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The simplest route to generating a train of attosecond
pulses

Kazumichi Yoshii, John Kiran Anthony and Masayuki Katsuragawa

We report on two novel routes to generating a train of attosecond pulses from a broad discrete spectrum in the near-infrared–visible–

ultraviolet range. One extends an integer-temporal-Talbot (ITT) concept to include high-order spectral dispersions and generates a

pulse train that completely satisfies the transform-limited condition. The other numerically explores the optimum conditions under

which we can obtain an attosecond pulse train that approximately satisfies the transform-limited condition. The second method is more

practical than the first. Either of these methods is extremely simple and robust; we need only to place a few thin dispersive materials in

the optical path and to adjust their thicknesses without spatially dispersing the frequency components. We numerically demonstrate

the generation of a train of attosecond pulses with a transform-limited pulse duration of 728 as and a repetition period of 8.03 fs in

gaseous parahydrogen.

Light: Science & Applications (2013) 2, e58; doi:10.1038/lsa.2013.14; published online 15 March 2013

Keywords: adiabatic excitation of Raman transition; attosecond pulse generation; integer-temporal-Talbot (ITT) method; molecular
modulation

INTRODUCTION

As a result of the studies of high harmonic generation that have been

extensively conducted since the 1980s and have been boosted by the

matured ultrafast technology represented by the Ti:sapphire laser,1

‘attosecond science’ is flourishing.2 Coherent attosecond laser

sources3–12 have been realized as part of this research, and on the basis

of such technology, various lines of research centered on the ultrafast

dynamics of electrons in atoms3–18 or molecules19,20 are being

developed.2 In recent years, through the powering of such attosecond

laser sources,21 nonlinear optics in the attosecond regime are also

being explored.22,23 These studies have mainly been executed in the

extreme ultraviolet regime. On the other hand, in closely related stu-

dies in the near-infrared–visible–ultraviolet range, curious new

approaches based on four-wave mixing in whispering-gallery-mode

microresonators24,25 or the adiabatic excitation of Raman transi-

tions26–39 are being extensively examined to generate broad, discrete,

coherent spectra spanning over an octave and then manipulate them.

Here, we discuss novel methods of generating a train of attosecond

pulses by controlling such highly discrete coherent spectra. The meth-

ods are surprisingly simple and very attractive, especially because their

flexibility makes them applicable over a wide range, including in high-

powered lasers.

METHODS

Extended integer-temporal-Talbot (ITT) method

We introduce two independent approaches. The first approach is an

extension of the ITT concept40,41 and can be applied to ultrabroad

bandwidths over petahertz (PHz). The ITT method has essentially

been discussed in terms of the generation of a pulse train in the pico-

second regime (spectral bandwidth: tens of GHz), mainly regarding its

application to optical communications technology.
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The point of the idea is that in controlling dispersion to form a

Fourier transform-limited (TL) pulse train, the spectral phase dis-

persions, h(2)(mDv)2=2!, of all discrete spectral components,

vm: v0zmDvð Þ (v0, center frequency; m, integer; Dv, frequency

space), are controlled to be integer multiples of p by adding a positive

second-order dispersion (group velocity dispersion) of the materials.

The ITT method is very attractive, because it is applicable regardless

of the sign of the chirp initially included in a pulse, and it does not need

the special structured devices that are employed to provide negative

dispersion in popular ultrashort pulse generation techniques. The ITT

method can function well in cases where the spectral discreteness is

fairly high (Dv.,GHz). For example, in optical communications

technology, the spectral spacing is typically located in a range of tens

of GHz. A standard kilometer-length optical fiber can therefore

become a convenient tool for providing appropriate positive sec-

ond-order dispersion using the ITT method.

The ITT method can also be applied to spectra with much wider

frequency spacings. However, we encounter a limitation when the

spacing reaches about 10 THz (pulse duration: tens of fs).42 In such

a situation, the high-order dispersions are not trivial and destroy the

ITT condition. This difficulty can be overcome by extending the ori-

ginal ITT concept to include high-order dispersions.
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As a typical example, we discuss a discrete spectrum (bandwidth:

2p3496 THz) consisting of five longitudinal modes with an angular

frequency spacing, Dv, of 2p3124 THz (Figure 1b). Equation (2)

expresses the spectral phase shift, W(v)~n(v)vx=c, given through a

dispersive material with a refractive index of n(v) and a length of x,

where c is the speed of light in vacuum and m is a longitudinal mode

number from – 2 to 2.
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When the spectrum spreads across several hundreds of THz, the

spectral phases are substantially influenced by material high-order

dispersions (Figure 1b). Even in such cases, however, as understood

from Equation (2), if the high-order dispersion terms,

w(h)x(mDv)h=h! (h o 3), can be simultaneously controlled at integer

multiples of p, as is the case for the second-order term, then the

spectral phases W(vm) can also satisfy the ITT condition. It is difficult

to satisfy this condition using the conventional approach, which

employs a single dispersive material. However, if we introduce differ-

ent types of dispersive materials corresponding to the term number of

the high-order dispersions to be considered, then in principle, the ITT

condition can be satisfied again.

In this new approach, the extended-ITT method, the coefficients,

w(p), in Equation (2), are determined by fitting the refractive indices at

the respective longitudinal modes, n(vm), with a fourth-order poly-

nomial in each dispersive material. Namely, if we consider the spectral

phases only at the discrete longitudinal modes, then even if we increase

the spectral width, we can restrict the dispersion terms to four at

most—the mode number minus one, in the case where the mode

number is five. The spectral dispersion curve obtained here differs

from the original one while still giving us the correct phase values at

the longitudinal modes. Equation (3) represents the relationship that

satisfies the ITT condition in the case where the fourth-order disper-

sion term is the highest, and three different species of dispersive mater-

ial (thicknesses: x1, x2, x3) are employed:
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The subscripts indicate the types of the dispersive materials that are

employed, and the q(p) values are arbitrary integers.

In practice, we studied the case employing three materials—borate

glass (BK7), silica glass, and calcite crystal (extraordinary axis)

(Figure 1a). When we set the integers in Equation (3) to q(2)521,

q(3)52 and q(4)50, we obtain material thicknesses of xFS51.367 mm,

xBK751.075 mm and xCalcite50.179 mm. Figure 1b displays the spec-

tral phases realized for the second (thin line), third (dashed line) and

fourth (dashed and dotted line) orders. The spectral phases at all of the

longitudinal modes are controlled to integer multiples of p for each of

the dispersion-order terms; thus, the ITT condition is satisfied for the

total of the spectral phases, W(vm).

To clarify the precision required for the material lengths, we fixed

two of the material lengths at xBK751.075 mm and xCalcite50.179 mm,

and we plotted the peak values of the normalized waveform,

I(t)~
Xm

Amexp½ifvmt{W(vm)g�
�����

�����
2,

ITL, as a function of the thickness,

xFS (Figure 1c, upper panel). Am and ITL are the spectral amplitude and

the peak intensity to be obtained under the TL condition, respectively.

Assuming the practical ITT condition to be max[I(t)].0.99, then this

condition is satisfied for a range of xFS51.36760.006 mm. In reality,

this is a sufficiently controllable range.

To better understand the mechanism of this extended ITT, we also

plotted variations in the peak intensities of the waveforms in the lower

panel of figure 1c. Each dispersion-order term is included alone. The

ITT condition for each dispersion-order term appears with its own

periodic cycle. The solution in Equation (3) is realized when all the

periodic cycles coincide (xFS51.367 mm). Figure 1d is a pulsed wave-

form obtained under this condition. A TL pulse train with a duration

of 1.82 fs and an interval of 8.06 fs is produced (red curve in Figure 1d;

the peak shift is due to the first-order term.)

This example shows that the extended-ITT method can be success-

fully applied to arbitrary initial spectral phases; moreover, the con-

dition that completely satisfies the TL conditions can be analytically

determined. One of the curious findings here is that as shown in this

typical example, the extended-ITT method can function in reverse as a

simple technique that employs a few thin dispersive materials for such
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Figure 1 TL pulse generation using the extended-ITT method. (a) Conceptual

illustration of the method. (b) Power spectrum and its spectral phases at the

second- (thin green line), third- (dashed blue line) and fourth- (dashed and

dotted black line) order dispersions and their total (red line). (c) Peak intensity

variation of waveforms as a function of the thickness of the fused silica-glass

plate. (d) Temporal intensity waveform created by applying the extended-ITT

method (thick line).

Simplest route to generating a train of attosecond pulses

K Yoshii et al

2

Light: Science & Applications doi:10.1038/lsa.2013.14



ultrabroad bandwidth (greater than several hundred THz) that the

high-order dispersion terms are as dominant as the second-order term.

Numerical exploration method

If we increase the longitudinal-mode number further, it is also possible

to produce an attosecond pulse train. However, as we increase the

mode number, we run into increasing difficulty: the species of dis-

persive materials must be increased correspondingly, and the thick-

nesses required tend to be unrealistic. Next, we describe the second

method, which is more practical and has the potential to give a shorter

pulse duration. This method is technically similar to the extended-ITT

method (Figure 1a), and this method also simply places one or more

dispersive materials in the optical path. Here, however, we abandon

the attempt to obtain an exact TL condition, and we numerically

explore options that approximately satisfy the TL condition by ran-

domly changing the thicknesses of the dispersive materials (numerical

exploration of pulse compression (NEC)). Surprisingly, we find many

such conditions within a realistic range. This method is very similar to

the approach used in the extended-ITT method, but it differs essen-

tially in terms of its physics.

As a typical example, we discuss a discrete spectrum consisting of

nine longitudinal modes (bandwidth: 2p3992 THz; see Figure 3b). To

understand the basic nature of this method, we first placed only a

single dispersive material (silica glass) on the optical axis. We then

studied the behavior of the waveform produced as we continuously

changed the thickness of the material, xFS. Unexpectedly, even though

we introduced only a single dispersive material, the peak intensities

were recovered at more than 90% of the values under the TL condition

and appeared four times in a thickness range of 30 mm (Figure 2a;

arrows: 93.1% at 25.461 mm).

If we further increase the number of species used as dispersive mate-

rials, the control freedom increases correspondingly; thus, we can na-

turally expect to find conditions nearer to the TL. We subjected three

dispersive materials—silica glass, sapphire crystal (ordinary axis), and

calcium fluoride crystal—to the process described above and explored

the optimum conditions by randomly changing the thicknesses of the

materials (Figure 2b). In this exploration, we used ‘the random search

method’ for numerical optimization. For the target function, we used

the peak value of the normalized waveform produced. Here,

W(vm)~fxFSnFS(vm)zxSanSa(vm)zxCaF2
nCaF2

(vm)gvm=c. In the

cubic volume of (12 mm)3 set for the exploration, we found many

thickness parameters that gave peak intensities of more than 90% of

the intensities under the TL condition. We mapped the points or

regions, or both, that had especially high values (Figure 2b). (The inset

depicts an optimum region around condition III, appearing as an

oblong shape of 3.18 mm3883 mm.) As expected, the peak intensities

approached the TL condition (unity) more closely as we introduced

more species as dispersive materials. With I (one material), we obtained

0.922 for xFS58.254 mm; with II (two materials), we obtained 0.979

for xFS510.652 mm and xSa55.312 mm; and with III (three materials),

we obtained 0.995 for xFS510.937 mm, xSa53.042 mm and

xCaF2
510.781 mm.

If we had applied the first approach (the extended-ITT method) to the

above case, seven species of dispersive material would have been neces-

sary. The point of the second approach is that if we abandon to obtain an

exact TL condition we are able to realize a pulse train that nearly satisfied

the TL condition by using a more practical technique of simply adjusting a

few thin dispersive materials even for many spectral modes with an ultrab-

road bandwidth. In addition, this second approach to the optimum con-

ditions can be established routinely as a numerical exploration method.

Figure 3 shows that this second method differs essentially from

the extended-ITT method in terms of its physical nature. Neither of

the high-order dispersions under optimum condition III in

Figure 2b satisfies the ITT condition. Nonetheless, their total almost

realizes a linear relationship, so their deviations from the ITT con-

ditions cancel each other out. The situation in which the bandwidth

is ultrabroad results in the substantial inclusion of many disper-

sion-order terms, which can then function in reverse to cancel each

other out. Figure 3c shows the pulsed waveform produced. An

attosecond pulse train with a pulse duration equivalent to the

duration under the TL condition (846 as) was produced on the

basis of this numerical exploration of the optimum conditions.

This method is very robust. It yields essentially the same result as

if we had assumed arbitrary spectral phases initially or employed

other dispersive materials.

When we examine a discrete spectrum of which the carrier-

envelope offset frequency is controlled,34–38 we can simulta-

neously manipulate the carrier-envelope phase in addition to the

intensity waveform.37,38 Figure 3d demonstrates that the electric

field is manipulated to sine-like (21.0 mm) or cosine-like

(11.6 mm) monocycle waveforms by slightly shifting the thickness

of the silica glass employed in the NEC method from condition

III.
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Figure 2 Exploration of optimum solutions using the NEC method. (a) Peak

variation in the intensity waveforms as a function of the thickness of the fused-

silica-glass plate. (b) The optimum solutions found using the NEC method for the

three cases of (I) one plate, (II) two plates and (III) three plates.
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RESULTS AND DISCUSSION

Lastly, we demonstrated the generation of an attosecond pulse train by

executing a numerical experiment in an actual system. We generated

an ultrabroad coherent discrete spectrum (frequency spacing:

124.5713 THz; bandwidth: 2p31.4 PHz for 12 modes, 200.5494 nm

to 2.406633 mm) by adiabatically driving the pure-vibrational Raman

transition (see the scheme in Figure 4a; v51r0: 124.5710 THz) in

gaseous parahydrogen (5.3831019 cm–3; interaction length: 5 cm).43

The excitation intensity was 5.0 GW cm22, and the two driving-laser

fields, V21 and V0, were set to 622.8541 THz (481.3205 nm) and

747.4257 THz (401.1000 nm), respectively; their difference was

detuned by 2300 MHz from the Raman resonance. This numerical

experiment was performed by operating a code based on the Maxwell–

Bloch equation in the far-off resonant L scheme.26–28 Figure 4b shows

a generated discrete spectrum consisting of 12 modes and their spec-

tral phases (blue circles) after the 5-mm-thick silica window and the 3-

mm-thick collimating lens.

Next, we tried to produce an attosecond pulse train by controlling

this ultrabroad discrete spectrum. For spectral phase control, we

adopted the NEC method. We employed three species of dispersive

materials—silica glass, sapphire crystal (ordinary axis), and calcium

fluoride crystal. Their thicknesses were set to xFS51.747 mm,

xSa51.556 mm and xCaF2
53.727 mm, respectively; these values were

obtained as optimal parameters through numerical exploration.

We show the spectral phase (Figure 4b, dots) and the intensity

waveform (Figure 4c, thick red line) achieved under these conditions.

An attosecond pulse train with a pulse duration of 728.4 as (very near

the TL pulse duration of 728.1 as) was recovered from the initial noise-

burst waveform (Figure 4c, dotted line). The peak intensity was 97.2%

of the intensity under the TL condition. The pulsed energy overlap-

ping with the TL intensity waveform was estimated to be 91%. Here,

we should note the transmittances of the three materials inserted. The

12 modes expand over an extremely wide spectral range of 200 nm to

2.4 mm, and therefore, the inserted materials are not perfectly trans-

parent throughout the spectral range. However, the required thick-

nesses are as much as several millimeters, as estimated above, so the

losses are still not significant: the transmittances of the silica glass, the

calcium fluoride crystal, and the sapphire crystal plates are higher than

90%, 90% and 80% for the whole spectral range (200 nm to 2.4 mm),

respectively. We have therefore demonstrated that this method could

function in an actual, practical system.

In this numerical experiment, we used two single-frequency nano-

second pulses (linewidth: approximately 30 MHz) to generate the
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ultrabroad coherent discrete spectrum. A similar ultrabroad coherent

spectrum but with much broader linewidth than tens of MHz can be

also generated by simultaneously introducing a short pulse laser as a

third laser.30 This method for producing an attosecond pulse train is

also applicable for an ultrabroad coherent spectrum consisting of

broad-linewidth discrete modes. The application of the method is

limited by the group velocity delays produced in the inserted disper-

sive materials.

CONCLUSIONS

In summary, we discovered two novel ways of producing a train of

attosecond pulses. One method extends the ITT concept to include

high-order dispersions and generates a pulse train that completely

satisfies the TL conditions. The other method numerically explores

the optimum conditions under which we can obtain a pulse train that

approximately satisfies the TL conditions; this method is simpler and

more practical than the first one. Furthermore, we performed a

numerical experiment in a real gaseous parahydrogen system, where

a train of attosecond pulses was generated with a TL pulse duration of

728 as through the adiabatic driving of the fundamental vibrational

Raman transition. The attosecond pulse-generation methods

described here are extremely simple, requiring the placement of only

a few thin dispersive materials and the adjustment of their thicknesses.

The methods can be applied robustly to a wide variety of systems and

are attractive in their potential to be adapted for use with high-pow-

ered lasers.
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