Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic lymphocytic leukemia

NOTCH1-mutated chronic lymphocytic leukemia cells are characterized by a MYC-related overexpression of nucleophosmin 1 and ribosome-associated components

Abstract

In chronic lymphocytic leukemia (CLL), the mechanisms controlling cell growth and proliferation in the presence of NOTCH1 mutations remain largely unexplored. By performing a gene expression profile of NOTCH1-mutated (NOTCH1-mut) versus NOTCH1 wild-type CLL, we identified a gene signature of NOTCH1-mut CLL characterized by the upregulation of genes related to ribosome biogenesis, such as nucleophosmin 1 (NPM1) and ribosomal proteins (RNPs). Activation of NOTCH1 signaling by ethylenediaminetetraacetic acid or by coculture with JAGGED1-expressing stromal cells increased NPM1 expression, and inhibition of NOTCH1 signaling by either NOTCH1-specific small interfering RNA (siRNA) or γ-secretase inhibitor reduced NPM1 expression. Bioinformatic analyses and in vitro activation/inhibition of NOTCH1 signaling suggested a role of MYC as a mediator of NOTCH1 effects over NPM1 and RNP expression in NOTCH1-mut CLL. Chromatin immunoprecipitation experiments performed on NOTCH1 intracellular domain (NICD)-transfected CLL-like cells showed the direct binding of NOTCH1 to the MYC promoter, and transfection with MYC-specific siRNA reduced NPM1 expression. In turn, NPM1 determined a proliferation advantage of CLL-like cells, as demonstrated by NPM1-specific siRNA transfection. In conclusion, NOTCH1 mutations in CLL are associated with the overexpression of MYC and MYC-related genes involved in protein biosynthesis including NPM1, which are allegedly responsible for cell growth and/or proliferation advantages of NOTCH1-mut CLL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Hallek M, Cheson BD, Catovsky D, Caligaris-Cappio F, Dighiero G, Dohner H et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute—Working Group 1996 guidelines. Blood 2008; 111: 5446–5456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hallek M . Chronic lymphocytic leukemia: 2013 update on diagnosis, risk stratification and treatment. Am J Hematol 2013; 88: 803–816.

    Article  CAS  PubMed  Google Scholar 

  3. Fabbri G, Rasi S, Rossi D, Trifonov V, Khiabanian H, Ma J et al. Analysis of the chronic lymphocytic leukemia coding genome: role of NOTCH1 mutational activation. J Exp Med 2011; 208: 1389–1401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Puente XS, Pinyol M, Quesada V, Conde L, Ordonez GR, Villamor N et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature 2011; 475: 101–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Puente XS, Bea S, Valdes-Mas R, Villamor N, Gutierrez-Abril J, Martin-Subero JI et al. Non-coding recurrent mutations in chronic lymphocytic leukaemia. Nature 2015; 526: 519–524.

    Article  CAS  PubMed  Google Scholar 

  6. Rossi D, Rasi S, Fabbri G, Spina V, Fangazio M, Forconi F et al. Mutations of NOTCH1 are an independent predictor of survival in chronic lymphocytic leukemia. Blood 2012; 119: 521–529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rossi D, Rasi S, Spina V, Bruscaggin A, Monti S, Ciardullo C et al. Integrated mutational and cytogenetic analysis identifies new prognostic subgroups in chronic lymphocytic leukemia. Blood 2013; 121: 1403–1412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang L, Lawrence MS, Wan Y, Stojanov P, Sougnez C, Stevenson K et al. SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N Engl J Med 2011; 365: 2497–2506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Del Giudice I, Rossi D, Chiaretti S, Marinelli M, Tavolaro S, Gabrielli S et al. NOTCH1 mutations in +12 chronic lymphocytic leukemia (CLL) confer an unfavorable prognosis, induce a distinctive transcriptional profiling and refine the intermediate prognosis of +12 CLL. Haematologica 2012; 97: 437–441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bray SJ . Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol 2006; 7: 678–689.

    Article  CAS  PubMed  Google Scholar 

  11. Bray SJ . Notch signalling in context. Nat Rev Mol Cell Biol 2016; 17: 722–735.

    Article  CAS  PubMed  Google Scholar 

  12. Yuan JS, Kousis PC, Suliman S, Visan I, Guidos CJ . Functions of notch signaling in the immune system: consensus and controversies. Annu Rev Immunol 2010; 28: 343–365.

    Article  PubMed  Google Scholar 

  13. Castel D, Mourikis P, Bartels SJ, Brinkman AB, Tajbakhsh S, Stunnenberg HG . Dynamic binding of RBPJ is determined by Notch signaling status. Genes Dev 2013; 27: 1059–1071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Herranz D, Ambesi-Impiombato A, Palomero T, Schnell SA, Belver L, Wendorff AA et al. A NOTCH1-driven MYC enhancer promotes T cell development, transformation and acute lymphoblastic leukemia. Nat Med 2014; 20: 1130–1137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hsieh JJ, Hayward SD . Masking of the CBF1/RBPJ kappa transcriptional repression domain by Epstein-Barr virus EBNA2. Science 1995; 268: 560–563.

    Article  CAS  PubMed  Google Scholar 

  16. Iso T, Kedes L, Hamamori Y . HES and HERP families: multiple effectors of the Notch signaling pathway. J Cell Physiol 2003; 194: 237–255.

    Article  CAS  PubMed  Google Scholar 

  17. Klinakis A, Szabolcs M, Politi K, Kiaris H, rtavanis-Tsakonas S, Efstratiadis A . Myc is a Notch1 transcriptional target and a requisite for Notch1-induced mammary tumorigenesis in mice. Proc Natl Acad Sci USA 2006; 103: 9262–9267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Palomero T, Lim WK, Odom DT, Sulis ML, Real PJ, Margolin A et al. NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc Natl Acad Sci USA 2006; 103: 18261–18266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Weng AP, Millholland JM, Yashiro-Ohtani Y, Arcangeli ML, Lau A, Wai C et al. c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev 2006; 20: 2096–2109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yashiro-Ohtani Y, Wang H, Zang C, Arnett KL, Bailis W, Ho Y et al. Long-range enhancer activity determines Myc sensitivity to Notch inhibitors in T cell leukemia. Proc Natl Acad Sci USA 2014; 111: E4946–E4953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jitschin R, Braun M, Qorraj M, Saul D, Le BK, Zenz T et al. Stromal cell-mediated glycolytic switch in CLL cells involves Notch-c-Myc signaling. Blood 2015; 125: 3432–3436.

    Article  CAS  PubMed  Google Scholar 

  22. Rosati E, Sabatini R, Rampino G, Tabilio A, Di IM, Fettucciari K et al. Constitutively activated Notch signaling is involved in survival and apoptosis resistance of B-CLL cells. Blood 2009; 113: 856–865.

    Article  CAS  PubMed  Google Scholar 

  23. Shukla V, Shukla A, Joshi SS, Lu R . Interferon regulatory factor 4 attenuates Notch signaling to suppress the development of chronic lymphocytic leukemia. Oncotarget 2016; 7: 41081–41094.

    PubMed  PubMed Central  Google Scholar 

  24. Sportoletti P, Baldoni S, Cavalli L, Del PB, Bonifacio E, Ciurnelli R et al. NOTCH1 PEST domain mutation is an adverse prognostic factor in B-CLL. Br J Haematol 2010; 151: 404–406.

    Article  PubMed  Google Scholar 

  25. Arruga F, Gizdic B, Serra S, Vaisitti T, Ciardullo C, Coscia M et al. Functional impact of NOTCH1 mutations in chronic lymphocytic leukemia. Leukemia 2014; 28: 1060–1070.

    Article  CAS  PubMed  Google Scholar 

  26. Bo MD, Del Principe MI, Pozzo F, Ragusa D, Bulian P, Rossi D et al. NOTCH1 mutations identify a chronic lymphocytic leukemia patient subset with worse prognosis in the setting of a rituximab-based induction and consolidation treatment. Ann Hematol 2014; 93: 1765–1774.

    Article  CAS  PubMed  Google Scholar 

  27. Stilgenbauer S, Schnaiter A, Paschka P, Zenz T, Rossi M, Dohner K et al. Gene mutations and treatment outcome in chronic lymphocytic leukemia: results from the CLL8 trial. Blood 2014; 123: 3247–3254.

    Article  CAS  PubMed  Google Scholar 

  28. Pozzo F, Bittolo T, Arruga F, Bulian P, Macor P, Tissino E et al. NOTCH1 mutations associate with low CD20 level in chronic lymphocytic leukemia: evidence for a NOTCH1 mutation-driven epigenetic dysregulation. Leukemia 2016; 30: 182–189.

    Article  CAS  PubMed  Google Scholar 

  29. Matutes E, Owusu-Ankomah K, Morilla R, Garcia MJ, Houlihan A, Que TH et al. The immunological profile of B-cell disorders and proposal of a scoring system for the diagnosis of CLL. Leukemia 1994; 8: 1640–1645.

    CAS  PubMed  Google Scholar 

  30. Dal BoM, Bulian P, Bomben R, Zucchetto A, Rossi FM, Pozzo F et al. CD49d prevails over the novel recurrent mutations as independent prognosticator of overall survival in chronic lymphocytic leukemia. Leukemia 2016; 30: 2011–2018.

    Article  Google Scholar 

  31. Gattei V, Bulian P, Del Principe MI, Zucchetto A, Maurillo L, Buccisano F et al. Relevance of CD49d protein expression as overall survival and progressive disease prognosticator in chronic lymphocytic leukemia. Blood 2008; 111: 865–873.

    Article  CAS  PubMed  Google Scholar 

  32. Dohner H, Stilgenbauer S, Benner A, Leupolt E, Krober A, Bullinger L et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 2000; 343: 1910–1916.

    Article  CAS  PubMed  Google Scholar 

  33. Thorvaldsdottir H, Robinson JT, Mesirov JP . Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 2013; 14: 178–192.

    Article  CAS  PubMed  Google Scholar 

  34. Arunkumar N, Liu C, Hang H, Song W . Toll-like receptor agonists induce apoptosis in mouse B-cell lymphoma cells by altering NF-kappaB activation. Cell Mol Immunol 2013; 10: 360–372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bomben R, Gobessi S, Dal BM, Volinia S, Marconi D, Tissino E et al. The miR-17 approximately 92 family regulates the response to Toll-like receptor 9 triggering of CLL cells with unmutated IGHV genes. Leukemia 2012; 26: 1584–1593.

    Article  CAS  PubMed  Google Scholar 

  36. Decker T, Schneller F, Kronschnabl M, Dechow T, Lipford GB, Wagner H et al. Immunostimulatory CpG-oligonucleotides induce functional high affinity IL-2 receptors on B-CLL cells: costimulation with IL-2 results in a highly immunogenic phenotype. Exp Hematol 2000; 28: 558–568.

    Article  CAS  PubMed  Google Scholar 

  37. Hartmann G, Krieg AM . Mechanism and function of a newly identified CpG DNA motif in human primary B cells. J Immunol 2000; 164: 944–953.

    Article  CAS  PubMed  Google Scholar 

  38. Longo PG, Laurenti L, Gobessi S, Sica S, Leone G, Efremov DG . The Akt/Mcl-1 pathway plays a prominent role in mediating antiapoptotic signals downstream of the B-cell receptor in chronic lymphocytic leukemia B cells. Blood 2008; 111: 846–855.

    Article  CAS  PubMed  Google Scholar 

  39. Shimizu K, Chiba S, Kumano K, Hosoya N, Takahashi T, Kanda Y et al. Mouse jagged1 physically interacts with notch2 and other notch receptors. Assessment by quantitative methods. J Biol Chem 1999; 274: 32961–32969.

    Article  CAS  PubMed  Google Scholar 

  40. Kim WK, Meliton V, Tetradis S, Weinmaster G, Hahn TJ, Carlson M et al. Osteogenic oxysterol, 20(S-hydroxycholesterol, induces notch target gene expression in bone marrow stromal cells. J Bone Miner Res 2010; 25: 782–795.

    Article  CAS  PubMed  Google Scholar 

  41. Hutterer E, Asslaber D, Caldana C, Krenn PW, Zucchetto A, Gattei V et al. CD18 (ITGB2) expression in chronic lymphocytic leukaemia is regulated by DNA methylation-dependent and -independent mechanisms. Br J Haematol 2015; 169: 286–289.

    Article  CAS  PubMed  Google Scholar 

  42. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102: 15545–15550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xu ZS, Zhang JS, Zhang JY, Wu SQ, Xiong DL, Chen HJ et al. Constitutive activation of NF-kappaB signaling by NOTCH1 mutations in chronic lymphocytic leukemia. Oncol Rep 2015; 33: 1609–1614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang B, Schmoyer D, Kirov S, Snoddy J . GOTree Machine (GOTM): a web-based platform for interpreting sets of interesting genes using Gene Ontology hierarchies. BMC Bioinform 2004; 5: 16.

    Article  Google Scholar 

  45. Cazzaniga G, Dell'Oro MG, Mecucci C, Giarin E, Masetti R, Rossi V et al. Nucleophosmin mutations in childhood acute myelogenous leukemia with normal karyotype. Blood 2005; 106: 1419–1422.

    Article  CAS  PubMed  Google Scholar 

  46. Falini B, Martelli MP, Bolli N, Sportoletti P, Liso A, Tiacci E et al. Acute myeloid leukemia with mutated nucleophosmin (NPM1): is it a distinct entity? Blood 2011; 117: 1109–1120.

    Article  CAS  PubMed  Google Scholar 

  47. Lindstrom MS . NPM1/B23: a multifunctional chaperone in ribosome biogenesis and chromatin remodeling. Biochem Res Int 2011; 2011: 195209.

    Article  PubMed  Google Scholar 

  48. Rees-Unwin KS, Faragher R, Unwin RD, Adams J, Brown PJ, Buckle AM et al. Ribosome-associated nucleophosmin 1: increased expression and shuttling activity distinguishes prognostic subtypes in chronic lymphocytic leukaemia. Br J Haematol 2010; 148: 534–543.

    Article  CAS  PubMed  Google Scholar 

  49. Rand MD, Grimm LM, rtavanis-Tsakonas S, Patriub V, Blacklow SC, Sklar J et al. Calcium depletion dissociates and activates heterodimeric notch receptors. Mol Cell Biol 2000; 20: 1825–1835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Matsuno K, Eastman D, Mitsiades T, Quinn AM, Carcanciu ML, Ordentlich P et al. Human deltex is a conserved regulator of Notch signalling. Nat Genet 1998; 19: 74–78.

    Article  CAS  PubMed  Google Scholar 

  51. Wang H, Zou J, Zhao B, Johannsen E, Ashworth T, Wong H et al. Genome-wide analysis reveals conserved and divergent features of Notch1/RBPJ binding in human and murine T-lymphoblastic leukemia cells. Proc Natl Acad Sci USA 2011; 108: 14908–14913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. van Riggelen J, Yetil A, Felsher DW . MYC as a regulator of ribosome biogenesis and protein synthesis. Nat Rev Cancer 2010; 10: 301–309.

    Article  CAS  PubMed  Google Scholar 

  53. Sprinzak D, Lakhanpal A, Lebon L, Santat LA, Fontes ME, Anderson GA et al. Cis-interactions between Notch and Delta generate mutually exclusive signalling states. Nature 2010; 465: 86–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Blanchard JM, Piechaczyk M, Dani C, Chambard JC, Franchi A, Pouyssegur J et al. C-myc gene is transcribed at high rate in G0-arrested fibroblasts and is post-transcriptionally regulated in response to growth factors. Nature 1985; 317: 443–445.

    Article  CAS  PubMed  Google Scholar 

  55. Jones TR, Cole MD . Rapid cytoplasmic turnover of c-myc mRNA: requirement of the 3' untranslated sequences. Mol Cell Biol 1987; 7: 4513–4521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Meyer N, Penn LZ . Reflecting on 25 years with MYC. Nat Rev Cancer 2008; 8: 976–990.

    Article  CAS  PubMed  Google Scholar 

  57. Coller HA, Grandori C, Tamayo P, Colbert T, Lander ES, Eisenman RN et al. Expression analysis with oligonucleotide microarrays reveals that MYC regulates genes involved in growth, cell cycle, signaling, and adhesion. Proc Natl Acad Sci USA 2000; 97: 3260–3265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Thoma C, Fraterman S, Gentzel M, Wilm M, Hentze MW . Translation initiation by the c-myc mRNA internal ribosome entry sequence and the poly(A) tail. RNA 2008; 14: 1579–1589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Murano K, Okuwaki M, Hisaoka M, Nagata K . Transcription regulation of the rRNA gene by a multifunctional nucleolar protein, B23/nucleophosmin, through its histone chaperone activity. Mol Cell Biol 2008; 28: 3114–3126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Martelli MP, Gionfriddo I, Mezzasoma F, Milano F, Pierangeli S, Mulas F et al. Arsenic trioxide and all-trans retinoic acid target NPM1 mutant oncoprotein levels and induce apoptosis in NPM1-mutated AML cells. Blood 2015; 125: 3455–3465.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Jon C Aster and Carl A Johnson (Harvard, Boston, MA, USA) for kindly providing key reagents for this study. This work was supported, in part, by the Associazione Italiana Ricerca Cancro (AIRC), Investigator Grants IG-17622 and Special Program Molecular Clinical Oncology 5 × 1000 No. 10007; Progetto Ricerca Finalizzata IRCCS Nos RF-2010-2307262 and RF-2011-02349712, Progetto Giovani Ricercatori Nos GR-2011-02347441, GR-2011-02346826, GR-2011-02351370, Ministero della Salute, Rome, Italy; Associazione Italiana contro le Leucemie, linfomi e mielomi (AIL), Venezia Section, Pramaggiore Group, Italy; Fondazione per la Vita di Pordenone, Italy; 5x1000 Intramural Program, Centro di Riferimento Oncologico, Aviano, Italy.

Author contributions

FP contributed to writing the manuscript, analyzed the data and performed the research, TB performed the research, EV, RB, PB, FMR, AZ, FS, DB, ET and MD contributed to perform the research, GDA, FDR, FZ, GP, GDP, DR, GG provided well-characterized biological samples and contributed to writing the manuscript, VG and MDB designed the study, interpreted data and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V Gattei or M Dal Bo.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pozzo, F., Bittolo, T., Vendramini, E. et al. NOTCH1-mutated chronic lymphocytic leukemia cells are characterized by a MYC-related overexpression of nucleophosmin 1 and ribosome-associated components. Leukemia 31, 2407–2415 (2017). https://doi.org/10.1038/leu.2017.90

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2017.90

This article is cited by

Search

Quick links