Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute myeloid leukemia

Targeting acute myeloid leukemia by drug-induced c-MYB degradation

Abstract

Despite advances in our understanding of the molecular basis for particular subtypes of acute myeloid leukemia (AML), effective therapy remains a challenge for many individuals suffering from this disease. A significant proportion of both pediatric and adult AML patients cannot be cured and since the upper limits of chemotherapy intensification have been reached, there is an urgent need for novel therapeutic approaches. The transcription factor c-MYB has been shown to play a central role in the development and progression of AML driven by several different oncogenes, including mixed lineage leukemia (MLL)-fusion genes. Here, we have used a c-MYB gene expression signature from MLL-rearranged AML to probe the Connectivity Map database and identified mebendazole as a c-MYB targeting drug. Mebendazole induces c-MYB degradation via the proteasome by interfering with the heat shock protein 70 (HSP70) chaperone system. Transient exposure to mebendazole is sufficient to inhibit colony formation by AML cells, but not normal cord blood-derived cells. Furthermore, mebendazole is effective at impairing AML progression in vivo in mouse xenotransplantation experiments. In the context of widespread human use of mebendazole, our data indicate that mebendazole-induced c-MYB degradation represents a safe and novel therapeutic approach for AML.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Pui CH, Carroll WL, Meshinchi S, Arceci RJ . Biology, risk stratification, and therapy of pediatric acute leukemias: an update. J Clin Oncol 2011; 29: 551–565.

    Article  Google Scholar 

  2. Bose P, Vachhani P, Cortes JE . Treatment of relapsed/refractory acute myeloid leukemia. Curr Treat Options Oncol 2017; 18: 17.

    Article  Google Scholar 

  3. Tasian SK, Pollard JA, Aplenc R . Molecular therapeutic approaches for pediatric acute myeloid leukemia. Front Oncol 2014; 4: 55.

    PubMed  PubMed Central  Google Scholar 

  4. Khan M, Mansoor AE, Kadia TM . Future prospects of therapeutic clinical trials in acute myeloid leukemia. Future Oncol 2017; 13: 523–535.

    Article  CAS  Google Scholar 

  5. Meyer C, Hofmann J, Burmeister T, Groger D, Park TS, Emerenciano M et al. The MLL recombinome of acute leukemias in 2013. Leukemia 2013; 27: 2165–2176.

    Article  CAS  PubMed Central  Google Scholar 

  6. Krivtsov AV, Armstrong SA . MLL translocations, histone modifications and leukaemia stem-cell development. Nat Rev Cancer 2007; 7: 823–833.

    Article  CAS  Google Scholar 

  7. Slany RK . The molecular biology of mixed lineage leukemia. Haematologica 2009; 94: 984–993.

    Article  CAS  PubMed Central  Google Scholar 

  8. Somervaille TC, Cleary ML . Grist for the MLL: how do MLL oncogenic fusion proteins generate leukemia stem cells? Int J Hematol 2010; 91: 735–741.

    Article  Google Scholar 

  9. Muntean AG, Hess JL . The pathogenesis of mixed-lineage leukemia. Annu Rev Pathol 2012; 7: 283–301.

    Article  CAS  Google Scholar 

  10. Neff T, Armstrong SA . Recent progress toward epigenetic therapies: the example of mixed lineage leukemia. Blood 2013; 121: 4847–4853.

    Article  CAS  PubMed Central  Google Scholar 

  11. Slany RK . The molecular mechanics of mixed lineage leukemia. Oncogene 2016; 35: 5215–5223.

    Article  CAS  Google Scholar 

  12. Hess JL, Bittner CB, Zeisig DT, Bach C, Fuchs U, Borkhardt A et al. c-Myb is an essential downstream target for homeobox-mediated transformation of hematopoietic cells. Blood 2006; 108: 297–304.

    Article  CAS  PubMed Central  Google Scholar 

  13. Somervaille TC, Matheny CJ, Spencer GJ, Iwasaki M, Rinn JL, Witten DM et al. Hierarchical maintenance of MLL myeloid leukemia stem cells employs a transcriptional program shared with embryonic rather than adult stem cells. Cell Stem Cell 2009; 4: 129–140.

    Article  CAS  PubMed Central  Google Scholar 

  14. Jin S, Zhao H, Yi Y, Nakata Y, Kalota A, Gewirtz AM . c-Myb binds MLL through menin in human leukemia cells and is an important driver of MLL-associated leukemogenesis. J Clin Invest 2010; 120: 593–606.

    Article  CAS  PubMed Central  Google Scholar 

  15. Zuber J, Rappaport AR, Luo W, Wang E, Chen C, Vaseva AV et al. An integrated approach to dissecting oncogene addiction implicates a Myb-coordinated self-renewal program as essential for leukemia maintenance. Genes Dev 2011; 25: 1628–1640.

    Article  CAS  PubMed Central  Google Scholar 

  16. Mucenski ML, McLain K, Kier AB, Swerdlow SH, Schreiner CM, Miller TA et al. A functional c-myb gene is required for normal murine fetal hepatic hematopoiesis. Cell 1991; 65: 677–689.

    Article  CAS  Google Scholar 

  17. Sumner R, Crawford A, Mucenski M, Frampton J . Initiation of adult myelopoiesis can occur in the absence of c-Myb whereas subsequent development is strictly dependent on the transcription factor. Oncogene 2000; 19: 3335–3342.

    Article  CAS  Google Scholar 

  18. Lieu YK, Reddy EP . Conditional c-myb knockout in adult hematopoietic stem cells leads to loss of self-renewal due to impaired proliferation and accelerated differentiation. Proc Natl Acad Sci USA 2009; 106: 21689–21694.

    Article  CAS  Google Scholar 

  19. Ramsay RG, Gonda TJ . MYB function in normal and cancer cells. Nat Rev Cancer 2008; 8: 523–534.

    Article  CAS  Google Scholar 

  20. Pattabiraman DR, Gonda TJ . Role and potential for therapeutic targeting of MYB in leukemia. Leukemia 2013; 27: 269–277.

    Article  CAS  Google Scholar 

  21. Anfossi G, Gewirtz AM, Calabretta B . An oligomer complementary to c-myb-encoded mRNA inhibits proliferation of human myeloid leukemia cell lines. Proc Natl Acad Sci USA 1989; 86: 3379–3383.

    Article  CAS  Google Scholar 

  22. Calabretta B, Sims RB, Valtieri M, Caracciolo D, Szczylik C, Venturelli D et al. Normal and leukemic hematopoietic cells manifest differential sensitivity to inhibitory effects of c-myb antisense oligodeoxynucleotides: an in vitro study relevant to bone marrow purging. Proc Natl Acad Sci USA 1991; 88: 2351–2355.

    Article  CAS  Google Scholar 

  23. Gonda TJ, Ramsay RG . Directly targeting transcriptional dysregulation in cancer. Nat Rev Cancer 2015; 15: 686–694.

    Article  CAS  Google Scholar 

  24. Emambokus N, Vegiopoulos A, Harman B, Jenkinson E, Anderson G, Frampton J . Progression through key stages of haemopoiesis is dependent on distinct threshold levels of c-Myb. EMBO J 2003; 22: 4478–4488.

    Article  CAS  PubMed Central  Google Scholar 

  25. Pattabiraman DR, McGirr C, Shakhbazov K, Barbier V, Krishnan K, Mukhopadhyay P et al. Interaction of c-Myb with p300 is required for the induction of acute myeloid leukemia (AML) by human AML oncogenes. Blood 2014; 123: 2682–2690.

    Article  CAS  Google Scholar 

  26. Uttarkar S, Dasse E, Coulibaly A, Steinmann S, Jakobs A, Schomburg C et al. Targeting acute myeloid leukemia with a small molecule inhibitor of the Myb/p300 interaction. Blood 2016; 127: 1173–1182.

    Article  CAS  Google Scholar 

  27. Zhao L, Glazov EA, Pattabiraman DR, Al-Owaidi F, Zhang P, Brown MA et al. Integrated genome-wide chromatin occupancy and expression analyses identify key myeloid pro-differentiation transcription factors repressed by Myb. Nucleic Acids Res 2011; 39: 4664–4679.

    Article  CAS  PubMed Central  Google Scholar 

  28. Suzuki H, Forrest AR, van Nimwegen E, Daub CO, Balwierz PJ, Irvine KM et al. The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line. Nat Genet 2009; 41: 553–562.

    Article  CAS  Google Scholar 

  29. Horton SJ, Grier DG, McGonigle GJ, Thompson A, Morrow M, De Silva I et al. Continuous MLL-ENL expression is necessary to establish a 'Hox Code' and maintain immortalization of hematopoietic progenitor cells. Cancer Res 2005; 65: 9245–9252.

    Article  CAS  Google Scholar 

  30. Horton SJ, Walf-Vorderwulbecke V, Chatters SJ, Sebire NJ, de Boer J, Williams O . Acute myeloid leukemia induced by MLL-ENL is cured by oncogene ablation despite acquisition of complex genetic abnormalities. Blood 2009; 113: 4922–4929.

    Article  CAS  Google Scholar 

  31. Walf-Vorderwulbecke V, de Boer J, Horton SJ, van Amerongen R, Proost N, Berns A et al. Frat2 mediates the oncogenic activation of Rac by MLL fusions. Blood 2012; 120: 4819–4828.

    Article  CAS  Google Scholar 

  32. Osaki H, Walf-Vorderwulbecke V, Mangolini M, Zhao L, Horton SJ, Morrone G et al. The AAA+ ATPase RUVBL2 is a critical mediator of MLL-AF9 oncogenesis. Leukemia 2013; 27: 1461–1468.

    Article  CAS  Google Scholar 

  33. Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 2006; 313: 1929–1935.

    Article  CAS  Google Scholar 

  34. Williams G . SPIEDw: a searchable platform-independent expression database web tool. BMC Genom 2013; 14: 765.

    Article  Google Scholar 

  35. Corradini F, Cesi V, Bartella V, Pani E, Bussolari R, Candini O et al. Enhanced proliferative potential of hematopoietic cells expressing degradation-resistant c-Myb mutants. J Biol Chem 2005; 280: 30254–30262.

    Article  CAS  Google Scholar 

  36. Demaison C, Parsley K, Brouns G, Scherr M, Battmer K, Kinnon C et al. High-level transduction and gene expression in hematopoietic repopulating cells using a human immunodeficiency [correction of imunodeficiency] virus type 1-based lentiviral vector containing an internal spleen focus forming virus promoter. Hum Gene Ther 2002; 13: 803–813.

    Article  CAS  Google Scholar 

  37. Minotti AM, Barlow SB, Cabral F . Resistance to antimitotic drugs in Chinese hamster ovary cells correlates with changes in the level of polymerized tubulin. J Biol Chem 1991; 266: 3987–3994.

    CAS  PubMed  Google Scholar 

  38. Lidonnici MR, Corradini F, Waldron T, Bender TP, Calabretta B . Requirement of c-Myb for p210(BCR/ABL)-dependent transformation of hematopoietic progenitors and leukemogenesis. Blood 2008; 111: 4771–4779.

    Article  CAS  PubMed Central  Google Scholar 

  39. Soliera AR, Lidonnici MR, Ferrari-Amorotti G, Prisco M, Zhang Y, Martinez RV et al. Transcriptional repression of c-Myb and GATA-2 is involved in the biologic effects of C/EBPalpha in p210BCR/ABL-expressing cells. Blood 2008; 112: 1942–1950.

    Article  CAS  PubMed Central  Google Scholar 

  40. Manzotti G, Mariani SA, Corradini F, Bussolari R, Cesi V, Vergalli J et al. Expression of p89(c-Mybex9b), an alternatively spliced form of c-Myb, is required for proliferation and survival of p210BCR/ABL-expressing cells. Blood Cancer J 2012; 2: e71.

    Article  CAS  PubMed Central  Google Scholar 

  41. Waldron T, De Dominici M, Soliera AR, Audia A, Iacobucci I, Lonetti A et al. c-Myb and its target Bmi1 are required for p190BCR/ABL leukemogenesis in mouse and human cells. Leukemia 2012; 26: 644–653.

    Article  CAS  Google Scholar 

  42. Pantziarka P, Bouche G, Meheus L, Sukhatme V, Sukhatme VP . Repurposing Drugs in Oncology (ReDO)-mebendazole as an anti-cancer agent. Ecancermedicalscience 2014; 8: 443.

    Article  PubMed Central  Google Scholar 

  43. Laclette JP, Guerra G, Zetina C . Inhibition of tubulin polymerization by mebendazole. Biochem Biophys Res Commun 1980; 92: 417–423.

    Article  CAS  Google Scholar 

  44. Nygren P, Fryknas M, Agerup B, Larsson R . Repositioning of the anthelmintic drug mebendazole for the treatment for colon cancer. J Cancer Res Clin Oncol 2013; 139: 2133–2140.

    Article  CAS  PubMed Central  Google Scholar 

  45. Li L, Yang G, Ren C, Tanimoto R, Hirayama T, Wang J et al. Glioma pathogenesis-related protein 1 induces prostate cancer cell death through Hsc70-mediated suppression of AURKA and TPX2. Mol Oncol 2013; 7: 484–496.

    Article  CAS  Google Scholar 

  46. Liu W, Vielhauer GA, Holzbeierlein JM, Zhao H, Ghosh S, Brown D et al. KU675, a concomitant heat-shock protein inhibitor of Hsp90 and Hsc70 that manifests isoform selectivity for Hsp90alpha in prostate cancer cells. Mol Pharmacol 2015; 88: 121–130.

    Article  CAS  PubMed Central  Google Scholar 

  47. Tanikawa J, Ichikawa-Iwata E, Kanei-Ishii C, Nakai A, Matsuzawa S, Reed JC et al. p53 suppresses the c-Myb-induced activation of heat shock transcription factor 3. J Biol Chem 2000; 275: 15578–15585.

    Article  CAS  Google Scholar 

  48. Nygren P, Larsson R . Drug repositioning from bench to bedside: tumour remission by the antihelmintic drug mebendazole in refractory metastatic colon cancer. Acta Oncol 2014; 53: 427–428.

    Article  Google Scholar 

  49. Levecke B, Montresor A, Albonico M, Ame SM, Behnke JM, Bethony JM et al. Assessment of anthelmintic efficacy of mebendazole in school children in six countries where soil-transmitted helminths are endemic. PLoS Negl Trop Dis 2014; 8: e3204.

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Ayad Eddaoudi and Stephanie Canning, UCL GOSICH Flow Cytometry Facility, for providing assistance with flow cytometry, all staff of the UCL GOSICH Western Laboratories for excellent animal husbandry, and Didier Trono for lentiviral packaging constructs. JdB was supported by a fellowship from the Alternative Hair Charitable Foundation and GOSH Children’s Charity (W1073), and VW-V (W1003) and OW (V1305, V2617) by grants from the GOSH Children’s Charity.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J de Boer or O Williams.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walf-Vorderwülbecke, V., Pearce, K., Brooks, T. et al. Targeting acute myeloid leukemia by drug-induced c-MYB degradation. Leukemia 32, 882–889 (2018). https://doi.org/10.1038/leu.2017.317

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2017.317

This article is cited by

Search

Quick links