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speckle illumination
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The resolution of an imaging apparatus is ideally limited by the diffraction properties of the light passing through the system
aperture, but in many practical cases, inhomogeneities in the light propagating medium or imperfections in the optics degrade
the image resolution. Here we introduce a powerful and practical new approach for estimating the point spread function (PSF) of
an imaging system on the basis of PSF Estimation from Projected Speckle Illumination (PEPSI). PEPSI uses the fact that the
speckles’ phase randomness cancels the effects of the aberrations in the illumination path, thereby providing an objective pat-
tern for measuring the deformation of the imaging path. Using this approach, both wide-field-of-view and local-PSF estimation
can be obtained by calibration-free, single-speckle-pattern projection. Finally, we demonstrate the feasibility of using PEPSI esti-

mates for resolution improvement in iterative maximum likelihood deconvolution.
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INTRODUCTION

In optical imaging, the resolution is ideally limited by the light
diffraction characteristics, limiting the maximal resolution to the
wavelength scale. However, in many cases, imperfections of the optical
elements or the medium inhomogeneity introduce phase deformations
that deteriorate the image resolution from its diffraction-limited value.
For instance, in biological microscopic imaging, the setup is usually
optimized for a homogeneous watery medium, while this is rarely the
case when imaging a real sample!.

One of the ways to improve the compromised resolution is by
deconvolution. In the linear imaging model, there is a convolution
relationship between the optical setup impulse response (point
spread function, PSF) and the object light reflectance function. By
evaluating the PSF, the image resolution can be improved by
solving the inverse problem? either directly or through an iterative
process of improving the PSF from its initial conjecture®=. As even
in the iterative cases, the PSF initial value strongly influences the
final result, it is generally crucial to obtain a good estimate of the
PSE. The second approach toward improving resolution is by
measurement and correction of the imaging wavefront error
(adaptive optics), a method that provides very good results for
astronomical and retinal images7’9. However, when the reference
beam also passes through phase-deforming media or in the cases of
rapidly changing or significant phase errors, the resolution does
not reach the diffraction-limited value. In these cases, other

t10—12)

methods are usually combined for further improvemen and

PSF estimation approaches could be advantageous. Taken together,

distortion-resilient methods for PSF estimation could provide a
powerful addition to the imaging toolbox.

Here we present a new approach termed PEPSI for estimating the
transverse PSF when imaging through phase-deforming media, which
is based on measuring the deformation of a speckle pattern illuminat-
ing a fluorescent object. The motivation for using a speckle pattern to
measure the deformations arises from their random-phase distribu-
tion: these random phases yield a pattern whose statistics are not
affected by optical aberrations!® (see Supplementary Section 1 for a
detailed explanation and demonstration of this aberration invariance).
Therefore, by illuminating the object with the speckle pattern, an
objective measure of the phase errors of the imaging path can be
obtained, irrespective of the illumination path’s phase aberrations. As
the speckle pattern is uniformly distributed throughout the field of
view, PEPSI estimates the average PSF of the entire field of view from a
single-pattern projection, and is thus suitable for dealing with
dynamic-phase aberrations (not requiring prior calibrations or acqui-
sition of multiple images'#!3). Moreover, in cases where the aberra-
tions are non-isoplanatic, the local PSF for selected areas in the field of
view can be obtained by the same analysis on those areas. To obtain a
practical PSF estimation technique, we derive our solution using
Wiener-type minimization, leading to a Wiener-type deconvolution
algorithm for the PSF estimation (requiring only a change in the input
functions) that we validate using both simulations and experiments.
Finally, we show that PEPSI can be used to improve the resolution of
the (phase-deformed) images using a common iterative maximum
likelihood (ML)-based image reconstruction algorithm!'®17,
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MATERIALS AND METHODS
The image of an object illuminated by a speckle pattern can be
expressed using the isoplanatic imaging equation

i=p®os) +mn, (1)
where i is the recorded intensity at the image plane, p is the PSF, o is
the object's fluorescent density spatial distribution, s is the illumina-
tion speckle pattern at the object plane and # is the noise. To simplify
the following derivation, we assume that the optical setup is non-
magnifying.

Having a random-phase distribution, the speckle pattern projected
onto the object does not suffer from phase deformations!® (see
Supplementary Section 1 for a detailed explanation and demonstra-
tion). However, the phase of the emitted wavefront is no longer
random—it is made of fluorescent emission of light from a set of spots
on the object plane, which are a result of constructive interference.
Therefore, the incoherent emitted light is affected by the imaging-
phase deformations.

To analyze the statistical properties of each single-speckle illumina-
tion, we first divide the image into M sub-frame images, each
containing a single speckle (see Supplementary Section 2, for
more details on the frame division process). The I-th image can be
written as

i =p® (os1) + m. (2)
Here and below, we assume that the imaging aberrations are not
strong enough to cause an overlap of adjacent speckles. This
assumption makes the convolution values in Equation (2) equal to
zero at the edges of each I-th image. Thus, we can assume that each
one-speckle image is independent of the others, and discretization of
the large image into M one-speckle images is possible.

Averaging this set of one-speckle images yields

i =p®(as) +m (3)
where f, symbolizes the discrete averaging of the function f; over all M
images. As we have assumed that there is no overlap between two
images of adjacent speckles, we can change the order of the integration
(by the convolution operator) and averaging in Equation (3). In
addition, as o; characterizes the object’s local fluorescent properties
and s; characterizes the illumination, their covariance is negligible and
an averaged image can be expressed as

i =p®(0rs7) + 7 (4)
The terms in this equation are as follows:

07 is the average over M different object locations of the local
fluorescent densities. As the positions of the projected speckles onto
the object plane are random and M >> 1, this term will be averaged
out into a constant factor (denoted next by k).

57 is the average speckle intensity. This term is determined solely by
the illumination and not by the object.

77 is the average noise function, obtained by averaging over M
different one-speckle images.

By substituting the object’s average fluorescent density constant (k)
and dividing Equation (4) by a normalization factor (¢) that constrains
the total intensity of i to be equal to one, we get

i k D\,

2= - — 5

L=P® (CSZ) +- (5)
This equation describes the averaged degraded speckle image, made

of a large number of one-speckle images; it cannot be solved
analytically, because it contains three unknown variables (the PSF,
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the averaged and factorized projected speckle, and the averaged noise).
To overcome this hurdle, we replace ’;‘5 with a computer simulation of
the averaged projected speckle (denoted by s.) generated using prior
knowledge on the setup’s illumination exit pupil size and magnifica-
tion (see Supplementary Section 2 for implementation details). By also
constraining the total intensity of s, to be equal to one, we must
introduce a new function (denoted by z) that balances the average
noise term and keeps the equality valid:

i ]
2 .+ —+z. 6
: p®s+c+z (6)

The equation is valid as long as [[ zdxdy = -1 J[7rdxdy and shows that
the quality of the PSF estimation will be inversely proportional to the
size of zz when the normalized noise term is negligible with respect to
the convolution term, z is also negligible and the PSF estimation
precision will improve. Indeed, the equation noise term is mostly
much smaller than the convolution term because it is an average over
a large number of one-speckle images (M»1) with no spatial
correlation in the position of noise and because it is divided by the
total intensity of the signal (c). However, at the very peripheral parts of
the PSF where p®s.— 0, the contribution of z cannot be neglected,
and we expect a reduction in the precision of the PSF estimation in
those areas.

To estimate the PSF, we solve an error minimization problem.
Owing to the similarity of our problem to Wiener deconvolution, we
adopt a similar solution and define the following least mean square
error function (see Supplementary Section 3 for more details on the
similarity and derivation):

e=E{|P-G-II'}, (7)

where P is the Fourier transform of the PSF, G is a Fourier filter for
estimating the PSF, I is the Fourier transform of the normalized image
of the average speckle (that is, the left term in Equation (6)), and E
denotes expectation. By minimizing the error function, we obtain the
following expression for G:

c-Ll. IS
TS, o2 UNE
e |SP+ L

c? ‘P‘Z

(®)

where S, is the Fourier transform of s, and N'is the Fourier transform
of 717 + cz. This solution for the minimization problem is similar to a
Wiener filter?, except that here the prior knowledge is regarding the
object and not the PSF. To estimate the PSF, we multiply G by I (the
Fourier transform of ’%), and then inverse-transform the result.

Equation (8) generally requires knowledge regarding the spectral
content of n’ and of the PSF, but not having access to these values, we
substitute their ratio (IN'?/?IP1?) by a small constant value. Substitut-
ing the explicit form of N’ into Equation (8) highlights the inaccuracy
that z yields at the peripheral parts of the estimated PSF, whereas in
the substantial parts the division by Id? in the denominator of
Equation (8) yields a PSF estimation that is quite robust to high
noise levels (see the next section). Consequently, we used throughout
this study (simulations and experiments) a single constant ratio (0.05)
found by requiring that the total intensity of the estimated PSF will be
as close to unity as possible (0.95; that is, no absorption of light in the
imaging part). Substituting smaller values for this ratio will yield
artifacts, similar to the case of inverse-filtering process in the presence
of noise.

Owing to the similarity of PEPSI estimation to Wiener deconvolu-
tion, the implementation of this method is quite simple. By having a
degraded image of the speckles-illuminated object and a simulation of

doi:10.1038/1sa.2016.48
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Figure 1 Validating the method by simulation. A speckle pattern (a) is multiplied by an object fluorescent density pattern (b, scale bar=32 um) convolved
with the blurring PSF (c) and corrupted by Poisson noise (noise to signal ratio=0.014), forming the degraded image of a speckle pattern-illuminated object
(d). By finding the average speckle of (d) and of a speckle pattern (similar to a), we estimate the PSF (e, scale bar=1.3 um), which is qualitatively very
similar to the main lobe of the blurring PSF (f). (g) The RMSE of the PSF estimates versus the main lobe of the blurring PSF for different noise levels in d.
The insets show the estimated PSFs for the corresponding noise levels. In this analysis, the blurring PSF values were normalized to the [0 1] range (right
inset, same as f), and all estimated PSFs were normalized correspondingly, and share the same color map. The noise to signal ratio was calculated by
dividing the standard deviation of noise by the average signal. RMSE, root mean square error.

a clear speckle pattern, the PSF can be estimated by Wiener
deconvolution. This is done by substituting the averaged degraded
speckle from the image and the averaged clear speckle from the
simulation into Wiener deconvolution algorithm. Note that the
averaged clear speckle is substituted in the Wiener algorithm instead
of the initial guess of the PSF.

RESULTS AND DISCUSSION

Validation by simulation

To test the new method performance and characteristics, we began by
studying simulations of optically blurred speckle images. In each
simulation, a random speckle pattern (Figure la) was projected onto
an object (Figure 1b), the result was convolved with a blurring PSF
(Figure 1c), and the final image (Figure 1d) was also corrupted by
Poisson noise.

To estimate the PSF, we used a simulated speckle pattern to find s,
(different from the pattern in Figure la, to avoid getting a trivial
solution). The PSF estimate (Figure le) is obtained by substituting the
Fourier transform of s, into Equation (8) and multiplying the resultant
filter frequency response (G) by the Fourier transform of %’, obtained
from the degraded image (Figure 1d). For easy comparison, Figure 1f
shows the main lobe of Figure lc with the same color map as
Figure le. Note that in the very corners of the estimated PSF, there are
negative values—these values were expected from Equation (6) owing
to the low values of s. in the periphery.

We repeated this simulation for different Poisson noise levels
corrupting the image of Figure 1d. The results (Figure 1g) show the
relatively strong robustness of the estimation procedure for noise to
signal ratios of up to 0.25.

doi:10.1038/1sa.2016.48

Experimental validation

An optical apparatus (Figure 2a) was built in order to experimentally
validate the method and to demonstrate resolution improvement (next
sub-section). To project a speckle pattern onto the object, a laser-
illuminated diffuser (=532 nm) was imaged on the object plane.
Both speckle projection and imaging were then performed through a
phase-deforming plate. In order to yield the computer-generated clear
speckle pattern, s, knowledge of the magnification power of the setup
as well as the size of the illumination exit pupil was needed!®, but no
prior calibration was required (see Supplementary Section 2 for
additional details on the optical setup).

PEPSI’s accuracy was tested by an indirect two-step method,
because the numerical aperture of the setup was too small for
collecting enough light to directly measure the PSF using a sub-
diffraction-limited object. In the first step, we estimated the PSF by
projecting speckle on a thin film of a fluorescent dye. Figure 2b—-2d
shows the degraded image of the speckles, the corresponding
computer-generated ‘clear’ speckle pattern and the estimated PSF,
respectively. In the second step, we took two images of a fluorescent
bead, one with the same aberrations as in the PSF estimation process
and one clear image of the bead (without aberrations). Both images
were taken by removing the diffuser from the illumination part of the
optical setup, while for the clear image of the bead, the phase-
deforming plate was also removed. Finally, by convolving the clear
image of the bead with the estimated PSF (Figure 2e), we obtained a
degraded image (Figure 2f) that can be compared with the optically
acquired degraded image acquired in the second step (Figure 2g).
A potentially significant drawback in this comparison arises from the
noise that is an additive term in the optically acquired degraded bead
(Equation (1)), while in the PEPSI-based image, it is convolved with

- |6
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Figure 2 Experimental validation of PEPSI. (a) Experimental setup used for speckle pattern projection and imaging. The phase deformation was introduced
by a phase-deforming plate, and the speckle pattern was formed by a diffuser and projected onto a thin film of fluorescent dye. (b—d) The degraded speckle
pattern, a computer-generated speckle pattern (based on the size of the illumination exit pupil and optical setup's magnification) and the estimated PSF
(scale bar=3.6 pm), respectively. (e) By convolving the 'clear' image of a 4 um diameter fluorescent bead (diffuser and phase plate removed) with the
estimated PSF, a degraded image is obtained (f) that can be compared with its optically acquired degraded image (g): the RMSE between the degraded bead
images is only 0.039, showing their good agreement. To avoid discrepancy due to noise, we applied an adaptive noise removal filter to the bead's clear
(e, left) and optically acquired degraded (g) images, which mostly removed noise in the bead's surroundings without significantly changing it. (h) Three more
cases validating the estimated PSF's accuracy: the optically acquired degraded images of 6 pm beads (central column) closely match images obtained by
convolving their clear bead images (left column) by the estimated PSF (right column, also lists the images' RMSE). Noise was reduced by averaging 50

frames (here without a noise removal filter). RMSE, root mean square error.

the PSF. To reduce the effect of this discrepancy, we reduced the
noise level of the optically acquired bead images by applying an
adaptive noise removal filter (Figure 2e, left, and Figure 2g), which
mostly reduces noise in the bead surroundings, while hardly changing
its shape or intensity'® (see also Supplementary Section 4 for filter
details).

Comparison between the degraded bead image formed by convolu-
tion with the estimated PSF (Figure 2f) and the optically acquired bead
(Figure 2g) shows a qualitative resemblance, and the root mean square
error between the two is 0.039. Figure 2h shows three more examples
of validating PEPSI, each for different phase deformations. In these
examples, the noise was decreased by averaging a large number of
frames and not by a de-noising filter. In all of these examples, the
optically degraded bead (central column) is qualitatively similar to the
bead-convolved degraded image (right column) in shape, orientation
and intensity levels. To demonstrate the level of phase deformation,
the bead clear images are also shown (left column, note the different
color bars).
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Application: resolution enhancement of images
As an application for PEPSI, we applied the estimated PSF toward
resolution enhancement of degraded images using both simulated and
experimental data. The image reconstruction was based on an iterative
ML algorithm!® that uses PEPSI-estimated PSF as an initial input. By
using this familiar algorithm that constrains the final PSF to be positive,
we avoid any possible degradation in the reconstruction process owing
to the expected negative values in the estimated periphery of the PSF.
Figure 3a shows a degraded image of the object used for the
simulations in Figure 1, convolved with the blurring PSF from
Figure 1c and corrupted by additional noise. The reconstructed image
is shown in Figure 3b, showing a major improvement of the resolution
when using speckles PSF estimation as initial input for the ML
algorithm. This is further demonstrated by examining the averaged
radial power spectrum of the two images showing power enhancement
at high resolvable frequencies in the reconstructed image (Figure 3¢;
for example, at 0.28 cycles per pm frequency the reconstructed image
has five times higher power).

doi:10.1038/1sa.2016.48
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Moreover, in Supplementary Section 5, we demonstrate that there is
only a small improvement in the ML-based image reconstruction
versus a non-constrained algorithm (Wiener deconvolution), which is

[

108

108 ¢

10*

Power (norm.)

Reconstructed

102
Degraded

0 01 02 03 04 05 06
Spatial frequency (cycles per um)

Figure 3 Resolution improvement of simulated data by deconvolution based
on PEPSI's PSF. (a) Degraded image of the object in Figure 1. The image is
obtained by convolving the PSF (Figure 1c) with the object (Figure 1b) and
adding Poisson noise (noise to signal ratio=0.014). Scale bar=32 um. (b)
Image reconstruction based on the speckles PSF estimation (Figure le) as
initial input for iterative ML algorithm. (c) Averaged radial power spectrum of
the reconstructed image (red) versus the degraded one (cyan), showing a
resolution increase of the reconstructed image by having higher power at
high resolvable frequencies.
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due to minor peripheral changes of the ML final PSF estimate from
the high-quality initial estimate provided by PEPSL

To experimentally demonstrate resolution enhancement, we used
the same optical setup from 'Experimental validation' in Results and
Discussion section (Figure 2a), and a silicon wafer with fluorescently
stained rectangles of horizontal and vertical protruding bars, and
polygonal domains formed outside of the bars areas when the dye
dried. We observed a significant improvement in the image resolution
when using the PEPSI-based image deconvolution (Figure 4c) in
comparison with the degraded image (Figure 4b), and even in
comparison with the unaberrated object image (Figure 4a, hereafter
referred to as ‘the clear image’).

Figure 4d shows the final PSF that was used for the image
reconstruction, having only small difference from the PEPSI-based
PSF (comparison can be found in Supplementary Section 6). The
resolution improvement is also evident when examining the intensity
profile of a set of five bars (Figure 4e, profile marked by dashed line in
Figure 4a—4c). Although only four bars (local minima) are identified
in the non-speckles-based images, in the reconstructed image all five
bars are seen. Moreover, the width of the first minimum dip in the
speckles deconvolution graph corresponds well to the width of the
bars, as measured by a microscope (7 pm). All graphs were normalized
to share the same minimum intensity, which was set to zero, and they
are presented as fraction of the overall maximal intensity value.
The standard deviation of the speckle-based intensity profile is 1.33
times larger than in the degraded image profile.

In comparing the intensity profile of the speckle-based deconvolu-
tion with the profile of the clear image (Figure 4e), one can see that
the former gives better results than the latter. We believe that this is
due to inherent aberrations in our apparatus, even before the addition
of the phase-deforming plate, which were also identified and corrected
by the PEPSI method. This assertion is further backed by the following
reasons: (a) In the computer simulation test (Figure 3a and 3b), we
started with an image with no aberrations and degraded it with a
broad PSF, but the reconstruction results did not provide a better

Figure 4 Experimental demonstration of resolution enhancement. (a) The object without addition of optical aberrations (scale bar=56 um). (b) A degraded
image of the bars. (c) The reconstructed image. (d) The PSF that was used for image reconstruction (scale bar=5.4 um). (e) Comparison of the intensity
profile, marked by dashed line in a—c. Only the PEPSI-based deconvolution resolves the first bar—the first local minimum, circled. (f) The PEPSI-based ML
image reconstruction, obtained by PSF estimation of the intrinsic aberrations of the optical setup. The initial image for the reconstruction was a and speckles
were measured without the phase plate. All images share the same gray scale. (g) The PSF used for image reconstruction in f. Scale bar=3.6 pm.
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Figure 5 Demonstration of resolution improvement in a fluorophore-stained chicken breast tissue.
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(@) Object without addition of aberrations (scale

bar=50 pm). (b) Degraded image. (c) Reconstructed image using PEPSI. (d) Corresponding power spectra of the degraded (top) and reconstructed (bottom)
images, showing increase in the resolution (higher spatial frequencies, see dashed lines with corresponding minimal distances).
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Figure 6 Applying PEPSI in a microscope. (a) Clear image of a fluorescently dyed section of a US Air Force resolution target, obtained by a 10x objective.
Scale bar=40 pm (b) Degraded image of the target following introduction of an aberrating agar drop. (c) PEPSI-based reconstructed image. (d) Enlarged
regions of the deformed and reconstructed images. (e) Averaged radial power spectrum of the reconstructed target in ¢ (red) versus the corresponding
degraded one (cyan) showing resolution improvement by higher power at high resolvable frequencies. The inset shows the corresponding vertical intensity
profile of target’s element number one (horizontal bars, see dashed lines in d) for both images.

image than the initial image (Figure 1b). (b) When using the method
on images that were taken with our optical setup, but without
additional phase deformation (no phase plate), we also observed an
improvement (Figure 4f compared with Figure 4a; the PSF resulting
from ML is shown in Figure 4g).

Next, we applied the PEPSI-based deconvolution to a more
complex object: a chicken breast slice stained by the fluorophore
Rhodamine B. Figure 5a—5c¢ presents the clear (without phase plate),
degraded and the speckle-based reconstructed images. The resolution
improvement is also evident when examining the power spectrum of
the degraded and reconstructed images (Figure 5d).

Finally, we also validated PEPSI-based resolution improvement in
an inverted microscope (Nikon TE2000-U, Nikon Corporation, Japan)
where optical aberrations were deliberately introduced in front of the
sample. In this experiment, the sample consisting of a US Air Force
resolution target stained by a fluorescent dye and imaged through a
10X objective (Figure 6a) was severely aberrated by a drop of agar on
the target (Figure 6b). The speckle pattern was projected through one
of the microscope’s camera ports, and the averaged projected ‘clear’
speckle (S.) was experimentally pre-calibrated rather than calculated
(an additional optional way for obtaining S, in cases where the optical
aberrations originate at the sample and with the advantage of not
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requiring any prior knowledge of the optical setup parameters; see
Supplementary Section 2 for comparison between the two estimated
PSFs). The results of the PEPSI-based image reconstruction clearly
demonstrate a major resolution and contrast improvement both
visually in the image itself (Figure 6¢ and 6d) and quantitatively at
the high frequencies of the averaged radial power spectrum
(Figure 6e), and also in the target’s vertical intensity profile (upper
right panel of Figure 6e, profile marked by dashed line in Figure 6d).

CONCLUSIONS

In this study, we demonstrated a calibration-free method for PSF
estimation of an imaging setup that suffers from unknown-phase
deformations. When projecting a speckle pattern onto the object
plane, we obtain a pattern that is only affected by the phase distortions
of the imaging path while being unaffected by illumination path
distortions. Therefore, by a single projection of the speckle pattern, an
estimate of field of view-averaged PSF is obtained. Moreover, since the
method is locally true for areas where the PSF is space invariant
(Equation (1)), the same analysis can, in principle, be performed for
local estimation on sections of the field of view, thereby making it
suitable in cases where the PSF varies across the field of view!%10:20-26,
Consequently, the lack of prior calibration as well as the ability to

doi:10.1038/1sa.2016.48
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estimate the PSF at a single projection of speckle pattern, both for
wide and local fields of view, enable the use of this approach in cases
of dynamic, random and non-isoplanatic phase aberrations.

In addition to validating the PEPSI method by simulations and
experiments, we also demonstrated the feasibility of the PSF estima-
tion for resolution enhancement via deconvolution. The reconstruc-
tion is based on a numerical solution of an inverse problem, which
does not necessarily have a unique solution, so we did not use the
reconstructed image to analyze the precision of our PSF estimation,
but merely show it as an application for the method. The study was
limited to reconstruction by a common ML algorithm'®!°. We believe
that by using PEPSI with other deconvolution algorithms, an even
better reconstruction can be achieved.

Some of the more promising applications for this method could
come from its adaptation to wide-field microscopic imaging through
phase-deforming medial??>7>* (for example Figure 6), such as in
fluorescent retinal micro-imaging”®?’. The optical simplicity of this
method, which only requires an additional diffuser in the microscope
illumination path, enables easy integration into essentially any
fluorescence microscope. The use of a PEPSI can also solve the
dual-pass problem that sometimes exists in wavefront analysis of
imaging setups“’23>28, that is, to eliminate the effect of phase
deformation of the incoming wavefront. The method could also be
used as an initial adjustment in adaptive optics setups, for a faster
response time when a large field of view is required"?2-242%30,
Moreover, the reduction of aberrations with this approach can also
be obtained whenever speckle patterns are being projected for other
aspects of imaging such as super-resolution'®3!=3* or optical depth
sectioning®*,

The current study was limited to the cases of imaging fluorescent
objects in order to avoid coherent coupling between the illumination
and emitted light. However, PEPSI can be used for imaging non-
fluorescent objects as long as the illumination light coherence is
significantly reduced when emitted from the object; for example, it can
potentially be used for imaging objects consisting of sub-wavelength
scale particles.
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