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Efficient photon coupling from a diamond nitrogen
vacancy center by integration with silica fiber

Rishi N Patel1,2, Tim Schröder1, Noel Wan1, Luozhou Li1, Sara L Mouradian1, Edward H Chen1

and Dirk R Englund1

A central goal in quantum information science is to efficiently interface photons with single optical modes for quantum networking and

distributed quantum computing. Here, we introduce and experimentally demonstrate a compact and efficient method for the low-loss

coupling of a solid-state qubit, the nitrogen vacancy (NV) center in diamond, with a single-mode optical fiber. In this approach,

single-mode tapered diamond waveguides containing exactly one high quality NV memory are selected and integrated on tapered

silica fibers. Numerical optimization of an adiabatic coupler indicates that near-unity-efficiency photon transfer is possible between

the twomodes. Experimentally, we find an overall collection efficiency between 16% and 37% and estimate a single photon count rate

at saturation above 700 kHz. This integrated system enables robust, alignment-free, and efficient interfacing of single-mode optical

fibers with single photon emitters and quantum memories in solids.
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INTRODUCTION

Efficient coupling of stationary quantum memories to a single spatial

mode in silica fiber is of central importance in a range of quantum

information processing applications, including long-distance entan-

glement of stationary qubits and quantum networks1–5. Recently, the

efficient fiber coupling of atomic quantum memories also enabled

large atom-cavity coupling6–8 and strong single-atom nonlineari-

ties9,10. Among solid-state qubits, the nitrogen vacancy (NV) center

in diamond has emerged as an attractive quantum memory due to its

optically addressable and long coherence electronic and nuclear spin

states11,12. These properties have enabled recent demonstrations of

heralded quantum entanglement13 and teleportation14 between two

separated NV centers. To improve the entanglement probability in

such schemes, an open experimental challenge is to improve the effi-

ciency with which single photons from an NV center can be channeled

into a single-guided optical mode. This hasmotivated a variety of light

collection approaches, including diamond micro-posts15, solid

immersion lenses16–18, grating structures19,20, and inverse tapered

coupling to photonic integrated circuits21. Several research efforts

have also sought to integrate quantum emitters directly with optical

fibers, as a way of eliminating non-essential optical components and

achieving compact and nearly monolithic interfaces. Recently, fluor-

escence collection from colloidal quantum dots and diamond nano-

crystals containing single NVs was proposed22,23 and demonstrated,

often using a tapered fiber section24–30. However, these approaches use

point-like emitters that exhibit poor collection efficiency; in addition,

the spin and optical properties of NVs in diamond nanocrystals are

degraded compared to bulk diamond23. It is desirable instead to trans-

fer photons from emitters in a wave-guiding structure to an optical

fiber, as was recently demonstrated for quantum dots31. Here we intro-

duce an approach that uses adiabatic power transfer between a tapered

silica fiber and a single-mode diamond micro-waveguide fabricated

from high-quality CVD-grown diamond. This integrated diamond–

silica waveguide system enables efficient optical collection from high-

quality NV centers.

MATERIALS AND METHODS

Device description

We consider a tapered single-mode diamond micro-waveguide in

direct contact with the tapered section of a single-mode optical fiber,

as illustrated in Figure 1. The diamondmicro-waveguide is positioned

by van der Waals forces directly on the tapered fiber resulting in coup-

ling between the optical modes of the two structures.

For a slowly varying diamond width, corresponding to a slowly

varying effective refractive index, light in the diamond micro-wave-

guide remains in the fundamental mode of the combined diamond–

silica structure. We analyze this problem using coupledmode analysis,

following a similar analysis for coupling between a silicon waveguide

to a tapered fiber32. Figure 2a plots the effective indices of the diamond

and fibermodes as a function of the diamondwaveguide cross-section,

for a fixed fiber diameter of 500 nm. Near a diamond cross-section of

140 nm, a clear anti-crossing is observed as thematching group indices

of the waveguides results in strong mode-coupling between them. The

corresponding mode fields are shown in Figure 2b. If the diamond
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taper is swept slowly such that the optical mode remains in the ground

state through the transition from the diamond into the silica wave-

guide, nearly 100% power transfer is possible. Specifically, the dia-

mond taper width Wd (z) must satisfy:

dWd (z)

dz
vv dnd

dWd (z)

� �{1
2p

l0
(Dnef f )

2 ð1Þ

where
dnd

dWd (z)
, the rate of change of the fundamental diamond mode

effective index versus diamond width, can be computed from the

derivative of the uncoupled diamond band plot shown in Figure 2a.

The parameters on the right-hand side of Equation (1) can be esti-

mated from the simulation shown in Figure 2a. Using l0~637 nm,

Dnef f~0:13, and
dnd

dWd (z)
~0:008, we thus obtained a bound

dWd (z)

dz
v0:02. For Wd (0)~200 nm, this corresponds to a taper

length Lt~10 mm. This is consistent with the finite-difference time-

domain (FDTD) calculation shown in Figure 2c, confirming that the

coupling efficiency increases with the length of the diamond wave-

guide, as expected.

Next, we consider how the orientation of the NV, which is assumed

to be located at the center of the diamond micro-waveguide (see

Figure 1), affects the coupling efficiency. In our simulation, we con-

sider three orthogonal dipole polarizations along the axes shown in the

inset of Figure 1a. For an x-polarized dipole, a theoretical overall
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Figure 1 System overview. A diamondmicro-waveguide containing anNV center (gray) in parallel contact with a tapered fiber segment (blue) is schematically shown.

Excitation and collection pathways are shown in green and red, respectively. The inset shows the diamond crystal lattice and the NV center spectrum. The parameters

in this experiment are the fiber diameterD<500 nm, the diamondwidth (at z5 0),W d (0)~200 nm, and the taper length Lt~5 mm. In theNV energy level diagram, the

zero-phonon line is denoted by ZPL, the zero-field-splitting frequency of 2.87 GHz byVZFS and the Zeeman splitting between the11 and –1 states in a direct current

(DC) magnetic field by 2Dv.
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Figure 2 System simulation. (a) Plot of the effective mode index of the fundamental mode of the fiber and diamondmicro-waveguide versus diamond width. The blue

dotted lines show the uncoupled fundamental modes of each structure. The horizontal line is the effective index of the lowest-order fiber mode. The red lines are the

coupled supermodes, which show an anti-crossing. (b) The field profile of the norm of the electric field is shown for the fundamental supermode of the combined

structure. From left to right, the diamond width ranges from 200 nm, 150 nm, 100 nm, and 50 nm. (c) FDTD calculation showing the fiber collection efficiency, given

that only the fundamental supermode of the diamond–fiber structure is excited. (d) FDTD calculation using a dipole source of three different polarizations. Blue, green,

and red are oriented along the x, y, and z directions, respectively. See Figure 1 for a coordinate inset. (e)Detailed view of the FDTD results versus wavelength for a 15 um

long diamond micro-waveguide.
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collection efficiency of over 70% can be achieved, as can be seen from

the collection efficiency plot for the three dipole orientations in

Figure 2d. We also note that the adiabatic coupling approach has the

advantage of being highly broadband, as is apparent from the FDTD

calculations plotted versus excitation wavelength (Figure 2e).

Device fabrication

The system fabrication involves three main stages. First, tapered fibers

were fabricated from single-mode optical fibers (Thorlabs 630HP)

using a standard heat-and-pull technique33 while secured in a tapered

fiber mount that is sealed to maintain a clean-air environment and to

block air flow. Our setup uses a fixed hydrogen flame and two motor-

ized stages. To prepare the fiber for tapering, we strip a 1 cm region of

the outer jacket and preheat the region for 120 s. We then pull the

stages in opposite directions at a speed of 30 mm s21. Laser transmis-

sion at 630 nm is monitored throughout the pulling process, and the

stages are stopped manually when the transmission begins to fall. We

confirmed with scanning electron micrscope and optical images that

this diameter is on the order of 500 nm.

The fiber tapering results in an adiabatic fiber mode conversion to

maintain a high (<90%) transmission of 633 nm laser light. Although

especially long tapers can provide efficiencies around 97%34, we used

here shorter tapers as they are easier to manipulate. Second, diamond

micro-waveguides were fabricated from a 200 nm thin film of [1 0 0]

electronic grade synthetic diamond using transferred hard mask

lithography35. They are 12 mm long, with a 5 mm triangular taper

on either side of a 2 mm section of constant width (Figure 3a). Third,

we characterized and selected individual diamondmicro-waveguides

containing exactly one NV center before placing them onto the waist

of the tapered fiber, where they adhere readily by van derWaals forces.

This detachment and placement is done using a tungsten micro-

manipulator tip (Ted Pella). We use a rotation stage for the fiber to

align it parallel to the micro-waveguide, while the tungsten probe is

controlled by a separate three-axis piezo stage. Figure 3b and 3c shows

a completed device under a scanning electronmicroscope and optical

confocal microscope, respectively.

Confocal excitation and autocorrelation measurements

A home-built confocal microscope is used to excite the NV center. We

use a 532 nm pump laser and focus it onto our sample using a Zeiss

NA5 0.75 cover-glass corrected objective. We couple the signal from

each fiber end to free-space in order to filter out the pump with two

550 nm long-pass filters. The resulting signal is coupled back into
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2 µm 

400 nm 1 µm

a b

c d
Right fiber port collection 

Left fiber port collection 

Figure 3 Device fabrication. (a) Scanning electronmicroscope (SEM) image of diamondmicro-waveguides. (b)SEM image of a functionalized tapered fiber, in contact

with a diamond micro-waveguide. (c) Optical image of assembled device. (d) Confocal scans of fluorescence detected from two fiber ends (shown in top and bottom

panel). Themicro-waveguide is optically pumped with a green (532 nm) laser excitation source. Light originating from a single NV center is shown in the dotted circles.
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single-mode (SMF-28, Corning) fiber before being directed to two

avalanche photo-diodes (APDs; Perkin-Elmer). We perform cross-

correlation measurements with a histogram of start-stop time intervals

using a countingmodule with a binwidth of 0.256ns. In a confocal scan,

the NV can be identified as a bright fluorescence spot to the left of the

centerof themicro-waveguide (Figure 3d).Here,we excited theNVfrom

the top while collecting photons through the left and right fiber ends, as

seen in the top and bottompanels, respectively. The ends of the diamond

micro-waveguides are also apparent as bright fluorescence spots on the

scan. At these positions, more laser power is scattered into the fiber,

causing increased fluorescence background. The bright extended

spot at the right of the top panel is due to additional asymmetric scatter-

ing from the tip of the diamond waveguide. This scattering signal does

not originate from NV center fluorescence, as determined from the

photon statistics and spectra from these points (see Supplementary

Fig. S4).

RESULTS AND DISCUSSION

Optical characterization

Optical measurements reveal the efficient collection of NV fluor-

escence directly coupled into a single-guided mode. We detected NV

fluorescence through both the left and right fiber ends, as evidenced by

the typical NV spectrumwith a pronounced zero phonon line around

637 nm (Figure 4a).

By varying the pump power, we observe a saturation behavior in the

NV signal (Figure 4b and 4c). All fits are to a model of the form:

I(P)~
PIsat

PsatzP
zCP ð2Þ

where I is the measured intensity in counts per second (cps), P is the

pump power, Isat the saturation intensity, Psat the saturation pump

power, and C is a fitting parameter that characterizes the linear back-

ground contribution.The fits estimate an overall Isat of 712+ 24ð Þ : 103
cps from both fiber ends combined versus 16+ 2ð Þ : 103 cps from the

objective. The corresponding saturation powers are approximately 380

and 485 mW, respectively. We measured the normalized second-order

autocorrelation function of the fiber-coupled light with a Hanbury

Brown–Twiss setup, using the fiber itself as the intrinsic beamsplitter.

At an incident pump power of 114 mW, the anti-bunching with

g (2) (0) ~ (0:15+ 0:02)v 0:5 indicates the presence of a single NV

center; no background was subtracted from this measurement

(Figure 4d). This autocorrelation data is fit to a three-level model:

g 2ð Þ (t)~1zp2f ce{ tj j=t1{(1zc)e{ tj j=t2
� �

ð3Þ

where pf is the single photon emission probability, t1 is a time con-

stant for the central anti-bunching dip, t2 is the time constant for

correlation function decay at intermediate times, and c is a parameter

describing the amplitude of the bunching shoulders. We then esti-

mated the background by plotting the parameter g 2ð Þ (0)~1{p2f for

different values of the excitation pump power (Figure 4e). Here we

identify a maximum incident pump power of 2.25 mW focused to a
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Figure 4 Optical characterization of tapered fiber-coupled diamond micro-waveguides. (a) Spectra in blue (red) show NV fluorescence collected through left (right)
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Figure 3d). The green curve is the sum of the left and right collection curves, with the linear background subtracted. (c) Saturation curve using objective collection with

an NA 5 0.75 objective. (d) Second order autocorrelation function taken using both fiber ends in a Hanbury Brown–Twiss setup. Strong photon anti-bunching with

g 2ð Þ (0)v 0:2 is observed with an incident pump power on the objective of 114 mW. (e) Strong photon anti-bunching is detected with g 2ð Þ (0)v0:5 over a range of powers
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spot size of approximately 0.6 mm, beyondwhich the background emis-

sion causes g 2ð Þ(0)w0:5. At this pump power, we use the green curve in

Figure 4b to show that over 600 000 single photons per second are

detected. Fitting Equation (3) for a number of different pump powers,

allows us to extract the inverse time constant, 1=t1 (Figure 4f)
15. We see

that 1=t1 varies linearly for small pump power and extrapolation to zero

power yields a lifetime, tNV, of 15.76 1.1 ns.

System efficiency

We use two different metrics to characterize our observed system

efficiency. The first, relating the number of guided photons to the total

possible number of photons emitted with a unity quantum efficiency,

is given by:

b~
Cguided

Cdecay
ð4Þ

whereCguided is the total excited state decay rate into the guidedmodes

(into the fiber), and Cdecay is the total decay rate of the NV center

(including both non-radiative and radiative pathways). b is a lower

bound on the observed system efficiency if one assumes an NV

quantum efficiency of unity. We estimate the parameter Cguided from

our measurements of the observed count rate:

C�
guided~gapd ktg ktaper Cguided ð5Þ

where gapd is the quantum efficiency of our APD detectors, ktaper the

transmission efficiency of our tapered fiber, and ktg the transmission

efficiency of our filtering stages. In our experiment, gapd<65%,

ktaper<95%, and ktg<43%. ktaper is obtained from transmission mea-

surements of the fiber during fabrication, and represents an upper

bound on the taper transmission. It is defined as the single-sided

transmission, from the center of the taper to either of the fiber ends.

ktg is obtained from measuring the transmission of a 635 nm laser

signal through both left and right filtering ports, providing an

upper bound for the filter stage transmission. We take a weighted

average of these two measurements for our estimated ktg and

C�
guided~(712+24):103 cps directly from the parameter Isat above.

Dividing out the transmission factors gives a total single photon count

rate of about Cguided~(2:7+0:1):106 cps. We determine Cdecay as the

inverse of the lifetime, 15.7 6 1.1 ns. Finally, this gives a value of

b<4:2%. This lower bound of b does not take into account the

NV’s charge instability or the non-unity quantum efficiency.

In a secondmethod of estimating the collection efficiency, we use the

ratio of the guided photons to the total number of radiated photons:

gc~
1

1z C f ree
Cguided

ð6Þ

where C free is the decay rate into free space modes. gc differs from the

first metric because it requires an estimation of the total number of

radiated photons as opposed to the total decay rate, which includes

both non-radiative and radiative terms. That is, we canwrite gc~b=gQE,
where gQE is the quantum efficiency of the NV. We estimate the free

space decay rate from:

C�
f ree~gapd ktf kNA C f ree ð7Þ

where ktf is the transmission efficiency of our confocalmicroscope setup

and kNA gives the fraction of photons collected into the acceptance angle

of our microscope objective (NA 5 0.75, cover glass-corrected Zeiss).

This fraction requires an estimate of the NVorientation, which in our

case can be obtained because we work with a [1 0 0] oriented diamond

thin film and the facet of this sample, to a good approximation, faces the

objective (See Supplementary Information for additional details)36.

With FDTD simulations, we then obtained kNA. We also estimated a

range forktf based on transmissionmeasurements of our confocal setup,

and taking into account losses from the cover glass enclosing our sample.

From saturation measurements acquired via the objective, we have

C�
f ree~(16+2):103 cps. Using the factors klowtf < 1%, k

high
tf < 3%, and

kNA<18%, we estimate an efficiency of glowerc < 16:4% and

gupperc <37:0%. The large range of ktf is caused by our collection optics,

as the fiber coupling efficiency is strongly dependent on the position of

the sealing cover slip in the focus, and the setting of the correction ring

of the objective. By comparison, our FDTD-based calculation yields a

lower and upper bound on the collection efficiency of 0.36 and 0.61,

respectively. We attribute the discrepancy primarily to the assumption

in our simulation of a triangularly shaped diamond micro-waveguide

taperedwith ends going to zerowidth, an assumption that is not valid in

the experimental system. In addition, theNVisnot located exactly in the

center of the adiabatic coupler, and may have different coupling effi-

ciencies to either side. In practice, we can achieve micro-waveguide tips

of about 50 nm which creates a sudden index step at which scattering

losses can occur. Using the above estimates for the collection efficiency,

we obtain quantum efficiency bounds of glowerNV <11:3% and

g
upper
NV <25:6%.

The inset of Figure 4f shows continuous wave optically detected

magnetic resonance of our NV electron spin. Separate Hahn-echo

measurements on waveguides produced in the same way indicate

long phase coherence times in excess of 100 ms (see Supplementary

Fig. S2)37.

Discussion

For our system to be useful in larger photonic networks, multiple

working devices must be fabricated. In our study, we assembled four

devices similar to the one discussed in detail. In three of these systems,

wemeasured anti-bunching with g 2ð Þ(0)v0:5, and in one g 2ð Þ (0)<0:5

indicating the presence of a single emitter and two closely spaced

emitters, respectively. The count rates for these devices were on the

order of several hundred thousand counts, similar to the device dis-

cussed above. In addition, we note that the yield of the diamond

waveguides we fabricated was between 5% and 10%. This is defined

as the fraction of waveguides that contain a single NV near the center.

It is important to cover several limitations of our system, and to

highlight some aspects for future work. We observed that the tapered

fiber transmission degrades over time because of the deposition of

large scatterers, such as dust. In future experiments, this can be averted

by mounting the tapered section in a sealed container. Furthermore,

presently ourmethod is limited by diamond fabrication capabilities to

make slowly tapering structures, as we currently attach the waveguides

on the ends to a diamond substrate. With improved fabrication tech-

niques, diamond waveguides could be made with longer taper lengths

and thinner tips, improving adiabatic power transfer up to the theor-

etical limit close to unity. Regarding our optical pumping scheme, we

currently use confocal excitation to excite individual NV centers in our

devices. For a completely fiber-integrated approach, it would be inter-

esting to use a fiber-integrated Bragg filter to allow excitation fromone

fiber end and collection through the second fiber end. Such a system

could be cooled by simple immersion in a cryogenic fluid, eliminating

the need for a confocal microscope and in principle allowing for life-

time-limited ZPL emission, an important requirement for a number of

quantum information experiments.
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CONCLUSION

We have demonstrated an approach for the efficient integration of a

high-quality quantum memory directly with a silica fiber. With a raw

single photon detection rate exceeding 6:105 cps and g 2ð Þ(0)v0:5, we
show a roughly fourfold improvement over previous fiber-coupled

approaches that used diamond point emitters instead of wave-guiding

structures16. In addition, the fiber background is strongly suppressed

allowing exceptionally low g 2ð Þ(0)<0:15 (without background sub-

traction) for cross-correlation measurements in a fiber-integrated sys-

tem. This geometry can be used for coherent spin manipulation of a

fiber-coupled spin qubit, thereby providing efficient optical access to a

long-lived quantum memory. The deterministic pick and place

method presented here is amenable to larger scale integration and

can be extended to the evanescent integration of diamond-based

nano-cavities38. Furthermore, a transmission configuration could

open up possibilities for long-distance quantum communication

experiments with completely fiber-integrated components.
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