �  ;  for w ard ) , 
(5 � -CTGCTGCCTYCCGTA-3 � ; reverse), (5 � -FAM-TA    +    ACA    +    CA
TG    +    CA    +    AGTC    +    GA-BHQ1-3 � ; probe;     +     precedes the position of 
LNA base).   

  DNA manipulations   .   16S rRNA gene fragments were obtained as previ-
ously described. 51  Samples were amplified using eight nucleotide-bar-
coded primer pairs (BSF8; 5 � -AGAGTTTGATCCTGGCTCAG-3 � ), 
(BSR357; 5 � -CTGCTGCCTYCCGTA-3 � ). PCR reactions (50    � l) were 
carried out using the AmpliTaq System (Applied Biosystems, Foster 
City, CA) (Buffer II, 2   m m  MgCl 2 , 200    �  m  each dNTP, 10    �  m  each primer, 
0.1   mg   ml     −    1  bovine serum albumin, 100   ng (stool) or 500   ng (tissue) of 
template, 2.5   U polymerase). Cycle parameters were: 1   min 95    ° C, 20 
cycles (stool pellet and luminal samples) or 25 cycles (tissue samples) of 
30   s at 95    ° C, 30   s at 56    ° C, and 90   s at 72    ° C, final extension at 72    ° C for 
8   min. PCR products were gel-purified using the QIAquick Gel extrac-
tion kit (Qiagen). Each amplicon (100   ng) was pooled and subjected to 
pyrosequencing.   

  Bioinformatic analysis   .   Sequence quality was accessed and samples with 
>100 sequences were carried through to subsequent analyses. Sequences 
were inserted into the 16S rRNA gene tree 52  using parsimony insertion 
implemented in ARB. The tree constructed using ARB was used to carry 
out UniFrac analysis to compare global community structure as described 
previously. 37 – 39  Taxonomic assignments for each sequence were obtained 
using RDP Classifier. 53    

  Histology, stool protein extraction, and western blots   .   At necropsy, 
cecal tissue sections were removed and fixed in 4 %  paraformaldehyde 
and were embedded in paraffin. Sections (5    � m) were cut and stained 
with hematoxylin and eosin. Crypt morphology was quantified using 
NIS Elements BR imaging software (Nikon, Melville, NY). 

 Fecal protein isolation was performed as previously described. 54  
Samples were equalized by protein content, analyzed by sodium 
dodecyl sulfate – PAGE, and immunoblotted for RELM �  using a poly-
clonal rabbit anti-murine RELM �  antibody (PeproTech, Rocky Hill, 
NJ). Blots were visualized using ECL (Amersham, Piscataway, NJ) and 
band intensity was quantified using UN-SCAN-IT (Silk Scientific, 
Orem, UT).   

  Tissue isolation, RNA isolation, and real-time RT-PCR   .   At necropsy, 
1   cm distal small intestine tissue sections were isolated and stored 
at 4    ° C in RNAlater (Qiagen). Tissue RNA was isolated by disrup-
tion (TissueLyzer; Qiagen) and TRIzol extraction. RNA was reverse 
transcribed into cDNA using Superscript Reverse Transcriptase 
(Invitrogen, Carlsbad, CA) and real-time RT-PCR was performed on 
cDNA samples using primers for  ifng  (Qiagen) or  il17a  using SYBR 
Green chemistry (Applied Biosystems) on an ABI 7500 Fast Real-
Time PCR System (Applied Biosystems). The primer set for  il17a  
was synthesized (5 � -TCCAGAAGGCCCTCAGACTA-3 � ; forward), 
(5 � -TTCATTGCGGTGGAGAGTC-3 � ; reverse). Samples were normalized 
to naive controls.   

  Cell isolation, stimulation, and flow cytometry   .   At necropsy, mesenteric 
lymph nodes were harvested and single-cell suspensions were prepared. 
Lamina propria lymphocytes were isolated as previously described. 55  
Cells were stimulated by incubation for 4   h with 50   ng   ml     −    1  phorbol 
12-myristate 13-acetate (Sigma-Aldrich, St. Louis, MI) and 750   ng   ml     −    1  
ionomycin (Sigma-Aldrich) in the presence of 10    � g   ml     −    1  Brefeldin A 
(Sigma-Aldrich), surface stained with fluorochrome-conjugated antibod-
ies against CD4 and CD3, and fixed in 2 %  paraformaldehyde. Fixed cells 
were permeabilized with 0.5 %  saponin (Sigma-Aldrich), stained intra-
cellularly for IL-17A and IFN �  (eBioscience, San Diego, CA), acquired 
on a FACSCanto using FACSDiva software (BD Biosciences, Franklin 

Lakes, NJ), and analyzed with FlowJo software (version 8.5; Tree Star, 
Ashland, OR).   

  Statistics   .   Cytokine and FACS analysis: results represent the mean ± 
s.e.m. Statistical significance was determined by Student ’ s  t -test using 
Prism 4.0 (GraphPad software, La Jolla, CA) . UniFrac analysis: regres-
sion analysis was performed on day 0 – 9 stool pellet samples from naive 
or antibiotic-treated animals. Pyrosequencing analysis: frequencies of 
bacterial groups were compared using a Mann – Whitney test; each mouse 
was treated as a biologic replicate.       
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