
OPEN

ORIGINAL ARTICLE

Plasmon-assisted optical trapping and anti-trapping

Aliaksandra Ivinskaya1, Mihail I Petrov1, Andrey A Bogdanov1, Ivan Shishkin2, Pavel Ginzburg1,2

and Alexander S Shalin1,3,4

The ability to manipulate small objects with focused laser beams has opened a venue for investigating dynamical phenomena

relevant to both fundamental and applied science. Nanophotonic and plasmonic structures enable superior performance in

optical trapping via highly confined near-fields. In this case, the interplay between the excitation field, re-scattered fields and

the eigenmodes of a structure can lead to remarkable effects; one such effect, as reported here, is particle trapping by laser

light in a vicinity of metal surface. Surface plasmon excitation at the metal substrate plays a key role in tailoring the optical

forces acting on a nearby particle. Depending on whether the illuminating Gaussian beam is focused above or below the

metal-dielectric interface, an order-of-magnitude enhancement or reduction of the trap stiffness is achieved compared with

that of standard glass substrates. Furthermore, a novel plasmon-assisted anti-trapping effect (particle repulsion from the

beam axis) is predicted and studied. A highly accurate particle sorting scheme based on the new anti-trapping effect is ana-

lyzed. The ability to distinguish and configure various electromagnetic channels through the developed analytical theory pro-

vides guidelines for designing auxiliary nanostructures and achieving ultimate control over mechanical motion at the micro-

and nano-scales.
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INTRODUCTION

Trapping and manipulation by micro- and nano-scale objects
contributes to the development of various aspects of multidisciplinary
science by pushing the limits of widely employed classical character-
ization tools and fabrication techniques1. Traditionally, optical trap-
ping of micron-sized objects is achieved by using tightly focused
Gaussian beams, e.g., fundamental modes of a laser2. Carefully
designed interference patterns created with dynamically reconfigurable
holograms enable simultaneous trapping of several particles and even
the creation of three-dimensional artificial crystals3,4. The stiffness of
optical traps and subsequent particle localization can be controlled by
employing hollow beams, higher-order Gauss–Hermite and Gauss–
Laguerre modes, etc5–7. Trapping schemes employing structured light
beams play a major role in many experiments. For example, excitation
can be either a single mode or a combination of several modes and
either propagating or evanescent. Nonlinear (quadratic) dependence of
optical forces on the field amplitude brings unique features inherent to
a particular illumination scheme since contributions of individual
modes are not additive8. This free-space optical approach, however,
faces some limitations resulting from the classical diffraction limit, and
achieving nanoscale localization requires introduction of auxiliary
structures featuring highly confined near fields9–17. Metals have
negative permittivity at visible and infrared spectral ranges and can
support localized electromagnetic excitations (plasmon resonances),

thereby surpassing the classical diffraction limit9–11. Plasmonic twee-
zers utilize highly confined electromagnetic fields for the trapping of
nanoscale particles in the vicinity of nano-antennas12–14. Localization
down to tens of nanometers was shown in Refs. 13,15, and ordered
positioning of nanoparticles in arrays was demonstrated in Refs. 16,17.
While plasmonic nano-antennas (typical layout of plasmonic

tweezers) provide a set of well-defined localized optical traps, this
approach is not always suitable for applications where dynamical
control over particle position is required. Alternatively, potential
abilities of flat unstructured substrates used for improving trapping
characteristics, first demonstrated a decade ago18 and more recently
with ‘surface plasmon virtual probe’ excited by focused light19, are still
overlooked. Recently, planar geometries were shown to enable several
novel effects in the field of optical forces. The emergence of substrate-
assisted lateral forces was proposed in several configurations, e.g.,
chiral particles with circularly polarized light excitation20 and dielectric
beads under inclined plane wave illumination21. Optical attraction
(tractor beams) via an excitation of surface plasmon at the substrate at
grazing angle illumination was demonstrated22 without requiring
sophisticated substrates23.
While optical forces in the ‘particle next to a surface’ geometries

were widely studied20–22, in all those cases, a plane wave illumination
was considered. However, in most experiments, tightly focused beams
containing many spatial harmonics are employed. Those spatial
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harmonics interact with auxiliary structures, creating nontrivial
interference patterns. Here, the performance of optical tweezers
formed by normally incident Gaussian beams on a metal substrate
is studied. Varying the focal spot position with respect to the substrate
gives an additional degree of freedom in optical manipulation
(Figure 1 summarizes the setup). Improved optical trapping and
particle repulsion (anti-trapping) are demonstrated for the first time
by performing a comprehensive analysis of a self-consistent electro-
magnetic problem, which focuses on a clear plasmonic signature of the
effect.

MATERIALS AND METHODS

Force calculation using a self-consistent field
Optical force acting on a subwavelength particle can be estimated by
replacing the particle with a point dipole of polarizability α, which
depends on the geometry and material composition of the object. The
components of the time-averaged force in the dipole approximation
are24:

Fj ¼ 1

2
RðaE∂jE�Þ ð1Þ

where E is a local field at the place of the particle. The total local field
should be calculated self-consistently, taking into account mutual
interactions between the particle and the surrounding media. First, the
background field (~E

0
) is calculated, including the incident waves

together with the reflections from the structured environment in
which the particle is going to be placed. To account for a re-scattered
field from the particle itself, Green’s function Ĝ representing response
of the structure to a point dipole source should be derived. Spectral
decomposition of the Green’s function (Supplementary Information
A) enables identification of the propagating and evanescent modes.
Exclusion of the latter terms from the series provides a tool for
estimating their contributions to the total optical force. Note that
straightforward numerical calculations are lacking this ability.
For the excitation by a beam of frequency ω with its magnetic field

directed along the y axis (p polarization, see Figure 1), the force
components (Supplementary Information B and C) are given by

Fx ¼ 1
2RðaE∂x~E0�Þ þ jaj2o2m1m0ImðExE�

z ÞImð∂xGxzÞ
Fz ¼ 1

2RðaE∂z~E0�Þþ
1
2jaj2o2m1m0ðjExj2Rð∂zGxxÞ þ jEz j2Rð∂zGzzÞÞ

ð2Þ

where μ0 and μ1 are permeability of vacuum and upper half-space. The
transverse force at the wavelength of surface plasmon resonance
(Supplementary Information D) can be approximated by

Fapx ¼ jaj2o2m1m0Imð~E0
x
~E
0�
z ÞImð∂xGxzÞ ð3Þ

Self-induced back action comes into play through the scattered field
returning to the particle after the reflection from the substrate. This
action is governed by Green’s function, which has a pole at the
plasmon resonance21. The derivative of Green’s function with respect
to the x coordinate (details are at Supplementary Equation S2) is a
non-diagonal matrix and, as a result, the product of different electric
field components has a significant impact on the horizontal force, with
strong dependence on the polarization. Importantly, variation of the
excitation field can change the sign of ImðExE�z Þ and subsequently Fx
sign (see Equation (2) and Supplementary Information D). The
Green’s function derivative along the z coordinate (Supplementary
Equation S3) retains the diagonal form, and the second term in the
vertical force Fz depends only on the modulus of individual
field components. As a remark, several approaches19,21 utilize a dipole

moment of the particle p ¼ aE ¼ âeff ~E
0
, where the effective

polarizability âeff is a diagonal tensor for the coupled particle–substrate
system (Supplementary Equation S11). In that approach, the force
acting on the particle with polarizability âeff by the field ~E

0
is

1
2Rðp∂j~E0�Þ, which is, however, only one term in the general
expression (Equation (2)). Hence, âeff does not always provide a full
force description in a system. Moreover, because several terms in
Equation (2) depend on |α|2, the gradient forces calculated with a real
part of polarizability (as is the case for the free-space Gaussian beam25)
in a complex environment cannot provide a reliable initial guess.

Gaussian beam reflected from substrate
To evaluate the background field for the calculation of optical forces, a
problem of beam reflection from a surface should be solved. A variety
of mathematical models have been adopted for the description of
Gaussian beam in free space24,26–35. In the context of the optical forces
here, tightly focused beams should be described using a non-paraxial
model26–29. To address the problem of the beam reflection from a
dispersive metal instead of a mirror36, a Fourier decomposition for the
Gaussian beam24,26–28 is more convenient. With this technique, a non-
paraxial solution is naturally obtained, whereas other approaches
result in cumbersome expressions29. The vector description of a
Gaussian beam usually implies spatially dependent polarization state28.
To simplify the analysis and to avoid the aforementioned complica-

tions, a two-dimensional (2D) model of p-polarized Gaussian beam is
considered here. The focus position f is defined from the origin of the
coordinates, and its position along the z axis is kept as a parameter
(Figure 1). The beam satisfies Maxwell’s equations and has the
longitudinal field component. The scalar magnetic field is obtained
according to the standard approach24, and the non-paraxial electric
field components of the beam of waist w, taking into account Fresnel
reflection coefficients rp for spatial harmonics, are given by

~E
0
x ¼ w

2
ffiffi
p

p
R k1
�k1

kz1
k e

�k2xw
2

4 eikz1 f ðe�ikz1 z � rpeikz1 zÞeikxxdkx
~E
0
z ¼ w

2
ffiffi
p

p
R k1
�k1

kx
k e

�k2xw
2

4 eikz1 f ðe�ikz1 z þ rpeikz1 zÞeikxxdkx
ð4Þ

Z

f

x

w

�2

�1

Figure 1 Gaussian beam with waist w is normally incident on a flat silver
substrate; the focal position f along the z axis can be either above or below
the interface. Optical forces acting on a spherical dielectric particle are
formed by beam-particle, beam-substrate and particle–substrate interactions.
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Each of the harmonics of upper half-space has a transverse component
of wave vector kx and a vertical component kz1 ¼ k21 � k2x

� �1=2
. To

shift the position of Gaussian beam along the z axis to the focal point f,
the phase shift eikz1 f is introduced24. The reflected beam has a Gaussian
profile with the focal position and propagation direction inverted
relative to the incident beam through the reflection from the
imaginary plane lying on the interface. Notably, in the integral
approach, a proper inclusion of evanescent modes in a free-space
Gaussian beam can be applied only to half-spaces31. This implies that
evanescent fields can be included either in the incident or reflected
beams in Equation (4); thus, integration limits are set to 7k1 to
restrict contributing harmonics to the propagating modes only. By
inserting kz1 ¼ k1 � k2x=ð2k1Þ to the integrals of Equation (4), the
paraxial solution can be obtained (Supplementary Information E).
However, the non-paraxial model is employed hereafter to avoid any
limitations, and the paraxial model is used only for certain analytical
estimations to gain intuitive insights regarding the effects.

RESULTS AND DISCUSSION

Plasmonic trapping and anti-trapping
A semi-infinite metal substrate supports surface plasmon-polariton
waves with a high-frequency cutoff corresponding to the resonant
surface excitation. In an ideal case, the resonant condition occurs
when ε2=− ε1, whereas for tabulated silver37 interfacing with air,
the plasmon resonance occurs at the wavelength λ= 342 nm,
ε2=− 1.25+0.32i because of material losses. All the forces calculated
hereafter are normalized to the force FG along z direction exerted on
the particle placed at the center of the focal spot of free-space Gaussian

beam. In the paraxial approximation, the radiation pressure on
the particle positioned at the center of the beam (x= 0, z= 0)
is FG ¼ 1� k�2

1 w�2
� �

k21 þ 3k�2
1 w�4 � 2w�2

� �
ImðaÞ=ð2k1Þ. Optical

trapping characteristics in the proximity of the beam waist and the
impact of the focus position with respect to the surface are studied
next. The Gaussian beam is focused either above or below the
substrate, and the force acting on a dielectric bead (ε= 3) of radius
R= 15 nm is calculated (Figure 2). Three different scenarios are
considered: glass (ε2= 2.25) and silver substrates, and in the latter
case, the plasmonic contribution to the optical forces can be switched
‘on’ and ‘off’ by either including evanescent harmonics or not (Fx0, a
force without plasmonic contribution, is evaluated from Equation (2)
with integration limits in Green’s function set to k1). For f= 100 μm,
the bead lying on the substrate (centered at z= 15 nm) experiences
attraction to the beam center (trapping) for all the cases (Figure 2a).
This behavior is typical for a deeply subwavelength low-index bead
that has no resonances and is usually attracted towards the axis of a
free-space Gaussian beam2,25. The comparison between the force
values favors the silver substrate, which provides approximately an
order-of-magnitude enhancement compared with that of the glass.
Moreover, resonant excitation of the plasmon enhances optical force
more than twice compared with Fx0. Thus, the auxiliary metal
substrate increases the trap stiffness using the same laser intensity,
thus allowing Brownian motion to be overcome, as shown in
Supplementary Information F.
Alternatively, focusing the beam below the substrate (f=− 100 μm)

leads to completely different behavior (Figure 2b). However, for both
the glass and the ‘silver with plasmon excluded’ cases, optical trapping
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Figure 2 Optical force acting on a particle (ε=3, radius R=15 nm, z=15 nm) touching the substrate and illuminated by the Gaussian beam focused above
(f=100 μm, a) or below (f=−100 μm, b) the substrate interface. Blue solid lines correspond to the silver substrate; red dashed lines correspond to the
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ε2=−1.25+0.32i, ε1=1 are used for all plots.
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is observed; a real silver substrate leads to optical repulsion from the
beam axis, i.e., anti-trapping, pushing the particle away from the
region of high optical intensity. The anti-trapping stiffness (derivative
of the force with respect to the coordinate) is several times higher than
in the case of the glass substrate. A highly confined plasmon mode is a
key for achieving this remarkable behavior. Plasmon excitation is
correlated with unidirectional rotation of the induced dipole moment
of the particle, as shown in Supplementary Information G. This
excitation leads to particle motion towards or from the beam axis with
beam defocusing relative to the substrate.
The optical forces were investigated as a function of the particle

position (Figure 2c and 2d) in order to observe the spatial extent of
anti-trapping effect. The plasmonic effect vanishes and standard
trapping behavior is observed far from the interface (Figure 2c). In
the near-field zone, however, a plasmon-assisted contribution appears
to overcome the free-space light-induced potential of the Gaussian
beam and governs the interaction, leading to the anti-trapping effect.
The vertical force also changes near the interface (Figure 2d). In the
far-field zone, an interference pattern is created because of reflection,
and as a result, the particle levitates above the surface toward the
nearest intensity hot spot. Close to the interface, however, the particle
is attracted to the metal and will not levitate because of the near-field
interactions. The bead is also repelled from the beam axis.
A finite-element method (FEM) simulation was made in Comsol

Multiphysics (Comsol) and Maxwell’s stress tensor components were
integrated to extract the forces and check the validity of the dipole
approximation. First, the geometry in the numerical model was kept
the same as in the analytical case study; however, a good match
between the analytics and the FEM simulation is achieved if a 1.5 nm
offset in the particle position is introduced, i.e., z= 17 nm versus
15.5 nm in the dipole model, as shown in Figure 2e. This minor
fitting is related to the finite size of the particle in the numerical
simulations. While both approaches predict an anti-trapping effect,
the finite-element simulation suggests slightly higher force values
(Supplementary Fig. S4 and Supplementary Information H).

Shifting the focus
In order to reveal the transition between trapping and anti-trapping,
the focus position is continuously changed, passing from negative to
positive values. The transverse force as a function of both x coordinate
and focus position appears in Figure 3a, where anti-trapping is
observed for negative f. Plasmon excitation allows noticeable trapping
when f is as large as 500 μm. If the plasmon contribution is excluded,
then the force appears to be symmetric with respect to f (Figure 3b),
and the most efficient trapping occurs at f= 0. Subtraction of the
plasmon-induced contribution to the force (Figure 3c) shows clearly

that plasmon excitation is extremely efficient when the beam is
focused below the substrate, where the modulus of the ratio (Fx− Fx0)/
FG reaches values as high as 5, and for positive f, the relative
enhancement factor reaches 3 at most. The change in the focal spot
position significantly affects the exchange of momentum between the
particle, beam and the plasmon, which leads to the asymmetry in the
plasmon-assisted optical potential, as shown in Supplementary
Information F. Mathematically, asymmetry of Fx(f) is possible
according to Equation (2), as it appears in the discussion of the
equations. However, Fz (Equation (2)) is symmetric with respect to the
sign of f (Supplementary Fig. S1).

Stiffness of the plasmon-assisted optical trap
One of the most important characteristics of optical traps is stiffness.
The stiffness defines the localization accuracy and laser intensity
required for stable positioning. A nearly linear dependence of the force
on the coordinate near the trapping center enables calculation of the
force close to the beam axis and assignment of the following value to
the stiffness:

gx ¼ �Fx
x

x-0j ð5Þ
By gx0 ¼ �Fx0=x, we denote the force without plasmonic contribution
divided by the displacement, and gapx ¼ �Fap

x =x is calculated using
approximate Equation (3). Hereafter, a particle coordinate will be
fixed x=− 0.3 μm. To assess the stiffness, the transverse force divided
by the displacement is plotted in Figure 4 as a function of the focus
position f for the two beam waists − 10λ and 25λ. The region of anti-
trapping (characterized by negative γx) begins at a slight offset with
respect to f= 0. The position of the anti-trapping region and its depth
depends on the beam parameters: the smaller the beam waist, anti-
trapping region is closer to f= 0. The value of gx0 corresponding to the
transverse force without a plasmon behaves similar to light intensity,
i.e., symmetric for positive and negative f. By analyzing the plasmon
contribution (gray line, Figure 4), one can conclude that plasmon
excitation is over twice more efficient at the negative f than at the
positive f for the same light intensity.
Both Figures 2 and 4 illustrate that Equation (3) can be taken as a

good estimate for the total transverse force at the resonance. Because
the Green’s function is constant for a particular wavelength and a fixed
particle position, a term as simple as Imð~E0

x
~E
0�
z Þ (defined merely

through the excitation field) appears to be responsible for the
asymmetric behavior. Starting from the very basics and analyzing
the incident beam, we note that the complex field amplitude in free-
space Gaussian beam (Supplementary Equation S24), omitting the
phase factor that is not relevant in Imð~E0

x
~E
0�
z Þ), changes its sign at the

focal plane, as shown in Supplementary Information I. One can
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immediately envision asymmetry in Imð~E0
x
~E
0�
z Þ and Fx with beam

shifting.

Optical force and the excitation wavelength
In the previous investigations, the wavelength of the incident beam
was chosen to be close to the surface plasmon resonance wavelength.
Here, the influence of the wavelength on the trapping characteristics is
studied. Figure 5 shows a map of the force spectra for a range of focus
positions and excitation wavelengths. In order to assess the trapping
and anti-trapping properties, the particle was slightly displaced (by
0.3 μm) from the beam center, and then the lateral force was
calculated. The maximal lateral repulsion from the beam occurs near
the plasmon resonance. A closer view at the γx spectrum for a
particular focal position f=− 100 μm in Figure 5b reveals that the anti-
trapping is possible only in the narrow frequency range where
plasmon excitation is highly efficient. By focusing the beam at different
spots on the z axis, the transverse force Fx and stiffness γx change their
sign, whereas the vertical force Fz retains direction (Figure 5c).
Alternatively, Fz as a function of the excitation wavelength changes
its sign at the plasmon resonance. This effect can be explained by the
strong phase change on reflection at the resonance and the conse-
quently rapid shift of intensity maxima.

Particle sorting with a plasmonic substrate
One of natural applications of the anti-trapping effect is the sorting of
particles. Figure 6 demonstrates the sharp transition from the particle
attraction towards the beam axis to particle repulsion away from the
beam with the change of beads radii. The effect is possible when the
Gaussian beam is focused below the silver substrate at the plasmon

resonance. Large particles are trapped, whereas the particles that are
small enough are removed from the high field intensity regions at the
beam axis. Particles of different radii can be grouped within spatial
zones as small as the beam waist of a laser mode. For comparison,
other sorting techniques require opposite chiralities of biological
objects20, various shapes of plasmonic particles38 or different material
compositions of nanosamples25.

CONCLUSIONS

Plasmonic substrates can essentially affect the performance of optical
trapping systems based on focused light beams. It was demonstrated
that the shift of the Gaussian beam focus position relative to the
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substrate leads to substantial modifications of the optical forces.
Either an increase or reduction of the optical trapping stiffness can
controllably be achieved. Brownian motion can be overcome using a
laser power that is approximately an order-of-magnitude lower than in
the case of trapping over a glass substrate. The developed analytical
approach emphasizes the contribution of surface waves and suggests
that plasmon excitations prevail in opto-mechanical interactions
and can even lead to anti-trapping (repulsion from the beam) of a
dielectric bead. The ability to switch between the regimes of trapping
and anti-trapping opens a venue for efficient sorting of particles and
enables dynamic control over the particle location by reconfiguring
light by simply moving the beam focus to or from the substrate.
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