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Angle-selective perfect absorption with
two-dimensional materials

Linxiao Zhu1, Fengyuan Liu2, Hongtao Lin3, Juejun Hu3, Zongfu Yu4, Xinran Wang2 and Shanhui Fan5

Two-dimensional (2D) materials have great potential in photonic and optoelectronic devices. However, the relatively weak light

absorption in 2D materials hinders their application in practical devices. Here, we propose a general approach to achieve angle-

selective perfect light absorption in 2D materials. As a demonstration of the concept, we experimentally show giant light absorp-

tion by placing large-area single-layer graphene on a structure consisting of a chalcogenide layer atop a mirror and achieving a

total absorption of 77.6% in the mid-infrared wavelength range (~13 μm), where the graphene contributes a record-high 47.2%

absorptivity of mid-infrared light. Construction of such an angle-selective thin optical element is important for solar and thermal

energy harvesting, photo-detection and sensing applications. Our study points to a new opportunity to combine 2D materials with

photonic structures to enable novel device applications.
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INTRODUCTION

Two-dimensional (2D) materials such as graphene and transition-
metal dichalcogenide have generated significant recent interest in
photonics and optoelectronics owing to their unique properties for
light–matter interactions1–5. To exploit these properties for device
applications, significant recent efforts have focused on combining
these 2D materials with photonic structures, such as dielectric
waveguides2,6–13, plasmonic structures3,14–17 or photonic crystals18–27.
Such combinations of 2D materials with photonic structures have led
to the demonstration of near-complete absorption in single-layer
graphene22,23,27, as well as modulators6,7,11–13,25, detectors8–10,28–33 and
lasers24.
In this study, we consider a particularly simple geometry of a

photonic structure incorporating a 2D material. The geometry, shown
in Figure 1a, consists of a single layer of 2D material separated from a
mirror by a dielectric spacer layer. This geometry has been previously
used to enhance the absorption in a graphene layer of normal incident
light34, but the demonstrated enhancement is rather limited. Here, we
theoretically prove that such a structure provides a universal mechan-
ism for achieving perfect absorption in the 2D material. In this
geometry, for any standard 2D material in the wavelength range, in
which the material has some loss, there always exists an angle of
incidence, at which the absorption of the 2D material reaches unity.
Therefore, the simple geometry in Figure 1a can function as an angle-
selective perfect absorber. Experimentally, we have shown that the
geometry in Figure 1a can lead to a total absorption exceeding 77% in

the mid-infrared wavelength range, in which the absorption in single-
layer graphene exceeds 47%.
The construction of an angle-selective thin optical element has

been of emerging interest recently owing to its importance for
solar and thermal energy harvesting35–37 as well as photo-
detection38. Thus, our work points to a new opportunity of
combining 2D materials with photonic structures to enable novel
device applications. The demonstrated angle-selective perfect
absorption in the infrared wavelength range alone can also be
important for sensing applications17.

MATERIALS AND METHODS

Fabrication of the structure
The bare structure is deposited atop a polished silicon wafer. A 200-nm-thick

chromium adhesion layer is first deposited using electron beam evaporation,

followed by 200 nm of gold. After cleaning the surface of the Au/Cr/Si

substrate, a Ge23Sb7S70 chalcogenide layer ~ 1.9 μm thick is deposited on top

using standard single-source thermal evaporation.
A single layer of graphene is grown by chemical vapor deposition on copper

foil and transferred onto the structure with the standard Poly(methyl

methacrylate) (PMMA) process39. After baking at 120 °C for 5 min, the PMMA

is dissolved by soaking the sample in acetone for 6 h and acetic acid for 3 h.

Chemical doping40 is then performed by applying nitric acid vapor on the

graphene layer. We control the doping of the graphene layer by varying the

duration of nitric acid vapor treatment. Two samples were fabricated with 5-

min doping time and 40-s doping time, respectively.

1Department of Applied Physics, Stanford University, Stanford, CA 94305, USA; 2National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering
and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China; 3Department of Materials Science and Engineering, Massachusetts
Institute of Technology, MA 02139, USA; 4Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA and 5Department of
Electrical Engineering, Ginzton Laboratory, Stanford University, Stanford, CA 94305, USA
Correspondence: ZF Yu, Email: zyu54@wisc.edu; XR Wang, Email: xrwang@nju.edu.cn; SH Fan, Email: shanhui@stanford.edu
Received 28 October 2015; revised 24 November 2015; accepted 26 November 2015; accepted article preview online 2 December 2015

Light: Science & Applications (2016) 5, e16052; doi:10.1038/lsa.2016.52
& 2016 CIOMP. All rights reserved 2047-7538/16
www.nature.com/lsa

http://dx.doi.org/10.1038/lsa.2016.52
mailto:zyu54@wisc.edu
mailto:xrwang@nju.edu.cn
mailto:shanhui@stanford.edu
http://dx.doi.org/10.1038/lsa.2016.52
http://www.nature.com/lsa


Characterization of the structure
At infrared wavelengths from 400 cm− 1 to 2500 cm− 1, a Fourier transform
infrared spectrometer (Nicolet 6700, Thermo Fisher Scientific, Waltham, MA,
USA) is used to characterize the reflectance of the samples, with a gold film
used as a reflectance standard, as shown in Figure 2c–2e. Because the structure
is planar, from the measured reflectance R, absorptivity A can be calculated by
A= 1−R. A variable-angle reflection accessory (Seagull, Harrick Scientific,
Pleasantville, NY, USA) equipped with KRS-5 substrate-based wire grid
polarizer (Seagull FTIR polarizer, Harrick Scientific) allows for specular
reflectance measurement at varying angles of incidence. The measurement
sampling step in wave number is 1.9 cm− 1. Nitrogen purging is performed for
the FTIR and the variable-angle reflection accessory during the measurement.
Raman measurement of samples is performed using a laser with a 514-nm

wavelength, which is the same wavelength of the laser used in Ref. 41. The
Raman measurement in both doping cases is performed at five randomly
selected locations on each structure.

Extraction of absorption in single-layer graphene
The external decay rate γe results from the resonance mode of the bare structure.
The internal decay rate results both from material loss inside the single-layer
graphene γi,G and parasitic loss γi,P inside the metal and spacer layers. Using the
coupled mode theory42,43, the absorptivity of the bare structure is:

aBare ¼
4gegi;P

ðo� o0Þ2 þ ðge þ gi;PÞ2
ð1Þ

and the absorptivity of the structure with graphene is:

aHybrid ¼
4geðgi;P þ gi;GÞ

ðo� o0Þ2 þ ðge þ gi;P þ gi;GÞ2
ð2Þ

Here, we have assumed that the resonance frequency ω0 remains unchanged with
the introduction of the graphene layer. From Equations (1) and (2), by
comparing the measured absorptivities of the structures with and without
graphene, decay rates can be obtained, and the absorption in the graphene layer
and the remaining structure can be extracted. The absorption in graphene is:

aG;Hybrid ¼
4gegi;G

ðo� o0Þ2 þ ðge þ gi;P þ gi;GÞ2
ð3Þ

and the parasitic absorption is:

aP;Hybrid ¼
4gegi;P

ðo� o0Þ2 þ ðge þ gi;P þ gi;GÞ2
ð4Þ

Graphene conductivity in intraband transition regime
The conductivity of doped graphene in the intraband regime44 can be
described as:

sG ¼ �iD

pðo� iGÞ ð5Þ

where the Drude weight, D ¼ e2

_vF
ffiffiffiffiffiffi
pn

p
and the relaxation rate, G ¼ evF

_mG
ffiffiffiffi
pn

p . Here,
Fermi velocity45, vF ≈106 ms−1, carrier density, n is related to

Fermi energy, EF by n ¼ 1
p

jEF j
_vF

� �2
, and μG is the carrier mobility. In the intraband

transition regime, for s-polarization, the internal decay rate of graphene can then be
expressed as:

gi ¼
c

d
� 1
ε
� 4a

_
ev2F
o2mG þ _ev2F

1
jEF j2mG

ð6Þ
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Figure 1 Decay rates and critical coupling. (a) Schematic of a structure consisting of a 2D material, separated from a mirror (light gray) by a dielectric
spacer layer (dark gray). As an example, the 2D material is a single-layer graphene. (b) External and internal decay rates of the structure as a function of
angle of incidence. The external decay rate (γe, blue line) and internal decay rate (γi, red line) are evaluated from Equations (7) and (8), respectively.
(c) Calculated mid-infrared absorptivity of the structure, for varying angles of incidence. (d) Calculated peak absorptivity as a function of angle of incidence.
In b, c and d, the structure consists of single-layer graphene separated from a PEC layer by a 1.9-μm-thick dielectric layer with a refractive index of 2.1. The
graphene is assumed to have a Fermi energy of −500 meV with a mobility of 750 cm2 V−1 s−1. In b, c and d, s-polarization is considered. PEC, perfect
electric conductor.
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where α is the fine structure constant. We observe that the internal decay rate
increases with increasing Fermi energy, |EF|. For a fixed Fermi energy and
resonance frequency, as a function of mobility, the maximal internal decay rate

is c
d � 1ε � 2ajEF j_o when mG ¼ ev2F

ojEF j:

RESULTS AND DISCUSSION

We consider the theoretical condition for perfect light absorption in
the 2D material with the structure shown in Figure 1a. For simplicity,
we assume that all layers except the 2D material is lossless and that the
bottom mirror has 100% reflectivity. Such a structure supports a
resonance with light trapped in the dielectric layer owing to the
reflections at its top and bottom surfaces. The resonance mode
amplitude can decay either through external radiation through the
top surface, as characterized by an external decay rate γe, or by the
absorption in the 2D material, as characterized by an internal decay
rate γi. Complete absorption in the 2D material layer can be reached
when the critical coupling condition γe= γi is satisfied.
We consider first the s-polarization, whose electric field is perpen-

dicular to the plane of incidence. The external decay rate γe of the
resonance mode can be derived as (see the Supplementary
Information for a detailed derivation):

ge ¼
c

d
� cos y
ε� sin2y

ð7Þ

where c is the velocity of light, d is the thickness of the spacer layer, ε is
the relative permittivity of the spacer layer, and θ is the angle of
incidence. The internal decay rate due to the absorption in the 2D
material can be derived as (see the Supplementary Information):

gi ¼
c

d
� 1
ε
� ReðsÞZ0 ð8Þ

where σ is the 2D conductivity of the 2D material, and Z0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
m0=ε0

p
is the vacuum impedance.
For a large group of 2D materials in the interband transition

regime46,47, the 2D conductivity, σ is related to the fine structure
constant a � e2

4_Z0=pE1=137. Graphene46, for example, has s ¼ pa
Z0
,

whereas semiconductor nanomembranes47 have s ¼ M � paZ0
; where

M, an integer, is the number of allowed transitions at a given
transition energy. In either case, at normal incidence θ= 0, from
Equations (7) and (8), we have gi

ge
¼ ReðsÞZ0 ¼ M � apoo1, where

M= 1 for graphene. Hence, critical coupling cannot be reached at
normal incidence, owing to the smallness of the fine structure
constant. For intraband transition, the form of σ is more
complicated. Nevertheless, the condition Re(σ)Z0oo1 is still
satisfied, and hence one also cannot reach critical coupling in this
geometry at θ= 0.
However, notice that γi is independent of θ, whereas γe reaches zero

at θ= π/2. Therefore, there is always a critical angle of incidence θc, at
which critical coupling is satisfied.
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Figure 2 Device and experimentally measured absorptivity. (a) Photo of the structure. It consists of a doped single layer of graphene separated from a gold
reflector by a 1.9-μm-thick Ge23Sb7S70 ChG layer. Here, the red rectangle denotes the region that is coated with graphene. (b) Raman spectra for two
structures with different graphene layers with different doping levels. The experimental spectra are shown as dots, and Lorentzian fittings are shown as black
lines. The Raman spectra are vertically displaced for clarity. The graphene with 5-min (red dots) and 40-s (blue dots) doping durations are estimated to have
Fermi energy EF of −500 meV and −300 meV, respectively (see the Supplementary Information). (c–e) Measured angle-resolved absorptivity for structures.
(c) The case of graphene at EF=−500 meV. (d) The case of graphene at EF=−300 meV. (e) The case of a bare structure without graphene.
(f) Peak absorptivities for the whole structure (diamonds), the absorption inside graphene (squares) and parasitic absorption (triangles). Red and blue lines
denote graphene with EF=−500 meV and EF=−300 meV, respectively. c–f are for s-polarization.
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In the cases considered here, where Re(σ)Z0oo1, the critical angle
can be determined as:

yc ¼ p
2
� ε� 1

ε
ReðsÞZ0 ð9Þ

and is close to 90°. For graphene or semiconductor nanomembranes
in the interband transition regime,

yc ¼ p
2
� ε� 1

ε
Mpa ð10Þ

where M= 1 for graphene. Therefore, we see that the critical angle is
directly related to the fine structure constant in this regime.
As an example, in Figure 1, we consider a single layer of graphene

atop a structure consisting of a 1.9-μm-thick dielectric layer with a
refractive index of 2.1 atop a perfect electric conductor layer. The
graphene has a Fermi energy of − 500 meV and a mobility of
750 cm2 V− 1 s− 1. The structure supports a resonance in the mid-
infrared wavelengths. Figure 1b shows the external and internal
decay rates of the structure. At normal incidence, we indeed see
γe(0)44γi(0). As the angle of incidence increases, Figure 1c shows
that critical coupling is achieved at θc≈88.4°, where the structure
transitions from over-coupling to under-coupling (Figure 1b). The angular
dependence of the peak absorptivity is shown in Figure 1d. Around the
critical angle, the peak absorptivity is sensitive to the angle of incidence.
We now experimentally demonstrate our concept by showing large

angle-selective enhancement of mid-infrared light absorption in
single-layer graphene. In our experiment, we place a single layer of
chemically doped graphene atop a structure consisting of a 1.9-μm-
thick Ge23Sb7S70 chalcogenide glass (ChG) layer backed by a gold
reflector, as shown in Figure 2a. Here, Ge23Sb7S70 ChG has relatively
weak absorption at mid-infrared wavelengths. It also has a low
refractive index48–50 of ~ 2.1, which is important for reducing the
absorption loss inside the metal reflector.
From Equation (9), we see that the same structure can provide

complete absorption for different 2D materials with different 2D
conductivity σ. To demonstrate this, we use two different graphene
layers with different doping levels. We chemically dope graphene by
applying nitric acid vapor and achieve two doping levels by doping
graphene for 5 min and 40 s, respectively. Figure 2b shows the Raman
spectra of the graphene for the two cases. The single symmetric 2D
peak in the Raman spectra confirms that it is single-layer graphene51.
For different doping, the G and 2D peaks of the Raman spectra shift.
Using the experimentally determined relation between the doping level
and the positions of G and 2D peaks from Ref. 41, the Fermi energy EF
for the graphene with 5-min and 40-s doping are estimated to be
− 500 meV and − 300 meV, respectively (see the Supplementary
Information).
The measured angle-resolved absorptivity for the structures with

and without graphene are shown in Figure 2c–2e. We consider
s-polarization. In Figure 2c, for the graphene with EF=− 500 meV,
the peak absorptivity increases with increasing angle of incidence and
reaches 77.6% at an 89° angle of incidence. For the graphene with
EF=− 300 meV (Figure 2d), the peak absorptivity reaches 69% at an
89° angle of incidence. In contrast, the bare structure without
graphene exhibits much smaller absorptivity (Figure 2e), and the peak
absorptivity is only 43.1% at an 89° angle of incidence. The absorption
in the bare structure results from parasitic loss inside the gold reflector
and the ChG layer. We see that the same structure can be used to
enhance the absorption for two different graphene layers at different
doping levels.

Figure 2f shows the absorption in graphene (squares), the parasitic
absorption (triangles) and the total absorptivity (diamonds). The
absorption in graphene and the parasitic absorption are obtained from
experimental results using coupled mode theory formulas. We note
that the absorption in graphene is not simply equal to the difference
between the peak absorptivities for the structures with and without
graphene. For both cases, the absorption in graphene dominates
the parasitic absorption. For the structure with the graphene at
EF=− 500 meV, at an 89° angle of incidence, the absorption in
graphene is 47.2%, and parasitic absorption is 30.4%. For the structure
with the graphene at EF=− 300 meV, at an 89° angle of incidence, the
absorption in graphene and parasitic absorption are 35.1% and 34%,
respectively. Figure 2f also shows that as the doping level of graphene
increases, the absorption in graphene increases while the parasitic
absorption decreases, which is consistent with the coupled mode
theory (see Equations (3) and (4)).
The demonstrated 47.2% light absorption in the single-layer

graphene is a significant enhancement of mid-infrared light absorption
in single-layer graphene. Previously, the highest experimentally
demonstrated mid-infrared light absorption in graphene was 30%
from Ref. 16, by nanopatterning a graphene layer into a graphene
nanodisk array. Our achieved absorption enhancement is substantially
higher than previously experimentally demonstrated mid-infrared
light absorption in single-layer graphene15,16,52–54 yet is realized using
a simpler structure. Our scheme is also compatible with chemical and
biological sensing applications17, in which the molecules must have
contact with the 2D material.
Using an experimentally characterized complex refractive index of

Ge23Sb7S70 and tabulated optical constants of Au55, numerical
calculation shows that the structure with EF=− 500 meV graphene
can achieve near-complete absorption, in which light is predominantly
absorbed by graphene (see the Supplementary Information). This
calculated absorptivity is higher than the measured result in Figure 2.
The difference between the two can be well explained by considering a
typical angular spread of the probing light in the measurement system
(see the details in the Supplementary Information). Therefore, we
expect that our fabricated device may already achieve critical coupling,
in which the majority of absorption is in the graphene.
Our approach has the significant advantage that the same structure

can provide critical coupling for different 2D materials with different
properties. The specific material properties of the 2D materials often
cannot be precisely controlled in an experiment and are rather
characterized only after the device is fabricated. This presents an
experimental challenge for other resonant enhancement approaches to
enhance light absorption in 2D materials, owing to the stringent
requirement for the critical coupling to achieve perfect resonant
absorption. In contrast, our approach provides a simple enhancement
approach that can work with 2D materials as prepared. As an example,
in the case of graphene considered here, the conductivity σG of
graphene due to intraband transition depends on doping level and
mobility. Regardless of these properties of graphene, there is always an
angle of incidence, at which critical coupling is met. In Figure 3a, we
show the critical angle as a function of Fermi level and mobility. Here,
the structure includes a 1.9-μm-thick spacer layer with a refractive
index of 2.1.
The critical angle depends on the conductivity of the 2D material

and is not necessarily large. Figure 3b shows the critical angle for
different doping levels and resonance wavelengths, with the mobility
of graphene of 750 cm2 V− 1 s− 1. We observe that the critical angle
can be as small as 30° at far infrared, owing to increasing conductivity
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of graphene at longer wavelengths. In addition, for quasi-2D thin films
with tuned thickness, the critical angle can be quite small.
Although we discuss the s-polarized case above, angle-selective

perfect absorption in a 2D material can be generalized to p-polariza-
tion in a geometry consisting of a 2D material separated from a
perfect magnetic conductor mirror56,57 by a lossless spacer. In this
case, the external and internal decay rates are c

d � ε� cos y
εm� sin2y and

c
d � sin2y

ε2m � Reðs>ÞZ0, respectively (see the Supplementary Information
for derivation). Here, σ⊥ is the 2D conductivity of the 2D material in
the vertical direction, and the spacer material has a relative permittivity
ε and relative permeability μ. For small 2D conductivity, the critical
angle in p-polarization can be described as p

2 � εm�1
ε3m Reðs>ÞZ0 (see the

Supplementary Information).

CONCLUSIONS

In conclusion, we report a general and robust mechanism for
achieving angle-selective perfect light absorption in 2D material by
placing it on a dielectric spacer layer backed by a mirror. In this
geometry, for any standard 2D material in the wavelength range, in
which the material experiences loss, we theoretically prove that there
always exists an angle of incidence, at which light is completely
absorbed in the 2D material. Experimentally, we show high light
absorption in single-layer graphene by placing it on a Ge23Sb7S70
chalcogenide layer backed by a mirror, achieving a total absorption of
77.6% at a wavelength of ~ 13 μm, in which the graphene contributes
a record-high 47.2% absorptivity in the mid-infrared wavelength
range. Our approach also has the significant advantage that the same
structure can provide angle-selective perfect absorption for different
2D materials with different properties, and we experimentally show
angle-selective absorption enhancement on the same structure using
graphene with different doping levels. Because our approach does not
involve the nanopatterning process, it is robust and can be scaled to
large areas with a high yield. Our approach provides a robust platform,
on which to achieve angle-selective perfect absorption in 2D materials.
Construction of such an angle-selective thin optical element is
important for applications ranging from solar and thermal energy
harvesting and photo-detection, to chemical and biological sensing.
Our results open new avenues for combining 2D materials with
photonic structures to enable novel device applications.
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