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An ultrafast reconfigurable nanophotonic switch using
wavefront shaping of light in a nonlinear nanomaterial

Tom Strudley1, Roman Bruck1, Ben Mills2 and Otto L Muskens1

We demonstrate a new concept for reconfigurable nanophotonic devices exploiting ultrafast nonlinear control of shaped wavefronts in a

multimode nanomaterial consisting of semiconductor nanowires. Femtosecond pulsed laser excitation of the nanowire mat is shown to

provide an efficient nonlinear mechanism to control both destructive and constructive interference in a shaped wavefront. Modulations

of up to 63% are induced by optical pumping, due to a combination of multimode dephasing and induced transient absorption. We

show that part of the nonlinear phase dynamics can be inverted to provide a dynamical revival of the wavefront into an optimized spot

with up to 18% increase of the peak to background ratio caused by pulsed laser excitation. The concepts of multimode nonlinear

switching demonstrated here are generally extendable to other photonic and plasmonic systems and enable new avenues for ultrafast

and reconfigurable nanophotonic devices.
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INTRODUCTION

Many of the available photonic technologies are based on perfectly

regular, ordered structures such as waveguides, photonic crystals and

metamaterials. There is, however, an increasing interest to exploit the

additional degrees of freedom offered by aperiodic or disordered

designs.1–4 One way of controlling the flow of coherent energy transfer

in such a medium with high efficiency is through optimization of the

specific arrangement of the scatterers.5,6 Exciting new techniques have

emerged based on shaping of the light field itself to match a given

scattering configuration, either through time reversal7,8 or iterative

schemes.9,10 The method of wavefront shaping is based on the general

concept that the transmission through any medium can be described

by a matrix which connects all ingoing and outgoing degrees of free-

dom. In principle, knowledge of the transmission matrix,11,12 along

with an ability to completely control the incident light,10 would allow

the selection of any desired output, turning an opaque medium into a

versatile optical element. Next to the interest for biomedical

imaging,13–15 wavefront shaping shows promise for reconfigurable

optical elements16–20 and control of random lasers.21 While initial

work concentrated on monochromatic continuous-wave radiation,

focusing through opaque scattering media has also been achieved

using ultrashort pulses22,23 and polychromatic light.24

Here, we demonstrate both destructive and constructive switching of

a shaped wavefront on ultrafast time scales through nonlinear optical

excitation of the scattering medium. With the rapid development of

applications exploiting wavefront shaping, active control of such

shaped fields is of great interest. The principle is illustrated in

Figure 1a. Wavefront shaping amounts to aligning the phasors resulting

from independent light paths in the medium to produce a predefined

output pattern, such as a single sharp focus.10 The optimized state relies

on coherence between modes exploring completely different traject-

ories in space and time, which can be easily perturbed by small changes

to the medium. Femtosecond optical excitation of a semiconductor pro-

duces a series of nonlinear phase shifts (denoted by Dw in Figure 1a)

which give rise to uncorrelated, but reproducible changes in the trans-

mission mode spectrum, as was demonstrated in our previous work.25 In

those earlier studies, the output of the medium was a random speckle

pattern, limiting its use for applications. In the current work, we extend

the idea of multimode dephasing by combining it with wavefront shaping

to control both the destructive and constructive interference in a shaped

light field on ultrafast time scale. By harnessing the output through

constructive wavefront shaping, the nonlinear effects become useful

and can be applied in realistic devices. Moreover, we proceed beyond

dephasing by demonstrating that the dynamics can be reversed to provide

a revival of a shaped wavefront on ultrafast time scales. The fact that

pump-induced, nonlinear phase dynamics can be used to increase the

constructive interference of a coherent superposition state was not antici-

pated from Ref. 25 and opens up new prospects for coherent control and

wavefront shaping of light in nonlinear media.

MATERIALS AND METHODS

For our investigations, we make use of mats of GaP nanowires. While

previously we have used such samples for investigations of funda-

mental mesoscopic physics of light,26 it is the nonlinear response of

such nanowires that is of interest to this study.25 The optical thickness

of these 4.5-mm thick mats is more than 20 optical mean free paths,
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which is sufficient to suppress any coherent beam transmission and to

produce a complete mixing of input and output degrees of freedom.26,27

The set-up, as shown in Figure 1b, combines a wavefront shaping

arrangement with two-color, femtosecond pump–probe spectroscopy.

A regenerative amplifier (Coherent RegA, Coherent, Santa Clara, CA,

USA. 250 kHz, 150610 fs pulse duration) pumped optical parametric

amplifier (Coherent OPA 9400, Coherent, Santa Clara, CA, USA) was

used to provide probe and pump light with center wavelengths of

633 nm and 400 nm, respectively. A 1-nm narrowband spectral filter

was used to reduce the bandwidth of the probe pulses to 0.75 THz, close

to the characteristic frequency correlation width of the speckle in the

medium.25,26 This allowed us to perform wavefront shaping in the

spatial domain using only a single frequency mode (as opposed to

temporal shaping22,23). As a consequence of the spectral filtering, the

pulse duration of the probe was increased to 5 ps.

The pump and probe were focused onto the nanowires using a

microscope objective (Nikon CFI60 LU Plan BD, Nikon instruments,

Kingston upon Thames, UK) with numerical aperture of 0.9. By redu-

cing the pump collimation before the objective (L6 in Figure 1b), we

achieved a homogeneous pump illumination over the entire 20-mm

diameter area used for wavefront shaping. The total average incident

power of the pump on the sample was 8 mW, while the used probe

power was less than 0.1 mW. The pump fluence on the sample was

estimated to be 15 mJ cm22, approximately 70% of the threshold at

which slow, photo-induced sample degradation was observed. The

time delay between probe and pump pulses was controlled using a

mechanical stage, and was calibrated using the nonlinear response of a

bare GaP slab without any scatterers.25,28 For each delay position, an

image was taken with and without pump using a computer controlled

shutter to block the pump beam in order to obtain the relative effect of

the pump. Transmitted light was collected by a second, identical

objective and imaged onto a monochrome 16-bit camera (AVT

Stingray, Allied Vision Technologies, Stadtroda, Germany).

To produce an optimized spot, a digital micromirror device (DMD;

Vialux, Chemnitz, Germany) was used to control the incident probe

light. We used a binary amplitude modulation scheme by Akbulut

et al.29 to switch off transmission modes that interfere destructively

at a selected point, leaving only modes that interfere constructively to

create a single bright focus. In the experiment, the DMD was divided

into segments of 20 pixels320 pixels, providing a total of 900 inde-

pendently controlled incident modes. The time to optimize a single

segment was 30 ms, resulting in a total optimization time of 30 s. A

further optimization cycle was then performed to benefit from the

improved signal-to-noise ratio in the pre-optimized spot, after which

no significant improvement was obtained for further cycles with a

stable configuration. By positioning the focal plane of the collection

objective approximately 5 mm behind the exit surface, optimizations

were performed on a single spot in the far field of the scattering slab.

Images were processed using Matlab (Mathworks, Natick, MA,

USA). For each data point, areas of interest were selected from the

images corresponding to either the peak or background region.

Integrated intensities for images with pump were normalized to values

without pump to obtain normalized data for each time delay.

RESULTS AND DISCUSSION

Dephasing of a shaped wavefront

Figure 2a shows the optimized spot obtained using the picosecond

probe pulse, with a radially averaged cross-section shown in Figure 2c

(black line). An order of magnitude enhancement was obtained, which

is limited by the amplitude modulation scheme combined with the

finite laser bandwidth and intrinsic noise of the parametric amplifier.

Ultimately, the maximum possible enhancement is set by the available

number of independent transmission channels,30 which is around 50

for the sample and illumination conditions under study.26

After optimization of the wavefront, the pump illumination was

switched on in order to produce a nonlinear modulation of the shaped

light field. Figure 2b shows the intensity map for the maximum of the

pump–probe dephasing effect at 4 ps delay time, with the cross-sec-

tion shown in Figure 2c (red line). Figure 2d shows the pump–probe

time dynamics of the transmitted intensity Tpump normalized to its

value without pump Tnopump, for the optimized spot (black line) and

the average background intensity (red line). The peak to background

ratio (blue line) is defined as the ratio between optimized spot and

background. The main effect is a reduction of the intensity in the

optimized spot down to 37% of the value without pump, correspond-

ing to a modulation contrast of 4.3 dB. This reduction of the shaped

spot is much stronger than that of the background intensity, which is

reduced by only half this amount. In addition to the ultrafast effect,
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Figure 1 Concept and experimental set-up. (a) Concept of ultrafast dephasing of shaped field. Left: wavefront shaping of the probe light using binary amplitude results

in alignment of partial E-fields in complex phase plane (lines, red). Right: illumination with pump results in dephasing of shaped fields and destruction of the optimized

spot. (b) Diagram of experimental set-up. Lenses L1 and L2 magnify the probe by 3.33 onto the DMD, L3 and L4 demagnify the DMD pattern onto the microscope

entrance by 2.53 in a 4f configuration. L5 (f5500 mm) images the transmitted light onto the camera and L6 (f5250 mm), positioned 20 cm from the aperture of the

objective, increases size of pump focus. P1 and P2 are polarizers, F is a narrowband laser line filter at 632.8 nm with a spectral linewidth of 1 nm, resulting in

broadening of the probe pulse duration to 5 ps. DMD, digital micromirror device; NA, numerical aperture.
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both the peak and the background intensities show a Tpump/Tnopump

ratio of around 95% for delay times less than 25 ps, due to a pump-

induced heat pileup in the nanowires.

The nonlinear switching effect was found to be reproducible for dif-

ferent positions on the sample corresponding to different multiple scat-

tering configurations. Figure 3a shows the normalized peak modulation

for three different sample positions, while statistical results for 24

different positions are given in Figure 3b–3d. The peak to background

enhancement using the binary optimization scheme varied between 8

and 16 for these optimizations (Figure 3b). The mean value of the
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modulation of the peak achieved at different sample positions was

(5062)% (Figure 3c), while the modulation of the background was

found to be (3662)% (Figure 3d). In addition to variations in mag-

nitude of the switching effect, the detailed dynamics of the optimized

spot were found to also depend sensitively on the local scattering

configuration, as is shown in Figure 4a for three representative posi-

tions corresponding to those of Figure 3a. The variation in dynamics

of the peak (labeled A–C in Figure 4a) reflects the limited number of

independent transmission modes in the optimized spot.30 As each

mode is associated with a specific set of light paths through the me-

dium, the time evolution represents the characteristic dwell times of

the subset of modes that are contributing to the shaped light field for

each particular configuration. Compared to the optimized spot, the

integrated background intensity consists of a much larger number of

transmission modes, resulting in a much smoother behavior which

did not depend markedly on sample positions (red lines in Figure 4a).

In the absence of mesoscopic effects, the modulation of the back-

ground intensity can be described by pump-induced transient absorp-

tion during the diffuse transport time of light through the nanowire

mat.25,31 If there was only absorption, the optimized peak should

follow the background and no modulation of the peak to background

ratio would be observed. From the peak to background ratio, we

conclude that the effect of absorption accounts for less than half of

the total switching of the peak, and the remainder reflects the effect of

pure dephasing processes in the switching. Further evidence of the

presence of ultrafast dephasing effects is obtained by looking at the

phase coherence of the background speckle. Dephasing effects result in

a redistribution of intensity over the different transmission modes,25

which is not visible when looking only at the integrated transmission

intensity. Therefore, we calculated the cross-correlation C of the spa-

tial intensity maps taken with (‘p’) and without pump (‘np’) at each

delay time, given by

Cp,np~

P
x,y Ip x,yð Þ{SIpT
� �

Inp x,yð Þ{SInpT
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
x,y Ip x,yð Þ{SIpT
� �2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
x,y Inp x,yð Þ{SInpT
� �2

q

where brackets denote the average value over the selected area of interest

of the image. We find a decorrelation of the speckle pattern in the

presence of pump illumination as shown in Figure 4b for the three

positions. The time dependence of this decorrelation matches well the

dynamics of the corresponding peaks A–C for each configuration,

evidencing the strong role of dephasing in the modulation of the opti-

mized wavefront.

Ultrafast revival of a shaped wavefront

The above results show that it is possible to selectively destroy the

constructive interference of a shaped light field using the nonlinearity

of the scattering medium. Our finding that nearly half of the switching

is caused by pure dephasing leads to the exciting question whether the

phase dynamics can be inverted to achieve constructive interference in

the presence of the pump. We tested the potential of such a dynamical

rephasing effect in an experiment where the probe field was shaped in

the presence of pump illumination and for a given pump-probe delay.

Figure 5a and 5b summarizes the results obtained for a range of opti-

mizations at different pump–probe delay times. Here, the vertical

black arrows represent the pump-probe delay time at which the

optimization was done (the horizontal dashed lines are the baselines

of the vertically shifted curves). The first thing to notice is that the

background intensity (Figure 5a) is not affected at all by the optim-

ization. This is to be expected since the background modulation only

depends on transient absorption.

In comparison, the peak to background ratio (Figure 5b) shows

pronounced differences between optimization with and without

pump. For optimization without pump, we see for this particular

configuration the suppression of the shaped field beginning around

zero time delay with a maximum effect of (2062)% at 3.5 ps.

For optimization with pump on, we find that the dynamics of the peak

to background ratio strongly depend on the exact timing of the pump

and probe pulses used during the optimization process. For a range of

optimization delay times between 21.5 ps and 5.5 ps, the shaped field

shows a clear enhancement with pump compared to without pump

around the time where the optimization was done. The largest rephasing

effect of (1862)% is found for the optimization with a probe delay of

2.2 ps, close to the delay at which the largest dephasing effect occurs for

the optimization with pump off. Figure 5d and 5e shows a more detailed

analysis of the dynamics taken at the optimization at 2.2 ps probe delay.

The increase of the pump to background ratio is most clearly observed in

Figure 5e. This increase cannot be explained by an absorption difference

between peak and background, as this would not show a maximum

which shifts with the optimization time delay. We therefore attribute

the relative increase of the shaped field to a coherent rephasing, driven

by the pump-induced changes of the scattering medium.
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We reproduced the dynamic rephasing effect on several areas of the

sample as shown in Figure 6. Figure 6a shows the intensity cross-

sections at the maximum rephasing time delay, normalized to the

background intensity at 4 mm distance from the peak, for three inde-

pendent sample positions. The full time dynamics of the rephasing

effect for these different configurations are shown in Figure 6b–6d.

The arrows indicate the time delay at which the optimization was done

in the presence of pump illumination. While nominally the same

amount of maximum rephasing is observed in the peak to background

ratio (blue lines), there are again variations in the dynamics depending

sensitively on the sample position. As the nonlinearity will impact

differently on each transmission mode, the specific dynamics in this

region are likely to be an individual fingerprint of the scattering con-

figuration. This behavior is in agreement with that observed for the

dephasing effect, and shows that both the linear transmission and the

nonlinear phase dynamics can potentially be engineered by a rational

design of the scattering configuration.

Our results show that a large fraction of the nonlinear dephasing can

be inverted to produce a coherent reshaping of the wavefront. Some

losses in the inversion could be caused by nondeterministic or inelastic

dephasing processes. We expect that in particular the effects of non-

adiabatic modulation processes occurring on a time scale faster than

the dwell time,32,33 or reciprocity breaking28 will produce phase

dynamics and nonlinear spectral broadening which cannot effectively

be harnessed for rephasing of the entire probe pulse.

Comparison with other switching concepts

Optical switching through multimode dephasing in a complex me-

dium is a conceptually novel approach to all-optical control. Other

semiconductor devices showing ultrafast phase modulation include
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photonic crystals, ring resonators and microcavities.33–40 In these

devices, typically a single resonant mode is modulated through ultra-

fast changes in the refractive index, resulting in a deterministic fre-

quency shift of this mode. On the other hand, a Mach–Zehnder

interferometer (MZI) is based on the phase coherence between two

spatially separate pathways. Our approach can be interpreted as a

multipath extension of the MZI in a highly compact configuration

where many light paths are folded into a single slab of material. The

spatiotemporal multimode complexity of the different paths showing

different phase dynamics results in a complete reshaping of the mode

spectrum. Thus, rather than a small frequency shift, we see a complete

collapse—or revival—of the output mode. Our device concept thus

provides a switching characteristic which is very different from any

other nonlinear switching devices.

While differences in device geometries render a direct comparison

between one-, two- and three-dimensional structures difficult, a sim-

ple but instructive approximation is to look at the characteristic non-

linear interaction times. The accumulated nonlinear phase Dw is

proportional to the time t the light spends in the excited region

according to Dw5Dnvt, with Dn the nonlinear refractive index

change and v the angular frequency. For an MZI of arm length L,

the interaction time is tMZI5L/c, whereas for a cavity, this time is

increased to tC5FL/pc, with F the cavity finesse, L the cavity length

and c the speed of light. For a complex scattering medium, the average

time light takes to diffuse through the excited slab of thickness L is the

Thouless time tD53L2/cl, where l is the transport mean free path of

light in the scattering medium.41 For equal length L of the excited

region, the scattering medium thus provides the same accumulated

phase as a cavity with finesse F53pL/l, amounting to around 200 for

our studies. Indeed, earlier experiments25 showed a frequency shift of

the overall speckle pattern of our random medium corresponding to

the average accumulated nonlinear phaseDw as illustrated in Figure 1a.

In comparison, a much longer device length (60 times in our example)

is required for the MZI to obtain the same accumulated nonlinear

phase.

In addition to the small average frequency shift, a much larger effect in

our samples is caused by pure dephasing of modes.25 Dephasing results

in the decorrelation of intensity induced by a random distribution of

accumulated phases proportional to Cp,np&SeiDwT:e{1=2SDw2T where

the equivalence assumes a Gaussian distribution and the brackets denote

an average over the ensemble of modes contributing to the intensity.41

The decoherence model predicts a 1/e reduction of the intensity for a

Gaussian distribution of accumulated phases of width var Dwð Þ~2.

The dephasing mechanism thus benefits from a broad distribution of

path lengths, which is provided by the power-law distribution of

diffuse transport times through the slab,41 as well as from spatiotem-

poral inhomogeneity of the excitation zone. The latter condition is

fulfilled by the fast time dynamics, limited penetration depth and

intrinsic intensity fluctuations of pump light inside the sample, but

could potentially be further optimized by structuring of the pump

illumination to imprint specific nonlinear potential landscapes.42

Future prospects

While the efforts in our current work mainly focused on the proof of

concept of ultrafast switching, much higher efficiencies and speeds of

wavefront shaping can be easily implemented.9–15 The use of full phase

control in wavefront shaping will result in more significant enhance-

ment in the peak to background ratios achieved. Moreover, knowledge
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of the transmission matrix of the material will allow generating any

predetermined configuration on command within the switching time

of the DMD, i.e., at kHz speeds.11 Such speeds are of interest for a

variety of applications in displays and imaging. Ultimately, we envis-

age that multimode devices could form the nodes of an adaptive

network, where the multimode complexity provides the reconfigur-

ability and picosecond control performs the function of all-optical

communication gate. Particularly exciting is the prospect of imple-

menting these general concepts in two dimensional plasmonic and

nanophotonic waveguides, which could result in a new paradigm

for reconfigurable networks.

Another application range which could take profit from the pico-

second switching speed is that of ultrafast shutters for time-resolved

spectroscopy. High-throughput devices may be obtained by designing

configurations that match the open transmission eigenchannels of the

medium with order unity transmission.10,12 A rational design of

arrangements with predefined characteristics6 will allow engineering

of both the linear energy transfer and nonlinear phase dynamics simi-

lar to complex molecular systems.43

CONCLUSIONS

In conclusion, we have demonstrated ultrafast optical modulation of a

shaped light field by up to 63% (4.3 dB), with both dephasing and

absorption performing important roles. The effect of dephasing can be

partially inverted to produce a constructive revival of the light field in

the presence of a femtosecond pulsed excitation. The maximum pos-

itive modulation found using this striking rephasing effect is 18%. The

presence of a nonlinear scattering medium therefore adds new ways to

control the transmitted light, on top of the already impressive pos-

sibilities offered by wavefront shaping.
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