Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Transcriptional control and signal transduction, cell cycle

SHP2 is required for BCR-ABL1-induced hematologic neoplasia

Abstract

BCR-ABL1-targeting tyrosine kinase inhibitors (TKIs) have revolutionized treatment of Philadelphia chromosome-positive (Ph+) hematologic neoplasms. Nevertheless, acquired TKI resistance remains a major problem in chronic myeloid leukemia (CML), and TKIs are less effective against Ph+ B-cell acute lymphoblastic leukemia (B-ALL). GAB2, a scaffolding adaptor that binds and activates SHP2, is essential for leukemogenesis by BCR-ABL1, and a GAB2 mutant lacking SHP2 binding cannot mediate leukemogenesis. Using a genetic loss-of-function approach and bone marrow transplantation models for CML and BCR-ABL1+ B-ALL, we show that SHP2 is required for BCR-ABL1-evoked myeloid and lymphoid neoplasia. Ptpn11 deletion impairs initiation and maintenance of CML-like myeloproliferative neoplasm, and compromises induction of BCR-ABL1+ B-ALL. SHP2, and specifically, its SH2 domains, PTP activity and C-terminal tyrosines, are essential for BCR-ABL1+, but not WT, pre-B-cell proliferation. The mitogen-activated protein kinase kinase (MEK) / extracellular signal-regulated kinase (ERK) pathway is regulated by SHP2 in WT and BCR-ABL1+ pre-B cells, but is only required for the proliferation of BCR-ABL1+ cells. SHP2 is required for SRC family kinase (SFK) activation only in BCR-ABL1+ pre-B cells. RNAseq reveals distinct SHP2-dependent transcriptional programs in BCR-ABL1+ and WT pre-B cells. Our results suggest that SHP2, via SFKs and ERK, represses MXD3/4 to facilitate a MYC-dependent proliferation program in BCR-ABL1-transformed pre-B cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Fainstein E, Marcelle C, Rosner A, Canaani E, Gale RP, Dreazen O et al. A new fused transcript in Philadelphia chromosome positive acute lymphocytic leukaemia. Nature 1987; 330: 386–388.

    CAS  PubMed  Google Scholar 

  2. Nowell PC, Hungerford DA . A minute chromosome in chronic granulocytic leukemia. Science 1960; 132: 1488–1501.

    Google Scholar 

  3. Kalmanti L, Saussele S, Lauseker M, Müller MC, Dietz CT, Heinrich L et al. Safety and efficacy of imatinib in CML over a period of 10 years: data from the randomized CML-study IV. Leukemia 2015; 29: 1123–1132.

    CAS  PubMed  Google Scholar 

  4. Graham SM, Jørgensen HG, Allan E, Pearson C, Alcorn MJ, Richmond L et al. Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood 2002; 99: 319–325.

    CAS  PubMed  Google Scholar 

  5. Jiang X, Zhao Y, Smith C, Gasparetto M, Turhan A, Eaves A et al. Chronic myeloid leukemia stem cells possess multiple unique features of resistance to BCR-ABL targeted therapies. Leukemia 2007; 21: 926–935.

    CAS  PubMed  Google Scholar 

  6. Corbin AS, Agarwal A, Loriaux M, Cortes J, Deininger MW, Druker BJ . Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR-ABL activity. J Clin Invest 2011; 121: 396–409.

    CAS  PubMed  Google Scholar 

  7. Tanguy-Schmidt A, Rousselot P, Chalandon Y, Cayuela J-M, Hayette S, Vekemans M-C et al. Long-term follow-up of the imatinib GRAAPH-2003 study in newly diagnosed patients with de novo Philadelphia chromosome-positive acute lymphoblastic leukemia: a GRAALL study. Biol Blood Marrow Transplant 2013; 19: 150–155.

    CAS  PubMed  Google Scholar 

  8. Soverini S, Colarossi S, Gnani A, Rosti G, Castagnetti F, Poerio A et al. Contribution of ABL kinase domain mutations to imatinib resistance in different subsets of Philadelphia-positive patients: by the GIMEMA Working Party on Chronic Myeloid Leukemia. Clin Cancer Res 2006; 12: 7374–7379.

    CAS  PubMed  Google Scholar 

  9. Pfeifer H, Wassmann B, Pavlova A, Wunderle L, Oldenburg J, Binckebanck A et al. Kinase domain mutations of BCR-ABL frequently precede imatinib-based therapy and give rise to relapse in patients with de novo Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL). Blood 2007; 110: 727–734.

    CAS  PubMed  Google Scholar 

  10. Duy C, Hurtz C, Shojaee S, Cerchietti L, Geng H, Swaminathan S et al. BCL6 enables Ph+ acute lymphoblastic leukaemia cells to survive BCR-ABL1 kinase inhibition. Nature 2011; 473: 384–388.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Daley GQ, Van Etten RA, Baltimore D . Blast crisis in a murine model of chronic myelogenous leukemia. Proc Natl Acad Sci USA 1991; 88: 11335–11338.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Li S, Ilaria RL, Million RP, Daley GQ, Van Etten RA . The P190, P210, and P230 forms of the BCR/ABL oncogene induce a similar chronic myeloid leukemia-like syndrome in mice but have different lymphoid leukemogenic activity. J Exp Med 1999; 189: 1399–1412.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Pear WS, Miller JP, Xu L, Pui JC, Soffer B, Quackenbush RC et al. Efficient and rapid induction of a chronic myelogenous leukemia-like myeloproliferative disease in mice receiving P210 bcr/abl-transduced bone marrow. Blood 1998; 92: 3780–3792.

    CAS  PubMed  Google Scholar 

  14. Pendergast AM, Quilliam LA, Cripe LD, Bassing CH, Dai Z, Li N et al. BCR-ABL-induced oncogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor protein. Cell 1993; 75: 175–185.

    CAS  PubMed  Google Scholar 

  15. Ahmed W, Van Etten RA . Signal transduction in the chronic leukemias: implications for targeted therapies. Curr Hematol Malig Rep 2013; 8: 71–80.

    PubMed  Google Scholar 

  16. Sattler M, Mohi MG, Pride YB, Quinnan LR, Malouf Na, Podar K et al. Critical role for Gab2 in transformation by BCR/ABL. Cancer Cell 2002; 1: 479–492.

    CAS  PubMed  Google Scholar 

  17. Gu H, Pratt JC, Burakoff SJ, Neel BG . Cloning of p97/Gab2, the major SHP2-binding protein in hematopoietic cells, reveals a novel pathway for cytokine-induced gene activation. Mol Cell 1998; 2: 729–740.

    CAS  PubMed  Google Scholar 

  18. Million RP, Van Etten RA . The Grb2 binding site is required for the induction of chronic myeloid leukemia-like disease in mice by the Bcr/Abl tyrosine kinase. Blood 2000; 96: 664–670.

    CAS  PubMed  Google Scholar 

  19. Zhang X, Subrahmanyam R, Wong R, Gross AW, Ren R . The NH(2)-terminal coiled-coil domain and tyrosine 177 play important roles in induction of a myeloproliferative disease in mice by Bcr-Abl. Mol Cell Biol 2001; 21: 840–853.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. He Y, Wertheim JA, Xu L, Miller JP, Karnell FG, Choi JK et al. The coiled-coil domain and Tyr177 of bcr are required to induce a murine chronic myelogenous leukemia-like disease by bcr/abl. Blood 2002; 99: 2957–2968.

    Article  CAS  PubMed  Google Scholar 

  21. Gu S, Chan WW, Mohi G, Rosenbaum J, Sayad A, Lu Z et al. Distinct GAB2 signaling pathways are essential for myeloid and lymphoid transformation and leukemogenesis by BCR-ABL1. Blood 2016; 127: 1803–1813.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Noguchi T, Matozaki T, Horita K, Fujioka Y, Kasuga M . Role of SH-PTP2, a protein-tyrosine phosphatase with Src homology 2 domains, in insulin-stimulated Ras activation. Mol Cell Biol 1994; 14: 6674–6682.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Neel BG, Gu H, Pao L . The ‘Shp’ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem Sci 2003; 28: 284–293.

    CAS  PubMed  Google Scholar 

  24. Chan G, Kalaitzidis D, Neel BG . The tyrosine phosphatase Shp2 (PTPN11) in cancer. Cancer Metastasis Rev 2008; 27: 179–192.

    CAS  PubMed  Google Scholar 

  25. Grossmann KS, Rosário M, Birchmeier C, Birchmeier W . The tyrosine phosphatase Shp2 in development and cancer. Adv Cancer Res 2010; 106: 53–89.

    CAS  PubMed  Google Scholar 

  26. Hof P, Pluskey S, Dhe-Paganon S, Eck MJ, Shoelson SE . Crystal structure of the tyrosine phosphatase SHP-2. Cell 1998; 92: 441–450.

    CAS  PubMed  Google Scholar 

  27. Barford D, Neel BG . Revealing mechanisms for SH2 domain mediated regulation of the protein tyrosine phosphatase SHP-2. Structure 1998; 6: 249–254.

    CAS  PubMed  Google Scholar 

  28. Lechleider RJ, Sugimoto S, Bennett AM, Kashishian AS, Cooper JA, Shoelson SE et al. Activation of the SH2-containing phosphotyrosine phosphatase SH-PTP2 by its binding site, phosphotyrosine 1009, on the human platelet-derived growth factor receptor. J Biol Chem 1993; 268: 21478–21481.

    CAS  PubMed  Google Scholar 

  29. Tsutsumi R, Masoudi M, Takahashi A, Fujii Y, Hayashi T, Kikuchi I et al. YAP and TAZ, Hippo signaling targets, act as a rheostat for nuclear SHP2 function. Dev Cell 2013; 26: 658–665.

    CAS  PubMed  Google Scholar 

  30. Qu CK, Shi ZQ, Shen R, Tsai FY, Orkin SH, Feng GS . A deletion mutation in the SH2-N domain of Shp-2 severely suppresses hematopoietic cell development. Mol Cell Biol 1997; 17: 5499–5507.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Chan G, Cheung LS, Yang W, Milyavsky M, Sanders AD, Gu S et al. Essential role for Ptpn11 in survival of hematopoietic stem and progenitor cells. Blood 2011; 117: 4253–4261.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhu HH, Ji K, Alderson N, He Z, Li S, Liu W et al. Kit-Shp2-Kit signaling acts to maintain a functional hematopoietic stem and progenitor cell pool. Blood 2011; 117: 5350–5361.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Tartaglia M, Niemeyer CM, Fragale A, Song X, Buechner J, Jung A et al. Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat Genet 2003; 34: 148–150.

    CAS  PubMed  Google Scholar 

  34. Loh ML, Vattikuti S, Schubbert S, Reynolds MG, Carlson E, Lieuw KH et al. Mutations in PTPN11 implicate the SHP-2 phosphatase in leukemogenesis. Blood 2004; 103: 2325–2331.

    CAS  PubMed  Google Scholar 

  35. Bentires-Alj M, Paez JG, David FS, Keilhack H, Halmos B, Naoki K et al. Activating mutations of the noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia. Cancer Res 2004; 64: 8816–8820.

    CAS  PubMed  Google Scholar 

  36. Tartaglia M, Martinelli S, Cazzaniga G, Cordeddu V, Iavarone I, Spinelli M et al. Genetic evidence for lineage-related and differentiation stage-related contribution of somatic PTPN11 mutations to leukemogenesis in childhood acute leukemia. Blood 2004; 104: 307–313.

    CAS  PubMed  Google Scholar 

  37. Hatlen MA, Arora K, Vacic V, Grabowska EA, Liao W, Riley-Gillis B et al. Integrative genetic analysis of mouse and human AML identifies cooperating disease alleles. J Exp Med 2015; 213: 25–34.

    PubMed  Google Scholar 

  38. Gu H, Griffin JD, Neel BG . Characterization of two SHP-2-associated binding proteins and potential substrates in hematopoietic cells. J Biol Chem 1997; 272: 16421–16430.

    CAS  PubMed  Google Scholar 

  39. Tauchi T, Feng GS, Shen R, Song HY, Donner D, Pawson T et al. SH2-containing phosphotyrosine phosphatase Syp is a target of p210bcr-abl tyrosine kinase. J Biol Chem 1994; 269: 15381–15387.

    CAS  PubMed  Google Scholar 

  40. Chen J, Yu W-M, Daino H, Broxmeyer HE, Druker BJ, Qu C-K . SHP-2 phosphatase is required for hematopoietic cell transformation by Bcr-Abl. Blood 2007; 109: 778–785.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang SQ, Yang W, Kontaridis MI, Bivona TG, Wen G, Araki T et al. Shp2 regulates SRC family kinase activity and Ras/Erk activation by controlling Csk recruitment. Mol Cell 2004; 13: 341–355.

    PubMed  Google Scholar 

  42. Yang W, Wang J, Moore DC, Liang H, Dooner M, Wu Q et al. Ptpn11 deletion in a novel progenitor causes metachondromatosis by inducing hedgehog signalling. Nature 2013; 499: 491–495.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Walz C, Ahmed W, Lazarides K, Betancur M, Patel N, Hennighausen L et al. Essential role for Stat5a/b in myeloproliferative neoplasms induced by BCR-ABL1 and JAK2(V617F) in mice. Blood 2012; 119: 3550–3560.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Million RP, Harakawa N, Roumiantsev S, Varticovski L, Van Etten RA . A direct binding site for Grb2 contributes to transformation and leukemogenesis by the Tel-Abl (ETV6-Abl) tyrosine kinase. Mol Cell Biol 2004; 24: 4685–4695.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Neering SJ, Bushnell T, Sozer S, Ashton J, Rossi RM, Wang P-Y et al. Leukemia stem cells in a genetically defined murine model of blast-crisis CML. Blood 2007; 110: 2578–2585.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Corfe Sa, Gray AP, Paige CJ . Generation and characterization of stromal cell independent IL-7 dependent B cell lines. J Immunol Methods 2007; 325: 9–19.

    CAS  PubMed  Google Scholar 

  47. Harlow E, Lane D . Using antibodies: a laboratory manual. CSHL press: Cold Spring Harbor, USA, 1999.

  48. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 2012; 7: 562–578.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD . The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 2012; 28: 882–883.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Law CW, Chen Y, Shi W, Smyth GK . voom: Precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol 2014; 15: R29.

    PubMed  PubMed Central  Google Scholar 

  51. Huang DW, Sherman BT, Lempicki RA . Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009; 4: 44–57.

    CAS  Google Scholar 

  52. Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 2013; 14: 128.

    PubMed  PubMed Central  Google Scholar 

  53. Gishizky ML, Witte ON . BCR/ABL enhances growth of multipotent progenitor cells but does not block their differentiation potential in vitro. Curr Top Microbiol Immunol 1992; 182: 65–72.

    CAS  PubMed  Google Scholar 

  54. Schmidt-Supprian M, Rajewsky K . Vagaries of conditional gene targeting. Nat Immunol 2007; 8: 665–668.

    CAS  PubMed  Google Scholar 

  55. Mahoney SJ, Dempsey JM, Blenis J . Cell signaling in protein synthesis. In: Hershey JWB (ed). Progress in molecular biology and translational science, Chapter 2. Elsevier Inc: Amsterdam, Netherlands, 2009, pp 53–107.

  56. Albers C, Illert AL, Miething C, Leischner H, Thiede M, Peschel C et al. An RNAi-based system for loss-of-function analysis identifies Raf1 as a crucial mediator of BCR-ABL-driven leukemogenesis. Blood 2011; 118: 2200–2210.

    CAS  PubMed  Google Scholar 

  57. Packer LM, Rana S, Hayward R, O’Hare T, Eide Ca, Rebocho A et al. Nilotinib and MEK inhibitors induce synthetic lethality through paradoxical activation of RAF in drug-resistant chronic myeloid leukemia. Cancer Cell 2011; 20: 715–727.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Mohi MG, Boulton C, Gu T-L, Sternberg DW, Neuberg D, Griffin JD et al. Combination of rapamycin and protein tyrosine kinase (PTK) inhibitors for the treatment of leukemias caused by oncogenic PTKs. Proc Natl Acad Sci USA 2004; 101: 3130–3135.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Chen Y-NP, LaMarche MJ, Chan HM, Fekkes P, Garcia-Fortanet J, Acker MG et al. Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases. Nature 2016; 535: 148–152.

    CAS  PubMed  Google Scholar 

  60. Blake RA, Broome MA, Liu X, Wu J, Gishizky M, Sun L et al. SU6656, a selective Src family kinase inhibitor, used to probe growth factor signaling. Mol Cell Biol 2000; 20: 9018–9027.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Ran H, Tsutsumi R, Araki T, Neel BG . Sticking it to cancer with molecular glue for SHP2. Cancer Cell 2016; 30: 194–196.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Cortez D, Reuther G, Pendergast AM . The Bcr-Abl tyrosine kinase activates mitogenic signaling pathways and stimulates G1-to-S phase transition in hematopoietic cells. Oncogene 1997; 15: 2333–2342.

    CAS  PubMed  Google Scholar 

  63. Katsoulidis E, Sassano A, Majchrzak-Kita B, Carayol N, Yoon P, Jordan A et al. Suppression of interferon (IFN)-inducible genes and IFN-mediated functional responses in BCR-ABL-expressing cells. J Biol Chem 2008; 283: 10793–10803.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Ding C, Yu W, Feng J, Luo J . Structure and function of Gab2 and its role in cancer (Review). Mol Med Rep 2015; 12: 4007–4014.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Grandori C, Cowley SM, James LP, Eisenman RN . The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu Rev Cell Dev Biol 2000; 16: 653–699.

    CAS  PubMed  Google Scholar 

  66. Sears R . Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev 2000; 14: 2501–2514.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Diolaiti D, McFerrin L, Carroll PA, Eisenman RN . Functional interactions among members of the MAX and MLX transcriptional network during oncogenesis. Biochim Biophys Acta 2015; 1849: 484–500.

    CAS  PubMed  Google Scholar 

  68. Scherr M, Chaturvedi A, Battmer K, Dallmann I, Schultheis B, Ganser A et al. Enhanced sensitivity to inhibition of SHP2, STAT5, and Gab2 expression in chronic myeloid leukemia (CML). Blood 2006; 107: 3279–3287.

    CAS  PubMed  Google Scholar 

  69. Babovic S, Eaves CJ . Hierarchical organization of fetal and adult hematopoietic stem cells. Exp Cell Res 2014; 329: 185–191.

    CAS  PubMed  Google Scholar 

  70. Schmitz J, Weissenbach M, Haan S, Heinrich PC, Schaper F . SOCS3 exerts its inhibitory function on interleukin-6 signal transduction through the SHP2 recruitment site of gp130. J Biol Chem 2000; 275: 12848–12856.

    CAS  PubMed  Google Scholar 

  71. Nicholson SE, De Souza D, Fabri LJ, Corbin J, Willson TA, Zhang JG et al. Suppressor of cytokine signaling-3 preferentially binds to the SHP-2-binding site on the shared cytokine receptor subunit gp130. Proc Natl Acad Sci USA 2000; 97: 6493–6498.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Geest CR, Coffer PJ . MAPK signaling pathways in the regulation of hematopoiesis. J Leukoc Biol 2009; 86: 237–250.

    CAS  PubMed  Google Scholar 

  73. Zhang W, Liu HT . MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res 2002; 12: 9–18.

    CAS  PubMed  Google Scholar 

  74. Yang W, Klaman LD, Chen B, Araki T, Harada H, Thomas SM et al. An Shp2/SFK/Ras/Erk signaling pathway controls trophoblast stem cell survival. Dev Cell 2006; 10: 317–327.

    CAS  PubMed  Google Scholar 

  75. Bertotti A, Comoglio PM, Trusolino L . Beta4 integrin activates a Shp2-Src signaling pathway that sustains HGF-induced anchorage-independent growth. J Cell Biol 2006; 175: 993–1003.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Hu Y, Liu Y, Pelletier S, Buchdunger E, Warmuth M, Fabbro D et al. Requirement of Src kinases Lyn, Hck and Fgr for BCR-ABL1-induced B-lymphoblastic leukemia but not chronic myeloid leukemia. Nat Genet 2004; 36: 453–461.

    CAS  PubMed  Google Scholar 

  77. Stewart RA, Sanda T, Widlund HR, Zhu S, Swanson KD, Hurley AD et al. Phosphatase-dependent and -independent functions of Shp2 in neural crest cells underlie LEOPARD syndrome pathogenesis. Dev Cell 2010; 18: 750–762.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Araki T, Nawa H, Neel BG . Tyrosyl phosphorylation of Shp2 is required for normal ERK activation in response to some, but not all, growth factors. J Biol Chem 2003; 278: 41677–41684.

    CAS  PubMed  Google Scholar 

  79. Mohi MG, Williams IR, Dearolf CR, Chan G, Kutok JL, Cohen S et al. Prognostic, therapeutic, and mechanistic implications of a mouse model of leukemia evoked by Shp2 (PTPN11) mutations. Cancer Cell 2005; 7: 179–191.

    CAS  PubMed  Google Scholar 

  80. Vander Heiden MG, Cantley LC, Thompson CB . Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009; 324: 1029–1033.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Koppenol WH, Bounds PL, Dang CV . Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer 2011; 11: 325–337.

    CAS  PubMed  Google Scholar 

  82. Zeller KI, Zhao X, Lee CWH, Chiu KP, Yao F, Yustein JT et al. Global mapping of c-Myc binding sites and target gene networks in human B cells. Proc Natl Acad Sci USA 2006; 103: 17834–17839.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Chang Y-M, Bai L, Liu S, Yang JC, Kung H-J, Evans CP . Src family kinase oncogenic potential and pathways in prostate cancer as revealed by AZD0530. Oncogene 2008; 27: 6365–6375.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Ren Y, Chen Z, Chen L, Fang B, Win-Piazza H, Haura E et al. Critical role of Shp2 in tumor growth involving regulation of c-Myc. Genes Cancer 2010; 1: 994–1007.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Bowman T, Broome MA, Sinibaldi D, Wharton W, Pledger WJ, Sedivy JM et al. Stat3-mediated Myc expression is required for Src transformation and PDGF-induced mitogenesis. Proc Natl Acad Sci USA 2001; 98: 7319–7324.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Hurlin PJ, Quéva C, Koskinen PJ, Steingrímsson E, Ayer DE, Copeland NG et al. Mad3 and Mad4: novel Max-interacting transcriptional repressors that suppress c-myc dependent transformation and are expressed during neural and epidermal differentiation. EMBO J 1995; 14: 5646–5659.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhu J, Blenis J, Yuan J . Activation of PI3K/Akt and MAPK pathways regulates Myc-mediated transcription by phosphorylating and promoting the degradation of Mad1. Proc Natl Acad Sci USA 2008; 105: 6584–6589.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Yang W, Ramachandran A, You S, Jeong H, Morley S, Mulone MD et al. Integration of proteomic and transcriptomic profiles identifies a novel PDGF-MYC network in human smooth muscle cells. Cell Commun Signal 2014; 12: 44.

    PubMed  PubMed Central  Google Scholar 

  89. Bisikirska BC, Adam SJ, Alvarez MJ, Rajbhandari P, Cox R, Lefebvre C et al. STK38 is a critical upstream regulator of MYC’s oncogenic activity in human B-cell lymphoma. Oncogene 2013; 32: 5283–5291.

    CAS  PubMed  Google Scholar 

  90. Moodley D, Yoshida H, Mostafavi S, Asinovski N, Ortiz-Lopez A, Symanowicz P et al. Network pharmacology of JAK inhibitors. Proc Natl Acad Sci USA 2016; 113: 9852–9857.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Bradley G . Gene Expression Omnibus GSE60880. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE60880;https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE60880 (accessed 13 January 2017).

  92. Wassmann B, Scheuring U, Pfeifer H, Binckebanck A, Käbisch A, Lübbert M et al. Efficacy and safety of imatinib mesylate (Glivec) in combination with interferon-alpha (IFN-alpha) in Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ALL). Leuk Off J Leuk Soc Am Leuk Res Fund, UK 2003; 17: 1919–1924.

    CAS  Google Scholar 

  93. Visani G, Martinelli G, Piccaluga P, Tosi P, Amabile M, Pastano R et al. Alpha-interferon improves survival and remission duration in P-190BCR-ABL positive adult acute lymphoblastic leukemia. Leukemia 2000; 14: 22–27.

    CAS  PubMed  Google Scholar 

  94. Thomas NS, Pizzey AR, Tiwari S, Williams CD, Yang J . p130, p107, and pRb are differentially regulated in proliferating cells and during cell cycle arrest by alpha-interferon. J Biol Chem 1998; 273: 23659–23667.

    CAS  PubMed  Google Scholar 

  95. Muromoto R, Ishida M, Sugiyama K, Sekine Y, Oritani K, Shimoda K et al. Sumoylation of Daxx regulates IFN-induced growth suppression of B lymphocytes and the hormone receptor-mediated transactivation. J Immunol 2006; 177: 1160–1170.

    CAS  PubMed  Google Scholar 

  96. Subramaniam PS, Cruz PE, Hobeika AC, Johnson HM . Type I interferon induction of the Cdk-inhibitor p21WAF1 is accompanied by ordered G1 arrest, differentiation and apoptosis of the Daudi B-cell line. Oncogene 1998; 16: 1885–1890.

    CAS  PubMed  Google Scholar 

  97. Mackay F, Schneider P, Rennert P, Browning J . BAFF AND APRIL: a tutorial on B cell survival. Annu Rev Immunol 2003; 21: 231–264.

    CAS  PubMed  Google Scholar 

  98. Ramírez J, Lukin K, Hagman J . From hematopoietic progenitors to B cells: mechanisms of lineage restriction and commitment. Curr Opin Immunol 2010; 22: 177–184.

    PubMed  PubMed Central  Google Scholar 

  99. Nutt SL, Kee BL . The transcriptional regulation of B cell lineage commitment. Immunity 2007; 26: 715–725.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Princess Margaret Genomics Centre for RNA-seq, and the Sick Kids-UHN Flow Cytometry Facility for fluorescence-activated cell sorting. This work was supported by R35CA49152 to BGN, and NIH R01 CA090576 to RAVE. BGN was a Canada Research Chair, Tier 1, and work in his laboratory was partially supported by the Princess Margaret Cancer Foundation and a grant from the Ontario Ministry of Health and Long Term Care.

Author contributions

SG and BGN designed the experiments. SG, GC and WY performed the experiments. SG, AS, ZL and CV analyzed RNA-seq data. RAVE provided essential advice. SG and BGN wrote and all authors edited the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B G Neel.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, S., Sayad, A., Chan, G. et al. SHP2 is required for BCR-ABL1-induced hematologic neoplasia. Leukemia 32, 203–213 (2018). https://doi.org/10.1038/leu.2017.250

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2017.250

This article is cited by

Search

Quick links