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Quantifying backflash radiation to prevent zero-error
attacks in quantum key distribution
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Single-photon avalanche diodes (SPADs) are the most widespread commercial solution for single-photon counting in quantum

key distribution applications. However, the secondary photon emission that arises from the avalanche of charge carriers that

occurs during the detection of a photon may be exploited by an eavesdropper to gain information without inducing errors in the

transmission key. In this paper, we characterize such backflash light in gated InGaAs/InP SPADs and discuss its spectral and

temporal characterization for different detector models and different operating parameters. We qualitatively bound the maximum

information leakage due to backflash light and propose solutions for preventing such leakage.
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INTRODUCTION

Quantum key distribution (QKD) is a method for sharing secret
cryptographic keys between two parties (Alice and Bob) with an
unprecedented level of security1–7. This level of security is ensured by
the laws of quantum mechanics and does not depend on the
technological resources available to an eavesdropper (Eve), provided
that the QKD implementation does not deviate from the theoretical
model. However, the security of a practical system (just as for any
other cryptographic system) strongly depends on its device imple-
mentation. Any deviation of a QKD device from the theoretical model
can be exploited as a side channel or back door 8–10.
In 2010, two zero-error attacks on commercial QKD systems were

reported that exploited defects in quantum signal encoding8 and
detection9. Shortly after, a plethora of quantum hacking attacks were
implemented using existing technologies to exploit device imperfec-
tions in a number of QKD designs (with different protocols, modules
and systems)10–16. To guarantee security, each practical implementa-
tion must be carefully analyzed and tested for its robustness against
zero-error attacks.
Single-photon avalanche diodes (SPADs) are the most widespread

commercial solution for single-photon detection in practical QKD
implementations17–26. They can also be the most vulnerable compo-
nents because they are optically exposed to Eve through the open
quantum channel. Eve can inject strong light to take control of these
detectors, thereby compromising the security of an entire QKD
system. Alternatively, Eve can also passively measure any backflash
light arising from avalanching carriers27 to learn the detected bit value
(Figure 1). Backflashes have been shown to exist in both InGaAs/InP
and Si SPADs27–30. However, these demonstrations are limited to free-
space detectors, and no experiments have been performed on fiber-

pigtailed SPADs, which are the detectors of choice in all existing
commercial QKD systems because of their practicality.
Here, we present the first characterization of backflash light in fiber-

pigtailed InGaAs SPADs from various manufacturers. We construct a
reconfigurable optical time-domain reflectometer (OTDR) operating
at the single-photon level31–35 with exceptional sensitivity. This OTDR
enables unambiguous identification of detector backflashes from
conventional light back reflections and provides a practical way to
bound the information leakage, i.e., a fundamental step toward QKD
security. Furthermore, we show that information can be leaked
through backflashes when two detectors produce temporally distin-
guishable secondary emissions.

MATERIALS AND METHODS

The experimental setup used to analyze backflash light is depicted in
Figure 2. A strongly attenuated pulsed laser sends photons at 1550 nm
to the InGaAs/InP SPAD under test (DUT). The back-reflected light is
analyzed using our photon-counting OTDR to quantify the amount of
secondary emission photons that could serve as an information side
channel to Eve. The source is a commercial 1550-nm pulsed diode
laser with pulse width of 300 ps and an energy per pulse lower than 1
fJ. The laser output is sent to a single-mode optical fiber and
attenuated to the single-photon level by exploiting a fiber-coupled
variable optical attenuator (with a maximum attenuation of 60 dB)
combined with an additional 20-dB attenuation from a 99:1 fiber
coupler.
We analyzed the back-reflected and backflash light of two different

InGaAs/InP detectors. The first one, DUT1, is a prototype single-
photon detection module36; the second one, DUT2, is the commercial
IdQuantique ID201, widely used in research laboratories. Both
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detectors are pigtailed and operate in gated mode. These devices are
highly configurable in terms of detection efficiency, gate duration, and
dead time. They also exploit active quenching and allow long
avalanche durations (~10 ns). Their configurability and long avalanche
durations make them ideal for studying backflashes. The repetition
rate of the laser pulses and of the trigger rate of the DUTs were set to
fpg= 50 kHz using an external pulse generator. Both back reflections
and the DUT backflashes were directed by the circulator to the
measuring detector, a free-running single-photon InGaAs/InP SPAD
(IdQuantique ID220). The detector was operated with a low dark
count rate (5 kHz), a nominal quantum efficiency of 10% and a
timing resolution of 130 ps. The output electrical signals from the
OTDR detector and the DUT were sent to time-correlated single
photon-counting (TCSPC) electronics. Figure 3a and 3b shows traces
corresponding to the OTDR signals triggered by the laser pulses, with
an acquisition time of 60 min, for DUT1 and DUT2, respectively. The
histogram represents the returned photons (due to either backflashes
or back reflections) as a function of the time delay between the
emission of a laser pulse and its detection by the OTDR detector. The

horizontal axis represents the time for which a detected photon has
traveled. In Figure 3, the sharp peaks arise from backreflection at the
connections between different slices of fiber or between the fiber and
other optical elements in the path (e.g., the circulator). There is also a
rectangular or trapezoidal feature that appears only when the DUT is
switched on. We attribute this feature to the backflash light emitted by
the DUT during avalanches.
Each type of DUT has a unique, identifiable temporal profile, which

reveals the type of detector and its manufacturer. We confirmed this
finding by testing four additional devices of the DUT1 type and two of
the DUT2 type. Such identifiable backflash profiles can be exploited by
Eve to launch attacks tailored to a specific detector type.

RESULTS AND DISCUSSION

Here, we evaluate the maximum possible information leakage PL due
to backflash light for QKD systems implemented with detectors of
either the DUT1 type or the DUT2 type. We consider a poorly
designed QKD system that allows complete temporal discrimination of
backflashes between different detectors. PL is estimated starting from
the ratio between the number of detected backflashes, NB, and the
corresponding total number of valid counts, NP, of the DUT. NB refers
only to backflash events, i.e., after background subtraction. We
consider the worst-case scenario in which Eve has ideal equipment,
i.e., equipment that is lossless and with an ideal (unit) photon
detection efficiency. Thus PL is evaluated as

PL ¼ NB

NPZdetZch
ð1Þ

where corrections for losses and inefficiencies of the OTDR system are
applied, i.e., for the detection efficiency of the OTDR detector, ηdet,
and for the losses in the optical channel connecting the DUT and the
OTDR detector due to the circulator and the fiber connections, ηch. To
be conservative, we slightly overestimate these losses and inefficiencies
by assuming ηchηdet= 0.05 based on their approximate evaluations. We
obtain an information leakage PL of 9.8% for DUT1 and a PL of 6%
for DUT2. These results suggest that the information that Eve can
obtain by observing backflash light is not negligible and that counter-
measures must be put in place.
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Figure 1 Representation of an eavesdropper attack exploiting backflash light.
Alice sends the photons of the key to Bob; when the photons are detected
by Bob using a SPAD, a flash of light, the backflash, is emitted back to the
channel. Eve can use a circulator to intercept this spot of light to acquire
information about the detector that has clicked.
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Figure 2 A schematic representation of our experimental setup. A photon-counting OTDR observes backflash light from the SPAD under test. The source is
an attenuated pulsed laser emitting at 1550 nm. The backflash light is detected by a free-running InGaAs/InP detector. Time stamping of detected light is
obtained by means of a time-correlated single-photon counting (TCSPC) apparatus.
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The backflash light is a consequence of the carrier avalanches that
are triggered by an absorbed photon when the device is biased beyond
its breakdown voltage. This light is quenched, together with the
avalanche itself, when the detector bias is lowered below the break-
down voltage. Thus, the backflash intensity strongly depends on the
parameter settings of the quenching electronics. We investigated the
information leakage percentage in DUT1 for different detector
operating conditions by varying the detection efficiency, gate width,
and so on. The results are summarized in Figures 4 and 5. In Figure 4,
the information leakage of DUT1 is presented as a function of the
excess bias voltage. We used three different excess bias voltage settings,
namely, 3, 4.5 and 7 V, corresponding to nominal detection efficien-
cies of 15%, 22% and 35%, respectively. As shown, the backflash
intensity increases as the excess bias of the detector increases because
the number of carriers also increases.
Figure 5 shows the information leakage as a function of the DUT

gate delay relative to the incident laser pulse (measured for delays of 2,
10 and 18 ns after the beginning of the gating window). The two sets
of data were collected for DUT1 operating at different bias voltages of
7 and 3 V. A decrease in the information leakage is observed when the
laser photons arrive at the end of the gating window. This is because
late avalanches are quenched by the falling edge of the gate window

rather than by the active quenching circuit. The same effect explains
the behavior observed when the laser peak is centered with respect to
the gating window but different gating window widths are used.
The information leakage is reduced when the width of the gating
window is comparable to the width of the temporal profile of the
backflash emission in DUT1 (i.e., 5 ns or less). To study the spectral
distribution of the backflash emission, we integrated a fiber-optic
tunable optical filter (Santec OTF-970) into our OTDR system before
the OTDR measuring detector. The spectral range of the filter was
from 1530 to 1600 nm, and we set a passband bandwidth of 10 nm.
The results are presented in Figure 6a; the four presented profiles are
the temporal distributions of the backflash counts centered at 1530,
1550, 1570 and 1600 nm. The temporal emission profile is similar to
the one obtained without spectral filtering (Figure 3a) for all
wavelengths. When the filter is centered at 1550 nm, the reflection
peak dominates.
Figure 6b presents the total backflash counts as a function of the

center wavelength of the filter. The subtraction of the back-reflected
light was performed by measuring the laser light back reflected by
DUT1 with a bias voltage applied but in the absence of a gate signal.
The backflash emission is broadband, or at least it extends beyond the
spectral range of our tunable filter, because it originates from
the relaxation of hot carriers generated in the multiplication
region28–30. In the spectral region of our tunable filter, it is reasonably
uniform, except in the region around 1550 nm (1545–1555 nm),
where a peak is observed even after the subtraction of the laser light
back reflected by the DUT (see the sharp peak in Figure 6a). It is
reasonable to suppose that the sharp peak that is present even after
background subtraction is due to back-reflected laser light, since we
observed that the reflectivity of the diode varies with the applied
bias (in particular, a relative in reflectivity increase of almost one
order of magnitude of the SPAD surface was observed in the case of
non-polarized versus polarized, but non-gated, detector) and we
attribute this to the refractive index change in the semiconductor
material37.
This was confirmed by measurements of the backflash spectrum

performed with a pulsed laser operating at 1570 nm as source of our
spectrally filtered OTDR. In this configuration, we expected to observe
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Figure 3 (a, b) The traces of the optical correlator after 60 min of
acquisition for DUT1 and DUT2, respectively. A backflash peak that is
unique to the particular DUT type is visible when an avalanche is triggered.
For DUT1, we set an excess bias voltage of 7 V, corresponding to a
detection efficiency higher than 35% and a gate width of 20 ns, whereas for
DUT2, the efficiency is 10% and the gate width is 100 ns. On observing
zoomed views of the backflash peaks for DUT1 and for DUT2, different peak
shapes are evident.
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Figure 4 Information leakage PL as a function of the excess bias voltage for
the prototype detector DUT1. The peaks of the back-reflected light is
presented in the inset (the continuous, dashed and dot-dashed lines
represent the cases of 7, 4.5 and 3 V, respectively); the smaller peak due to
the reflection of the laser light from the diode surface is relatively more
evident at low excess bias voltages.
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the sharp peak disappearing at 1550 nm and appearing at 1570 nm,
and indeed, this was exactly what occurred, confirming that the sharp
peak was just due to the change in the reflectivity of the SPAD surface
caused by the change in its bias voltage.

CONCLUSIONS

We proved that significant backflash emission occurs in commercial
InGaAs/InP single-photon detectors operating at telecom wavelengths.
These backflashes could potentially allow a severe security breach in a
poorly designed QKD system. Proper design and testing of QKD
systems should be implemented to avoid attacks based on backflashes.
Possible solutions can be based on passive optical devices38 such as
isolators, circulators or spectral filters to prevent backflashes leaking
out of a QKD system. We emphasize that these countermeasures
should consider the wide bandwidth of backflash light emission. For
example, the use of a 1-nm-wide spectral filter centered at 1550 nm
can reduce the information leakage of a DUT1-type device from 9.8%
to 0.12%, under the assumption that the intensity of the backflash
light is uniformly distributed throughout the spectral range under
investigation (1530–1600 nm). Adding an isolator will result in a
further attenuation of the backflash signal by ~ 30 dB.
Careful characterization of the spectral behavior of these optical

components is necessary to ensure their operation as countermeasures.
Following this line of thought, a combination of circulators or

isolators with interference optical filters at the input of the QKD
system should essentially nullify the information leakage due to
backflash light at the cost of some additional optical loss (the insertion
losses of the optical filter and of the circulator) in the QKD signal. Eve
may also attempt to intercept the backflash light just at the output of
Bob’s QKD box (or Bob’s security perimeter). Thus, QKD engineers
should also prevent the possibility of backflash light propagating in the
cladding modes by implementing cladding-mode suppression solu-
tions when necessary (in our case, the bending of our long single-
mode fiber and the FC connectors essentially nullify the possibility of
detecting backflash light propagating in the cladding). Furthermore, as
discussed in connection with Figure 3, the use of gates that are as short
as possible and small avalanches will reduce the emitted backflash
light. In this sense, fast-gated detectors39–44 represent an interesting
solution for QKD systems, not only in terms of speed but also because
of their much lower avalanche charges (as much as 100 times lower).
In fact, it is expected that they should produce significantly lower
backflash light emission. In addition, the use of short gates makes it
more difficult for Eve to temporally discriminate the backflash light.
Thus, testing the backflash behavior of fast-gated detectors would be
an interesting research direction.
For QKD applications, superconducting-nanowire single-photon

detectors are an excellent option. Indeed, in addition to their high
detection efficiency, their low dark count rate, and their short recovery
time45–47, it is expected that they should not produce any backflash
light (and thus should not allow any related information leakage).
Unfortunately, they require cryogenic temperatures for operation, and
because of the high cost of cryogenic equipment, they currently appear
unsuitable for the practical deployment of QKD systems in the
real world.
In a complete analysis of the security of a realistic QKD system

design, other sources of information leakage must be considered in
addition to backflashes. Eve can obtain information about the key by,
for example, measuring the spatial, spectral or temporal properties of
the transmitted qubits, exploiting the detector dependence of the
signal basis and channel losses, or manipulating the detectors9,48,49.
Once information leakage has been reduced as much as possible with
dedicated hardware-based countermeasures, the residual information
leakage can be overcome by applying privacy amplification
protocols49–52.
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Figure 5 Information leakage as a function of the arrival time of laser
photons with respect to the gate window that triggers the DUT. The data
were collected for DUT1 operating at different bias voltages of 7 and 3 V.
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(b) Total counts of backflash light in the observed spectral range (from 1530
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