Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute lymphoblastic leukemia

The HDAC inhibitor panobinostat (LBH589) exerts in vivo anti-leukaemic activity against MLL-rearranged acute lymphoblastic leukaemia and involves the RNF20/RNF40/WAC-H2B ubiquitination axis

Abstract

MLL-rearranged acute lymphoblastic leukaemia (ALL) represents an aggressive malignancy in infants (<1 year of age), associated with poor outcome. Current treatment intensification is not further possible, and novel therapy strategies are needed. Notably, MLL-rearranged ALL is characterised by a strongly deregulated epigenome and shows sensitivity to epigenetic perturbators. Here we demonstrate the in vivo efficacy of the histone deacetylase inhibitor panobinostat (LBH589) using xenograft mouse models of MLL-rearranged ALL. Panobinostat monotherapy showed strong anti-leukaemic effects, extending survival and reducing overall disease burden. Comprehensive molecular analyses in vitro showed that this anti-leukaemic activity involves depletion of H2B ubiquitination via suppression of the RNF20/RNF40/WAC E3 ligase complex; a pivotal pathway for MLL-rearranged leukaemic maintenance. Knockdown of WAC phenocopied loss of H2B ubiquitination and concomitant cell death induction. These combined data demonstrate that panobinostat cross-inhibits multiple epigenetic pathways, ultimately contributing to its highly efficacious targeting of MLL-rearranged ALL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Meyer C, Hofmann J, Burmeister T, Groger D, Park TS, Emerenciano M et al. The MLL recombinome of acute leukemias in 2013. Leukemia 2013; 27: 2165–2176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jansen MW, Corral L, van der Velden VH, Panzer-Grumayer R, Schrappe M, Schrauder A et al. Immunobiological diversity in infant acute lymphoblastic leukemia is related to the occurrence and type of MLL gene rearrangement. Leukemia 2007; 21: 633–641.

    Article  CAS  PubMed  Google Scholar 

  3. Armstrong SA, Staunton JE, Silverman LB, Pieters R, den Boer ML, Minden MD et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet 2002; 30: 41–47.

    Article  CAS  PubMed  Google Scholar 

  4. Yeoh EJ, Ross ME, Shurtleff SA, Williams WK, Patel D, Mahfouz R et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 2002; 1: 133–143.

    Article  CAS  PubMed  Google Scholar 

  5. Stam RW, Schneider P, Hagelstein JA, van der Linden MH, Stumpel DJ, de Menezes RX et al. Gene expression profiling-based dissection of MLL translocated and MLL germline acute lymphoblastic leukemia in infants. Blood 2010; 115: 2835–2844.

    Article  CAS  PubMed  Google Scholar 

  6. Stumpel DJ, Schneider P, van Roon EH, Boer JM, de Lorenzo P, Valsecchi MG et al. Specific promoter methylation identifies different subgroups of MLL-rearranged infant acute lymphoblastic leukemia, influences clinical outcome, and provides therapeutic options. Blood 2009; 114: 5490–5498.

    Article  CAS  PubMed  Google Scholar 

  7. Schafer E, Irizarry R, Negi S, McIntyre E, Small D, Figueroa ME et al. Promoter hypermethylation in MLL-r infant acute lymphoblastic leukemia: biology and therapeutic targeting. Blood 2010; 115: 4798–4809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Guenther MG, Lawton LN, Rozovskaia T, Frampton GM, Levine SS, Volkert TL et al. Aberrant chromatin at genes encoding stem cell regulators in human mixed-lineage leukemia. Genes Dev 2008; 22: 3403–3408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Krivtsov AV, Feng Z, Lemieux ME, Faber J, Vempati S, Sinha AU et al. H3K79 methylation profiles define murine and human MLL-AF4 leukemias. Cancer Cell 2008; 14: 355–368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yokoyama A, Lin M, Naresh A, Kitabayashi I, Cleary ML . A higher-order complex containing AF4 and ENL family proteins with P-TEFb facilitates oncogenic and physiologic MLL-dependent transcription. Cancer Cell 2010; 17: 198–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lin C, Smith ER, Takahashi H, Lai KC, Martin-Brown S, Florens L et al. AFF4, a component of the ELL/P-TEFb elongation complex and a shared subunit of MLL chimeras, can link transcription elongation to leukemia. Mol Cell 2010; 37: 429–437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bitoun E, Oliver PL, Davies KE . The mixed-lineage leukemia fusion partner AF4 stimulates RNA polymerase II transcriptional elongation and mediates coordinated chromatin remodeling. Hum Mol Genet 2007; 16: 92–106.

    Article  CAS  PubMed  Google Scholar 

  13. He N, Chan CK, Sobhian B, Chou S, Xue Y, Liu M et al. Human polymerase-associated factor complex (PAFc) connects the super elongation complex (SEC) to RNA polymerase II on chromatin. Proc Natl Acad Sci USA 2011; 108: E636–E645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Muntean AG, Tan J, Sitwala K, Huang Y, Bronstein J, Connelly JA et al. The PAF complex synergizes with MLL fusion proteins at HOX loci to promote leukemogenesis. Cancer Cell 2010; 17: 609–621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dawson MA, Prinjha RK, Dittmann A, Giotopoulos G, Bantscheff M, Chan WI et al. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature 2011; 478: 529–533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hahn MA, Dickson KA, Jackson S, Clarkson A, Gill AJ, Marsh DJ . The tumor suppressor CDC73 interacts with the ring finger proteins RNF20 and RNF40 and is required for the maintenance of histone 2B monoubiquitination. Hum Mol Genet 2012; 21: 559–568.

    Article  CAS  PubMed  Google Scholar 

  17. Mueller D, Garcia-Cuellar MP, Bach C, Buhl S, Maethner E, Slany RK . Misguided transcriptional elongation causes mixed lineage leukemia. PLoS Biol 2009; 7: e1000249.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bernt KM, Zhu N, Sinha AU, Vempati S, Faber J, Krivtsov AV et al. MLL-rearranged leukemia is dependent on aberrant H3K79 methylation by DOT1L. Cancer Cell 2011; 20: 66–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang E, Kawaoka S, Yu M, Shi J, Ni T, Yang W et al. Histone H2B ubiquitin ligase RNF20 is required for MLL-rearranged leukemia. Proc Natl Acad Sci USA 2013; 110: 3901–3906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stumpel DJ, Schneider P, Seslija L, Osaki H, Williams O, Pieters R et al. Connectivity mapping identifies HDAC inhibitors for the treatment of t(4;11)-positive infant acute lymphoblastic leukemia. Leukemia 2012; 26: 682–692.

    Article  CAS  PubMed  Google Scholar 

  21. Gessner A, Thomas M, Castro PG, Buchler L, Scholz A, Brummendorf TH et al. Leukemic fusion genes MLL/AF4 and AML1/MTG8 support leukemic self-renewal by controlling expression of the telomerase subunit TERT. Leukemia 2010; 24: 1751–1759.

    Article  CAS  PubMed  Google Scholar 

  22. van der Linden MH, Boer JM, Schneider P, Willekes M, Seslija L, De Lorenzo P et al. Clinical and molecular genetic characterization of wild-type MLL infant acute lymphoblastic leukemia identifies few recurrent abnormalities. Haematologica 2016; 101: e95–e98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jaaskelainen T, Makkonen H, Visakorpi T, Kim J, Roeder RG, Palvimo JJ . Histone H2B ubiquitin ligases RNF20 and RNF40 in androgen signaling and prostate cancer cell growth. Mol Cell Endocrinol 2012; 350: 87–98.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang F, Yu X . WAC, a functional partner of RNF20/40, regulates histone H2B ubiquitination and gene transcription. Mol Cell 2011; 41: 384–397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bailey H, Stenehjem DD, Sharma S . Panobinostat for the treatment of multiple myeloma: the evidence to date. J Blood Med 2015; 6: 269–276.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Drappatz J, Lee EQ, Hammond S, Grimm SA, Norden AD, Beroukhim R et al. Phase I study of panobinostat in combination with bevacizumab for recurrent high-grade glioma. J Neurooncol 2012; 107: 133–138.

    Article  CAS  PubMed  Google Scholar 

  27. San-Miguel JF, Hungria VT, Yoon SS, Beksac M, Dimopoulos MA, Elghandour A et al. Panobinostat plus bortezomib and dexamethasone versus placebo plus bortezomib and dexamethasone in patients with relapsed or relapsed and refractory multiple myeloma: a multicentre, randomised, double-blind phase 3 trial. Lancet Oncol 2014; 15: 1195–1206.

    Article  CAS  PubMed  Google Scholar 

  28. Lee JS, Shukla A, Schneider J, Swanson SK, Washburn MP, Florens L et al. Histone crosstalk between H2B monoubiquitination and H3 methylation mediated by COMPASS. Cell 2007; 131: 1084–1096.

    Article  CAS  PubMed  Google Scholar 

  29. McGinty RK, Kohn M, Chatterjee C, Chiang KP, Pratt MR, Muir TW . Structure-activity analysis of semisynthetic nucleosomes: mechanistic insights into the stimulation of Dot1L by ubiquitylated histone H2B. ACS Chem Biol 2009; 4: 958–968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim J, Guermah M, McGinty RK, Lee JS, Tang Z, Milne TA et al. RAD6-Mediated transcription-coupled H2B ubiquitylation directly stimulates H3K4 methylation in human cells. Cell 2009; 137: 459–471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yao YL, Yang WM, Seto E . Regulation of transcription factor YY1 by acetylation and deacetylation. Mol Cell Biol 2001; 21: 5979–5991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nural-Guvener H, Zakharova L, Feehery L, Sljukic S, Gaballa M . Anti-fibrotic effects of class I HDAC inhibitor, mocetinostat is associated with IL-6/Stat3 signaling in ischemic heart failure. Int J Mol Sci 2015; 16: 11482–11499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gupta M, Han JJ, Stenson M, Wellik L, Witzig TE . Regulation of STAT3 by histone deacetylase-3 in diffuse large B-cell lymphoma: implications for therapy. Leukemia 2012; 26: 1356–1364.

    Article  CAS  PubMed  Google Scholar 

  34. Klampfer L, Huang J, Swaby LA, Augenlicht L . Requirement of histone deacetylase activity for signaling by STAT1. J Biol Chem 2004; 279: 30358–30368.

    Article  CAS  PubMed  Google Scholar 

  35. Buglio D, Georgakis GV, Hanabuchi S, Arima K, Khaskhely NM, Liu YJ et al. Vorinostat inhibits STAT6-mediated TH2 cytokine and TARC production and induces cell death in Hodgkin lymphoma cell lines. Blood 2008; 112: 1424–1433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kovacs JJ, Murphy PJ, Gaillard S, Zhao X, Wu JT, Nicchitta CV et al. HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol Cell 2005; 18: 601–607.

    Article  CAS  PubMed  Google Scholar 

  37. Wang H, Zhou W, Zheng Z, Zhang P, Tu B, He Q et al. The HDAC inhibitor depsipeptide transactivates the p53/p21 pathway by inducing DNA damage. DNA Repair (Amst) 2012; 11: 146–156.

    Article  CAS  Google Scholar 

  38. Condorelli F, Gnemmi I, Vallario A, Genazzani AA, Canonico PL . Inhibitors of histone deacetylase (HDAC) restore the p53 pathway in neuroblastoma cells. Br J Pharmacol 2008; 153: 657–668.

    Article  CAS  PubMed  Google Scholar 

  39. Tran AD, Marmo TP, Salam AA, Che S, Finkelstein E, Kabarriti R et al. HDAC6 deacetylation of tubulin modulates dynamics of cellular adhesions. J Cell Sci 2007; 120 (Pt 8): 1469–1479.

    Article  CAS  PubMed  Google Scholar 

  40. Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V, Skrzypek E . PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res 2015; 43: D512–D520.

    Article  CAS  PubMed  Google Scholar 

  41. Greer CB, Tanaka Y, Kim YJ, Xie P, Zhang MQ, Park IH et al. Histone deacetylases positively regulate transcription through the elongation machinery. Cell Rep 2015; 13: 1444–1455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pirngruber J, Shchebet A, Schreiber L, Shema E, Minsky N, Chapman RD et al. CDK9 directs H2B monoubiquitination and controls replication-dependent histone mRNA 3'-end processing. EMBO Rep 2009; 10: 894–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pavri R, Zhu B, Li G, Trojer P, Mandal S, Shilatifard A et al. Histone H2B monoubiquitination functions cooperatively with FACT to regulate elongation by RNA polymerase II. Cell 2006; 125: 703–717.

    Article  CAS  PubMed  Google Scholar 

  44. Fong CY, Gilan O, Lam EY, Rubin AF, Ftouni S, Tyler D et al. BET inhibitor resistance emerges from leukaemia stem cells. Nature 2015; 525: 538–542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rathert P, Roth M, Neumann T, Muerdter F, Roe JS, Muhar M et al. Transcriptional plasticity promotes primary and acquired resistance to BET inhibition. Nature 2015; 525: 543–547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Vilas-Zornoza A, Agirre X, Abizanda G, Moreno C, Segura V, De Martino Rodriguez A et al. Preclinical activity of LBH589 alone or in combination with chemotherapy in a xenogeneic mouse model of human acute lymphoblastic leukemia. Leukemia 2012; 26: 1517–1526.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

LBH589 was kindly provided by Novartis. This work was financially supported by Stichting Kinderen Kankervrij and Stichting Kinderoncologisch Centrum Rotterdam. OH acknowledges support from Cancer Research UK programme grant C27943/A12788 and Bloodwise grant 15005. This work was supported by use of the imaging equipment of the Applied Molecular Imaging Erasmus MC facility.

Author contributions

PGC designed and performed research, analysed data and wrote the manuscript. EHJVR and SSP designed and performed research and analysed data. LT, GtK, PS and MK performed research and analysed data. OH contributed the pSLIEW vector and reviewed the manuscript. RWS and RP supervised the project, designed and interpreted the research and wrote the manuscript. All authors critically read the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R W Stam.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garrido Castro, P., van Roon, E., Pinhanços, S. et al. The HDAC inhibitor panobinostat (LBH589) exerts in vivo anti-leukaemic activity against MLL-rearranged acute lymphoblastic leukaemia and involves the RNF20/RNF40/WAC-H2B ubiquitination axis. Leukemia 32, 323–331 (2018). https://doi.org/10.1038/leu.2017.216

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2017.216

This article is cited by

Search

Quick links