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Non-locality and collective emission in disordered lasing
resonators

Marco Leonetti1,2, Claudio Conti1,3 and Cefe Lopez2

Random lasing is observed in optically active resonators in the presence of disorder. As the optical cavities involved are open, the modes

are coupled, and energy may pour from one state to another provided that they are spatially overlapping. Although the electromagnetic

modes are spatially localized, our system may be actively switched to a collective state, presenting a novel form of non-locality revealed

by a high degree of spectral correlation between the light emissions collected at distant positions. In a nutshell, light may be stored in a

disordered nonlinear structure in different fashions that strongly differ in their spatial properties. This effect is experimentally

demonstrated and theoretically explained in titania clusters embedded in a dye, and it provides clear evidence of a transition to a

multimodal collective emission involving the entire spatial extent of the disordered system. Our results can be used to develop a novel

type of miniaturized, actively controlled all-optical chip.
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INTRODUCTION

Non-locality plays a fundamental role in various areas of applied

science, such as plasma physics and Bose–Einstein condensation.1–3

In nonlinear optics, non-locality is usually associated with photore-

fractive, thermal or elastic responses.4–8 In this letter, we demonstrate

the signature of non-locality in an active disordered optical system:9,10

a random laser (RL).11

RLs are among the most complex systems in photonics, encompass-

ing structural disorder, nonlinearity,12 strong nonlinear interaction13

and different photon statistics14 in systems ranging from micron-sized

optical cavities15 to kilometer-long fibers.16 First-principles time-

domain simulations show that the modes of a RL arise from localized

electromagnetic states,17–19 which may appear in a localized or an

extended fashion. Several experiments have been reported on the na-

ture of these modes,15,20–22 and these studies attempted to address the

correlation between the structure and the degree of localization.

Recently, it has been experimentally demonstrated that controlling

the shape of the population-inverted area and thus the directionality

of the amplified spontaneous emission of the dye in the area surroun-

ding the lasing cluster (Figure 1a) makes it possible to affect the number

of activated modes and their degree of interaction.23 Such control is

possible for a system composed of an individual micrometer-sized clus-

ter of titanium dioxide nanoparticles lying in a bath of a rhodamine-

doped solution. By pumping the area surrounding the cluster, one can

generate a flux of directional stimulated emission capable of pumping

only modes that are well coupled with the pump shape, and the lasing

threshold may be surpassed (Figure 2). The number of activated modes

is controlled by selecting, through a spatial light modulator, the angular

aperture H of the wedge-shaped pumped area (see Figure 1b and

studies23–25 for further details).

In this way, it is possible to drive the RL between two intrinsically

distinct regimes, distinguished by the shape of the spectral emission: a

‘resonant feedback random laser’,26 which appears as a set of sharp

peaks oscillating independently at fixed spectral positions, and an

‘intensity feedback random laser’ or ‘incoherent feedback random

laser’,27 characterized by a smooth, single-peaked spectrum which

appears line-narrowed with respect to the fluorescence. A resonant

feedback random laser is observed when activating a typically small set

of weakly interacting resonances, while an incoherent feedback ran-

dom laser is produced under strong interaction that leads to a mode-

locked synchronized regime.

A striking and unexpected phenomenon is found if one studies the

spatial properties of the individual lasing modes. Extended modes are

favored in the highly interacting regime, while local resonances are

activated in the barely interacting configuration.25 Here, we will de-

monstrate that the change in the mode shape with H for a fixed

disorder is due to a novel form of non-locality mediated by the

mode-coupling between the open cavities constituting the set of

involved resonators.17,28 To date, spatial non-locality has been largely

investigated in Hamiltonian nonlinear optical systems, but here we

report the first evidence in a dissipative disordered medium.

MATERIALS AND METHODS

The experiments were performed on individual clusters obtained

through an isolation procedure from titanium dioxide powder tita-

nium dioxide (titanium(IV) oxide, 89490 Sigma-Aldrich, particle
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size,1 mm) embedded in a solution of ethylene glycol (refractive

index mismatch of 1.2) fabricated as described in Ref. 24. Figure 1a

depicts a scheme of the experimental set-up. The pulsed laser (Litron,

Warwickshire, UK; 532 nm, 20 mJ pulse energy, repetition frequency

10 Hz), whose spot is shaped by a spatial light modulator (Holoeye, San

Diego, CA, USA) in the amplitude configuration (by using the two

crossed polarizers P1 and P2), pumps a single titanium dioxide cluster

(diameter between 5 mm and 12 mm). The RL emission is collected by a

microscope objective and is imaged using a beam splitter in two different

image planes. In one of these planes lies a fiber controlled by translators

with nanometric resolution that allows the spatio-spectral map to be

measured. In this way, it is possible to scan a magnified (503) image of

the sample and measure the spectra emitted from a single point. The fiber

core (50 mm in diameter) collects spectra originating in an area of the

sample 1 mm in diameter. The other light path enables the sample to be

imaged on a CCD.

The geometrical H parameter that is the angular aperture of the

lateral wedges (Figure 1b) allows control over the span of the input

direction from which the stimulated emission impinges on the cluster;

therefore, it selects only the modes that couple efficiently with the

wedges. This directional selection allows the user to set the effective

number of activated modes in the cluster located in the center of the

disc-shaped pumped area.

RESULTS AND DISCUSSION

The first step was isolating the cluster to avoid the influence of other

clusters on our measurements. We performed the isolation procedure

described in Ref. 24, selecting only ‘lonely’ clusters (clusters for which

the nearest neighbor is more than 800 mm away). In this condition, the

spectra measured on neighboring clusters do not show any type of

correlation or coupling. Appropriate spatial filtering makes it possible

to collect only light emitted from the random lasing cluster, elimina-

ting unwanted contributions from amplified spontaneous emission.24

Here, in fact, we are interested in the non-locality generated by

modes sharing an individual cluster. Thus, we compared spectra col-

lected at different locations in the same disordered structure because

distinct regimes are expected when varying H: the interaction is low

for small H and grows when H is increased. Other parameters, such as

the size of the pumping wedges and the total pumping volume, do not

influence the interaction (see Figures 5 and 12 of Ref. 24). Figure 3

shows five spectra collected at different points of a cluster labeled C1

(Figure 3a for narrow and Figure 3b for wide angular span) and an

image of the cluster (inset of Figure 3c) where the crosses mark

the positions at which the spectra were collected (with a minimum
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Figure 2 Typical full width at half maximum (left scale) and intensity (right scale) of the light retrieved from a single cluster as a function of the pump intensity for

H52406(a) and for H566(b). The lasing threshold is at the position indicated by the dashed line. FWHM, full width half maximum.
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Figure 1 (a) Experimental set-up. Laser light from a Nd:YAG frequency doubled

pulsed laser is shaped from a reflective spatial light modulator to generate a

population-inverted area of the shape indicated in b. Light emitted from the

sample is collected from an OBJ and imaged through a BS on a CCD camera

and on a plane in which a motor-controlled fiber is placed. The fibers collect only

light emitted from a region much smaller than the cluster, thus eliminating con-

tribution from the scatterer free dye. (b) A cluster and surrounding pumped area

for wedges with an angular aperture of H5366. BS, beam splitter; CCD, charge

coupled device; OBJ, objective; SLM, spatial optical modulator.
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distance between them of 2 mm). When H566, the interaction is low,

and emission is local, i.e., the spectra display huge variations from

point to point. However, when H52406, the interaction is large, and

the spectra are identical throughout the cluster.

The onset of a long-range correlation may be quantified by the

overlap Q of the intensity spectra, Ia(l) and Ib(l), collected at different

positions a and b defined as Qa,b5#Ia(l)Ib(l)dl (subject to a normal-

ization condition Qa,a5Qb,b51). A value of Q close to unity is

retrieved for almost identical spectra, while values close to 0 represent

distinct emissions from various points. Figure 3c shows the average

Q5,Q. (H) (the average is taken over the N(N21)/2 possible pairs

among the N55 considered points) and demonstrates that the cor-

relation between spectra at different positions increases with H. A key

point is that the increment of Q is not due merely to an average

smoothing of the envelope of the spectrum but also includes the per-

sistence of ‘small features’ (some examples are marked with asterisks

in Figure 3b) present in all the considered positions that should not be

mistaken for noise. These small features have been previously noticed

in earlier experiments, both in titanium dioxide23 and in zinc oxide

microclusters20 and thin layers.21

This measurement is the first direct experimental connection

between the strong nonlinear interaction13 and the appearance of such

spectral features. This collective regime can be described by a spatially-

dependent Gross–Pitaevskii (GP) equation, making it possible to clas-

sify the reported phenomenon as a form of ‘condensation’17 of the

localized modes into a single wavefunction (in a dissipative system).

The presented results may be interpreted as follows: the response at

wavelength l1 can excite the other modes and force them to oscillate at

l1, i.e., at a frequency different from their natural one. Hence, a loca-

lized vibration at l1 grows, involving all the modes in neighboring

(spatial) regions. However, lossy (or scarcely pumped) modes are not

able to retain energy at frequencies far from their fundamental reso-

nances (small H regime). On the contrary, when increasing H, modes

at any point in the structure can sustain oscillations at any frequency,

and as they are all coupled, they synchronize, resulting in large-scale

coherent emission. This process is to be compared with other forms of

recently reported examples of condensation processes in nonlinear

optics,29–31 and extends previously reported investigations to the spa-

tial domain.28

To provide a model for the reported phenomena, we describe the

electric field E as a mode superposition written as

E~
P

j~1,N

yj x{xj

� �
aj tð Þexp {ivj t

� �
ð1Þ

where yj(x2xj) is the wavefunction of the mode centered at position

xj.
32 Note that E and y can be vector-valued functions.

As we want to model a continuous distribution of modes, we con-

sider the limit in which xj is a continuous variable (many modes are

excited and dwell in nearby positions) by introducing the function

y x,tð Þ~
P

j

d x{xj

� �
aj tð Þ ð2Þ

which corresponds to taking aj(t)5a(t ; xj) and is analogous to the

introduction of a continuous particle density, starting from the dis-

crete positions of particles in the theory of liquids.33

As aij j2 gives the energy of mode i located in xi, y xð Þj j2 gives the

energy distribution in the system. All the modes are assumed to have

the same frequencies v0. The small frequency differences can be

embedded in the time-dependent aj(t), which corresponds to letting

aj R ajexp [2i(v02vi)t]. The coupled mode equations23,34,35 are

written as:

dai

dt
yi x{xið Þ~

X
j

Kijyj x{xj

� �
aj tð Þznonlinear part ð3Þ

The coupling coefficients Kij are, in general, complex valued and

account for the self-gain/loss coefficient and the detuning (v02vi) for

the i5j term (KS;Kii), and for the cross-coupling between the modes
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Figure 3 Sample C1: (a) spectra (average over 25 shots) collected at five different points forH566and (b)H52406. Both measurements were performed with an input

fluence of 0.15 nJ mm22. (c) Average mode overlap Q versusH (error bar represents the standard deviation). The inset shows an image of the cluster obtained by fiber

scanning. The crosses represent the points where the spectra in (a) and (b) were collected.
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(Kx;Kij) for i?j. For the sake of simplicity, we take Ks and Kx

independent of the mode index; they represent the average disorder

values over the modes, as we are interested in deriving an average

equation. Projecting over the state yi(x2xi), one can write

dai

dt
~
X

j

k xi{xj

� �
aj tð Þznonlinear part ð4Þ

where the coupling coefficients are, in general, dependent on the dis-

tance between modes. For a cluster size on the order of 10 wavelengths

in each direction, with a volume average refractive index n>2, we

conservatively expect a mode number that is approximately 1000,

and hence a continuous limit can be considered as a first-order approxi-

mation. In this limit, Equation (4) corresponds (xiRx,xjRy) to

Ly x,tð Þ
Lt

~

ð
k x{yð Þy y,tð Þdyznonlinear part ð5Þ

where k(x2y) models the coupling between two field values at x and y

and therefore, describes the inherent non-locality due to the finite

spatial extension of the modes and their mutual coupling (open cavity

regime, otherwise, the modes are orthogonal). In the weakly non-local

limit, k(x) is localized over a spatial extension much smaller than the

sample size and of the order of the mode localization length; its

Fourier transform �kk Kð Þ can be expanded around k50, i.e.,

�kk kð Þ~k0{ k2=2ð Þk:k, which, in the spatial domain, gives

Ly x,tð Þ
Lt

~k0y x,tð Þz k2

2
+2y x,tð Þznonlinear part ð6Þ

where k0 accounts for the local gain and k2 is the linear non-locality

coefficient. Note that in general, Equation (6) holds in 1, 2 and 3

spatial dimensions. The nonlinear part is, in general, a superposition

of the mode-profiles and, at the lowest order, can be written as

ð ð ð
x x{x1,x{x2,x{x3ð Þy x1ð Þ�y x2ð Þy x3ð Þdx1dx2dx3 ð7Þ

with x as the nonlinear and non-local kernel function.

For localized modes, the nonlinear cross-correlation between the fields is

expected to be small (as the power of the fields decays faster than the fields

for an exponential localization), and the non-locality in the linear part

dominant; hence, the nonlinear term can be treated in the local limit, i.e.,

x x{x1,x{x2,x{x3ð Þ~xd x{x1ð Þd x{x2ð Þd x{x3ð Þ ð8Þ

so that the final equation for the condensed wave function reads

Ly x,tð Þ
Lt

~k0y x,tð Þz k2

2
+2y x,tð Þ{ xj j y x,tð Þj j2y x,tð Þ ð9Þ

which is the dissipative counterpart of the spatially dependent GP equa-

tion, or the Ginzburg–Landau equation with external potential;10 in the

presence of pumping, k0.0 and x,0 for gain saturation. The fact that we

are dealing with a finite cavity can be handled phenomenologically by

adding an external potential V(x) that models very large losses (ideally

infinite) at a size comparable with the spatial extension of the cluster; this

addition forces the solution to be localized in the cluster. The spatial

extension of the potential is used as a fitting parameter below.

Ly x,tð Þ
Lt

~

k0y x,tð Þz k2

2
+2y x,tð Þ{V xð Þy x,tð Þ{ xj j y x,tð Þj j2y x,tð Þ

ð10Þ

V(x) can be approximated as finite inside the cluster and infinite

elsewhere, so that the field is localized inside the scattering structure

with ‘infinite losses’ outside.

In the stationary regime, ht50, and Equation (10) corresponds to

the time-independent GP equation, providing a form of spatial con-

densation.31 Thus, the system considered here shows an evident sim-

ilarity to the case of ultra-cold atoms for which the transition to the

condensed state is triggered by increasing particle density, which in

our experiments corresponds to the number of activated modes.

We stress that recently, the problem of light condensation has been

discussed by several authors, either with reference to dissipative sys-

tems (as lasers)17,34 or Hamiltonian dynamics;36–38; the validity of a

GP-like (or purely real Ginzburg–Landau) equation to describe the

spatial distribution of energy in experiments casts new light on the

investigation of these effects, for which further theoretical work is

needed and will be reported elsewhere.

A further analogy with matter wave theory can be found in the

energy behavior of the collective regime (large H configuration). If

the potential is approximated with a parabola at low pumping ener-

gies, Equation (10) predicts a Gaussian distribution of the intensity.

However, for high energies, the kinetic term (the Laplace operator)

may be neglected due to the flatter distribution of the intensity. This

option leads to the well-known Thomas–Fermi approximation, in

which the intensity distribution can be written inside the cluster as

y xð Þj j2~ k0{V xð Þ
xj j ð11Þ

with k0.V(x) and

y xð Þj j2~0 ð12Þ

outside the cluster. In Figure 4, we show the numerical solutions of

Equation (10) and compare them with the experimental results, with

qualitative agreement.

This set of approximations predicts a flattened distribution of the

particle density (the light intensity in RLs) inside the potential box (the

scattering cluster) when the pumping intensity is increased,39 and a

Gaussian one at low energies. To test this prediction, we studied

experimentally the distribution of intensity in the ‘many modes’ (large

H) configuration. Specifically, we measured the spatial pattern as a

function of the pump fluence for H5240o for a cluster named C2: we

scanned the fiber along the x direction while keeping the y coordinate

fixed, thus probing the middle section of the sample.

The results reported in Figure 4 show the intensity distribution for

an input pump fluence on the sample of 0.07 nJ mm22 (Figure 4a) and

0.15 nJ mm22 (Figure 4b). These results are presented alongside the

numerical solution of the GP equation obtained by a pseudo-spectral

Newton–Raphson iterative technique40 when considering a random

Gaussian potential superimposed on a parabolic deterministic com-

ponent (details will be given elsewhere). Figure 4a reports the linear

(low energy) solution, while Figure 4b reports the nonlinear (high

energy) solution. Numerical solutions have been found using a one-

dimensional version of Equation (9); specifically, the spatial scale of

the potential is used as a fitting parameter by using a parabolic

approximation with a coefficient to model the size of the system.

The energy of the pump is also a fitting parameter.

To further characterize this effect, we measured the localization

length V of the intensity distribution, which is defined starting from

the inverse participation ratio
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Pl:

Ð
Il x,yð Þ2dxdyÐ
Il x,yð Þdxdy

� �2 ð13Þ

from which

Vl:
1ffiffiffiffiffi
Pl

p ð14Þ

which is the localization length of the light in the cluster. Figure 4c

shows a clear increase ofVl with the pump fluence, as predicted by the

model. In Figure 4d, we report a measure of the behavior of Vl for

cluster C3 in the presence (H52406) and in the absence (H566) of

interaction. Although small, the increase of V in Figure 4d with inter-

action (and thus non-locality) is clear. When the interaction is sup-

pressed (H566), the variation of V is completely cancelled.

An alternative explanation may be that there are some effects able to

modify the intensity distribution. A possibility is given by hole bur-

ning, which has been theoretically considered for random lasers.41,42

Hole burning is due to the presence of standing waves in the cavity,

and it is hence expected in both the strongly interacting and the weakly

interacting regimes. On the contrary, in our experiments, the spatial

smoothing is present only in the interacting case (Figure 4d open

circles), confirming that it is interaction that leads to a non-local

random laser.

CONCLUSIONS

We demonstrated that in a highly interacting regime, random lasing

displays non-local features. In fact, the same fine-featured spectra are

found throughout the entire lasing cluster. This result implies that a

coherent oscillation distributed over the whole random system is estab-

lished. Such a finding is accounted for by a model similar to the model

used for Bose–Einstein condensates under the Thomas–Fermi approxi-

mation, which predicts a stronger confinement of a gas (the RL intensity)

inside a potential box (the scattering cluster). The measurements of the

spatial intensity distribution of the collective RL as a function of energy

confirm that all the observed phenomena are a result of the inter-mode

coupling and bring new evidence to the understanding of the fun-

damental properties of light in random optical cavities and of condensa-

tion-like phenomena in a dissipative system. Future investigations may

involve studies performed as a function of the refractive index mismatch.
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Figure 4 Intensity spatial profile in the middle section of cluster C2 forH52406and for a fluence of 0.07 nJmm22 (a) and a fluence of 0.15 nJmm22 (b). The continuous

line represents the numerical solution of the GP equation in the linear case (a) and in the high-energy nonlinear case (b). (c) Localization length versus fluence for

cluster C2 (H52406). Full points correspond to a and b. (d) Localization length versus fluence for cluster C3 forH52406(open circles) and forH566(full squares). GP,

Gross–Pitaevskii.
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