Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Stem cell biology

Transforming growth factor-β1 regulates the nascent hematopoietic stem cell niche by promoting gluconeogenesis

Abstract

The understanding of hematopoietic stem cell (HSC) emergence is important to generate HSCs from pluripotent precursors. However, integrated signaling network that regulates the niche of nascent HSCs remains unclear. Herein, we uncovered a novel role of TGF-β1 in the metabolic niche of HSC emergence using the tgf-β1b−/− zebrafish. Our findings first showed that Tgf-β1 transcripts were enriched in the nascent HSCs. Loss of tgf-β1b caused a decrease of nascent HSCs within the aorta-gonad-mesonephros. Moreover, tgf-β1b+ cells were runx1+ HSCs and underwent an endothelial-to-hematopoietic-transition process. Although the autocrine of Tgf-β1 in HSCs rather than endothelial cells was highly demanded to regulate HSC generation, we found that tgf-β1b promoted HSC emergence through the endothelial c-Jun N-terminal kinase/c-Jun signaling. Chromatin immunoprecipitation (ChIP)-sequencing data showed that tgf-β1b/c-Jun targeted g6pc3 of FoxO signaling to promote gluconeogenesis and maintain a high glucose level in the niche. Furthermore, loss of tgf-β1b increased the endoplasmic-reticulum stress and oxidative stress by disturbing metabolic homeostasis. Adding a low dose of TGF-β1 protein could promote the differentiation of mouse embryonic stem cells towards HSCs in vitro. Altogether, our study provided insights into a new feature of TGF-β1 in the regulation of glucose metabolism and nascent HSC niche, which may contribute to therapies of hematological malignancies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Clements WK, Traver D . Signalling pathways that control vertebrate haematopoietic stem cell specification. Nat. rev. Immunol. 2013; 13: 336–348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vogeli KM, Jin SW, Martin GR, Stainier DY . A common progenitor for haematopoietic and endothelial lineages in the zebrafish gastrula. Nature 2006; 443: 337–339.

    Article  CAS  PubMed  Google Scholar 

  3. Eilken HM, Nishikawa S, Schroeder T . Continuous single-cell imaging of blood generation from haemogenic endothelium. Nature 2009; 457: 896–900.

    Article  CAS  PubMed  Google Scholar 

  4. Zovein AC, Hofmann JJ, Lynch M, French WJ, Turlo KA, Yang Y et al. Fate tracing reveals the endothelial origin of hematopoietic stem cells. Cell Stem Cell 2008; 3: 625–636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhen F, Lan Y, Yan B, Zhang W, Wen Z . Hemogenic endothelium specification and hematopoietic stem cell maintenance employ distinct Scl isoforms. Development 2013; 140: 3977–3985.

    Article  CAS  PubMed  Google Scholar 

  6. Lam EY, Hall CJ, Crosier PS, Crosier KE, Flores MV . Live imaging of Runx1 expression in the dorsal aorta tracks the emergence of blood progenitors from endothelial cells. Blood 2010; 116: 909–914.

    Article  CAS  PubMed  Google Scholar 

  7. Kissa K, Herbomel P . Blood stem cells emerge from aortic endothelium by a novel type of cell transition. Nature 2010; 464: 112–115.

    Article  CAS  PubMed  Google Scholar 

  8. Boisset JC, van Cappellen W, Andrieu-Soler C, Galjart N, Dzierzak E, Robin C . In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium. Nature 2010; 464: 116–120.

    Article  CAS  PubMed  Google Scholar 

  9. Bertrand JY, Chi NC, Santoso B, Teng S, Stainier DY, Traver D . Haematopoietic stem cells derive directly from aortic endothelium during development. Nature 2010; 464: 108–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lancrin C, Mazan M, Stefanska M, Patel R, Lichtinger M, Costa G et al. GFI1 and GFI1B control the loss of endothelial identity of hemogenic endothelium during hematopoietic commitment. Blood 2012; 120: 314–322.

    Article  CAS  PubMed  Google Scholar 

  11. Sandler VM, Lis R, Liu Y, Kedem A, James D, Elemento O et al. Reprogramming human endothelial cells to haematopoietic cells requires vascular induction. Nature 2014; 511: 312–318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen MJ, Yokomizo T, Zeigler BM, Dzierzak E, Speck NA . Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature 2009; 457: 887–891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kim PG, Albacker CE, Lu YF, Jang IH, Lim Y, Heffner GC et al. Signaling axis involving Hedgehog, Notch, and Scl promotes the embryonic endothelial-to-hematopoietic transition. Proc Natl Acad Sci USA 2013; 110: E141–E150.

    Article  CAS  PubMed  Google Scholar 

  14. Yokomizo T, Dzierzak E . Three-dimensional cartography of hematopoietic clusters in the vasculature of whole mouse embryos. Development 2010; 137: 3651–3661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Keller JR, Mcniece IK, Sill KT, Ellingsworth LR, Quesenberry PJ, Sing GK et al. Transforming growth factor beta directly regulates primitive murine hematopoietic cell proliferation. Blood 1990; 75: 596–602.

    CAS  PubMed  Google Scholar 

  16. Maehr T, Costa MM, Vecino JL, Wadsworth S, Martin SA, Wang T et al. Transforming growth factor-β1b: a second TGF-β1 paralogue in the rainbow trout (Oncorhynchus mykiss) that has a lower constitutive expression but is more responsive to immune stimulation. Fish shellfish immunol 2013; 34: 420–432.

    Article  CAS  PubMed  Google Scholar 

  17. Challen GA, Boles NC, Chambers SM, Goodell MA . Distinct hematopoietic stem cell subtypes are differentially regulated by TGF-beta1. Cell Stem Cell 2010; 6: 265–278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Capron C, Lacout C, Lecluse Y, Jalbert V, Chagraoui H, Charrier S et al. A major role of TGF-beta1 in the homing capacities of murine hematopoietic stem cell/progenitors. Blood 2010; 116: 1244–1253.

    Article  CAS  PubMed  Google Scholar 

  19. Kim SJ, Kehrl JH, Burton J, Tendler CL, Jeang KT, Danielpour D et al. Transactivation of the transforming growth factor beta 1 (TGF-beta 1) gene by human T lymphotropic virus type 1 tax: a potential mechanism for the increased production of TGF-beta 1 in adult T cell leukemia. J Exp Med 1990; 172: 121–129.

    Article  CAS  PubMed  Google Scholar 

  20. Dickson MC, Martin JS, Cousins FM, Kulkarni AB, Karlsson S, Akhurst RJ . Defective haematopoiesis and vasculogenesis in transforming growth factor-beta 1 knock out mice. Development 1995; 121: 1845–1854.

    CAS  PubMed  Google Scholar 

  21. Kulkarni AB, Huh CG, Becker D, Geiser A, Lyght M, Flanders KC et al. Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci USA 1993; 90: 770–774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shull MM, Ormsby I, Kier AB, Pawlowski S, Diebold RJ, Yin M et al. Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 1992; 359: 693–699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nakao A, Imamura T, Souchelnytskyi S, Kawabata M, Ishisaki A, Oeda E et al. TGF-beta receptor-mediated signalling through Smad2, Smad3 and Smad4. EMBO J 1997; 16: 5353–5362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Massagué J, Wotton D . Transcriptional control by the TGF-beta/Smad signaling system. EMBO J 2000; 19: 1745–1754.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Derynck R, Zhang YE . Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 2003; 425: 577–584.

    Article  CAS  PubMed  Google Scholar 

  26. Thisse C, Thisse B . High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat protoc 2008; 3: 59–69.

    Article  CAS  PubMed  Google Scholar 

  27. Wang L, Fu C, Fan H, Du T, Dong M, Chen Y et al. miR-34b regulates multiciliogenesis during organ formation in zebrafish. Development 2013; 140: 2755–2764.

    Article  CAS  PubMed  Google Scholar 

  28. McKinney-Freeman SL, Naveiras O, Daley GQ . Isolation of hematopoietic stem cells from mouse embryonic stem cells. Curr Protoc Stem Cell Biol 2008; Chapter 1: Unit 1F 3.

  29. Mei Y, Monteiro P, Zhou Y, Kim JA, Gao X, Fu Z et al. Adult restoration of Shank3 expression rescues selective autistic-like phenotypes. Nature 2016; 530: 481–484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhou Y, Cashman TJ, Nevis KR, Obregon P, Carney SA, Liu Y et al. Latent TGF-beta binding protein 3 identifies a second heart field in zebrafish. Nature 2011; 474: 645–648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xing C, Gong B, Xue Y, Han Y, Wang Y, Meng A et al. TGFbeta1a regulates zebrafish posterior lateral line formation via Smad5 mediated pathway. J mol cell biol 2015; 7: 48–61.

    Article  CAS  PubMed  Google Scholar 

  32. Lam EY, Chau JY, Kalev-Zylinska ML, Fountaine TM, Mead RS, Hall CJ et al. Zebrafish runx1 promoter-EGFP transgenics mark discrete sites of definitive blood progenitors. Blood 2009; 113: 1241–1249.

    Article  CAS  PubMed  Google Scholar 

  33. Wang Y, Kaiser MS, Larson JD, Nasevicius A, Clark KJ, Wadman SA et al. Moesin1 and Ve-cadherin are required in endothelial cells during in vivo tubulogenesis. Development 2010; 137: 3119–3128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yang X, Letterio JJ, Lechleider RJ, Chen L, Hayman R, Gu H et al. Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF-beta. EMBO J 1999; 18: 1280–1291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Datto MB, Frederick JP, Pan L, Borton AJ, Zhuang Y, Wang XF . Targeted disruption of Smad3 reveals an essential role in transforming growth factor beta-mediated signal transduction. Mol Cell Biol 1999; 19: 2495–2504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhu Y, Richardson JA, Parada LF, Graff JM . Smad3 mutant mice develop metastatic colorectal cancer. Cell 1998; 94: 703–714.

    Article  CAS  PubMed  Google Scholar 

  37. Wierenga AT, Eggen BJ, Kruijer W, Vellenga E . Proteolytic degradation of Smad4 in extracts of AML blasts. Leuk Res 2002; 26: 1105–1111.

    Article  CAS  PubMed  Google Scholar 

  38. Kollmann K, Heller G, Ott RG, Scheicher R, Zebedin-Brandl E, Schneckenleithner C et al. c-JUN promotes BCR-ABL-induced lymphoid leukemia by inhibiting methylation of the 5' region of Cdk6. Blood 2011; 117: 4065–4075.

    Article  CAS  PubMed  Google Scholar 

  39. Vogt PK, Bos TJ . jun: oncogene and transcription factor. Adv Cancer Res 1990; 55: 1–35.

    Article  CAS  PubMed  Google Scholar 

  40. Kubiczkova L, Sedlarikova L, Hajek R, Sevcikova S . TGF-β—an excellent servant but a bad master. J Transl Med 2012; 10: 183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Guionie O, Clottes E, Stafford K, Burchell A . Identification and characterisation of a new human glucose-6-phosphatase isoform. FEBS Lett 2003; 551: 159–164.

    Article  CAS  PubMed  Google Scholar 

  42. Elo B, Villano CM, Govorko D, White LA . Larval zebrafish as a model for glucose metabolism: expression of phosphoenolpyruvate carboxykinase as a marker for exposure to anti-diabetic compounds. J Mol Endocrinol 2007; 38: 433–440.

    Article  CAS  PubMed  Google Scholar 

  43. McDermott DH, De Ravin SS, Jun HS, Liu Q, Priel DA, Noel P et al. Severe congenital neutropenia resulting from G6PC3 deficiency with increased neutrophil CXCR4 expression and myelokathexis. Blood 2010; 116: 2793–2802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jun HS, Lee YM, Cheung YY, McDermott DH, Murphy PM, De Ravin SS et al. Lack of glucose recycling between endoplasmic reticulum and cytoplasm underlies cellular dysfunction in glucose-6-phosphatase-beta-deficient neutrophils in a congenital neutropenia syndrome. Blood 2010; 116: 2783–2792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Keller G, Kennedy M, Papayannopoulou T, Wiles MV . Hematopoietic commitment during embryonic stem cell differentiation in culture. Mol Cell Biol 1993; 13: 473–486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Blank U, Karlsson S . TGF-beta signaling in the control of hematopoietic stem cells. Blood 2015; 125: 3542–3550.

    Article  CAS  PubMed  Google Scholar 

  47. Morrison SJ, Scadden DT . The bone marrow niche for haematopoietic stem cells. Nature 2014; 505: 327–334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yamazaki S, Ema H, Karlsson G, Yamaguchi T, Miyoshi H, Shioda S et al. Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell 2011; 147: 1146–1158.

    Article  CAS  PubMed  Google Scholar 

  49. Suda T, Takubo K, Semenza GL . Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell stem cell 2011; 9: 298–310.

    Article  CAS  PubMed  Google Scholar 

  50. Ledran MH, Krassowska A, Armstrong L, Dimmick I, Renstrom J, Lang R et al. Efficient hematopoietic differentiation of human embryonic stem cells on stromal cells derived from hematopoietic niches. Cell Stem Cell 2008; 3: 85–98.

    Article  CAS  PubMed  Google Scholar 

  51. Nottingham WT, Jarratt A, Burgess M, Speck CL, Cheng JF, Prabhakar S et al. Runx1-mediated hematopoietic stem-cell emergence is controlled by a Gata/Ets/SCL-regulated enhancer. Blood 2007; 110: 4188–4197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jakubowiak A, Pouponnot C, Berguido F, Frank R, Mao S, Massague J et al. Inhibition of the transforming growth factor beta 1 signaling pathway by the AML1/ETO leukemia-associated fusion protein. J biol chem 2000; 275: 40282–40287.

    Article  CAS  PubMed  Google Scholar 

  53. Kurokawa M, Mitani K, Imai Y, Ogawa S, Yazaki Y, Hirai H . The t(3;21) fusion product, AML1/Evi-1, interacts with Smad3 and blocks transforming growth factor-beta-mediated growth inhibition of myeloid cells. Blood 1998; 92: 4003–4012.

    CAS  PubMed  Google Scholar 

  54. Ford AM, Palmi C, Bueno C, Hong D, Cardus P, Knight D et al. The TEL-AML1 leukemia fusion gene dysregulates the TGF-beta pathway in early B lineage progenitor cells. J clin invest 2009; 119: 826–836.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Liberati NT, Datto MB, Frederick JP, Shen X, Wong C, Rougier-Chapman EM et al. Smads bind directly to the Jun family of AP-1 transcription factors. Proc Natl Acad Sci USA 1999; 96: 4844–4849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang Y, Feng XH, Derynck R . Smad3 and Smad4 cooperate with c-Jun/c-Fos to mediate TGF-beta-induced transcription. Nature 1998; 394: 909–913.

    Article  CAS  PubMed  Google Scholar 

  57. Naka K, Hoshii T, Muraguchi T, Tadokoro Y, Ooshio T, Kondo Y et al. TGF-beta-FOXO signalling maintains leukaemia-initiating cells in chronic myeloid leukaemia. Nature 2010; 463: 676–680.

    Article  CAS  PubMed  Google Scholar 

  58. Arnulf B, Villemain A, Nicot C, Mordelet E, Charneau P, Kersual J et al. Human T-cell lymphotropic virus oncoprotein Tax represses TGF-beta 1 signaling in human T cells via c-Jun activation: a potential mechanism of HTLV-I leukemogenesis. Blood 2002; 100: 4129–4138.

    Article  CAS  PubMed  Google Scholar 

  59. Harris JM, Esain V, Frechette GM, Harris LJ, Cox AG, Cortes M et al. Glucose metabolism impacts the spatiotemporal onset and magnitude of HSC induction in vivo. Blood 2013; 121: 2483–2493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Takubo K, Nagamatsu G, Kobayashi CI, Nakamura-Ishizu A, Kobayashi H, Ikeda E et al. Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells. Cell stem cell 2013; 12: 49–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fatrai S, Wierenga AT, Daenen SM, Vellenga E, Schuringa JJ . Identification of HIF2alpha as an important STAT5 target gene in human hematopoietic stem cells. Blood 2011; 117: 3320–3330.

    Article  CAS  PubMed  Google Scholar 

  62. Oburoglu L, Tardito S, Fritz V, de Barros SC, Merida P, Craveiro M et al. Glucose and glutamine metabolism regulate human hematopoietic stem cell lineage specification. Cell stem cell 2014; 15: 169–184.

    Article  CAS  PubMed  Google Scholar 

  63. Yu WM, Liu X, Shen J, Jovanovic O, Pohl EE, Gerson SL et al. Metabolic regulation by the mitochondrial phosphatase PTPMT1 is required for hematopoietic stem cell differentiation. Cell stem cell 2013; 12: 62–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chen WL, Wang YY, Zhao A, Xia L, Xie G, Su M et al. Enhanced fructose utilization mediated by SLC2A5 is a unique metabolic feature of acute myeloid leukemia with therapeutic potential. Cancer Cell 2016; 30: 779–791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Saito Y, Chapple RH, Lin A, Kitano A, Nakada D . AMPK protects leukemia-initiating cells in myeloid leukemias from metabolic stress in the bone marrow. Cell Stem Cell 2015; 17: 585–596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hjalgrim LL, Westergaard T, Rostgaard K, Schmiegelow K, Melbye M, Hjalgrim H et al. Birth weight as a risk factor for childhood leukemia: a meta-analysis of 18 epidemiologic studies. Am J Epidemiol 2003; 158: 724–735.

    Article  PubMed  Google Scholar 

  67. Wu L, Derynck R . Essential role of TGF-beta signaling in glucose-induced cell hypertrophy. Developmental cell 2009; 17: 35–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Elliott RL, Blobe GC . Role of transforming growth factor Beta in human cancer. J clin oncol 2005; 23: 2078–2093.

    Article  CAS  PubMed  Google Scholar 

  69. Yadav H, Quijano C, Kamaraju AK, Gavrilova O, Malek R, Chen W et al. Protection from obesity and diabetes by blockade of TGF-beta/Smad3 signaling. Cell metab 2011; 14: 67–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Massagué J . TGF-β signal transduction. Annu Rev Biochem 1998; 67: 753–791.

    Article  PubMed  Google Scholar 

  71. Yang L, Wang N, Tang Y, Cao X, Wan M . Acute myelogenous leukemia-derived SMAD4 mutations target the protein to ubiquitin-proteasome degradation. Hum mutat 2006; 27: 897–905.

    Article  CAS  PubMed  Google Scholar 

  72. He W, Dorn DC, Erdjument-Bromage H, Tempst P, Moore MA, Massague J . Hematopoiesis controlled by distinct TIF1gamma and Smad4 branches of the TGFbeta pathway. Cell 2006; 125: 929–941.

    Article  CAS  PubMed  Google Scholar 

  73. Cheng T . Transforming growth factor beta 1 mediates cell-cycle arrest of primitive hematopoietic cells independent of p21Cip1/Waf1 or p27Kip1. Blood 2001; 98: 3643–3649.

    Article  CAS  PubMed  Google Scholar 

  74. Cardoso AA, Li ML, Batard P, Hatzfeld A, Brown EL, Levesque JP et al. Release from quiescence of CD34+ CD38- human umbilical cord blood cells reveals their potentiality to engraft adults. Proc Natl Acad Sci USA 1993; 90: 8707–8711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Nagata Y, Nishida E, Todokoro K . Activation of JNK signaling pathway by erythropoietin, thrombopoietin, and interleukin-3. Blood 1997; 89: 2664–2669.

    CAS  PubMed  Google Scholar 

  76. Nagata Y, Takahashi N, Davis R, Todokoro K . Activation of p38 MAP kinase and JNK but not ERK is required for erythropoietin-induced erythroid differentiation. Blood 1998; 92: 1859–1869.

    CAS  PubMed  Google Scholar 

  77. Sabapathy K, Kallunki T, David JP, Graef I, Karin M, Wagner EF . c-Jun NH2-terminal kinase (JNK)1 and JNK2 have similar and stage-dependent roles in regulating T cell apoptosis and proliferation. J Exp Med 2001; 193: 317–328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chakraborty A, Diefenbacher ME, Mylona A, Kassel O, Behrens A . The E3 ubiquitin ligase Trim7 mediates c-Jun/AP-1 activation by Ras signalling. Nat commun 2015; 6: 6782.

    Article  CAS  PubMed  Google Scholar 

  79. Stephen TL, Rutkowski MR, Allegrezza MJ, Perales-Puchalt A, Tesone AJ, Svoronos N et al. Transforming growth factor β-mediated suppression of antitumor T cells requires FoxP1 transcription factor expression. Immunity 2014; 41: 427–439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Greer EL, Brunet A . FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 2005; 24: 7410–7425.

    Article  CAS  PubMed  Google Scholar 

  81. Tothova Z, Gilliland DG . FoxO transcription factors and stem cell homeostasis: insights from the hematopoietic system. Cell Stem Cell 2007; 1: 140–152.

    Article  CAS  PubMed  Google Scholar 

  82. Du J, Li Q, Tang F, Puchowitz MA, Fujioka H, Dunwoodie SL et al. Cited2 is required for the maintenance of glycolytic metabolism in adult hematopoietic stem cells. Stem Cells Dev 2014; 23: 83–94.

    Article  CAS  PubMed  Google Scholar 

  83. Jang YY, Sharkis SJ . A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood 2007; 110: 3056–3063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wu G, Fang YZ, Yang S, Lupton JR, Turner ND . Glutathione metabolism and its implications for health. J Nutr 2004; 134: 489–492.

    Article  CAS  PubMed  Google Scholar 

  85. Bedard K, Krause KH . The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 2007; 87: 245–313.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81172694,81370232,81670115,81573174), the Strategic Priority Research Program of the Chinese Academy of Science (XDA12020220), the Outstanding Youth Fund of Jiangsu Province (SBK2014010296), the Research Project of Chinese Ministry of Education (213015A), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and Qinglan project (JX2161015124) We thank Professor J.J. Essner for offering the kdrl promoter plasmid.

Author contributions

C-YZ, H-MY, HW, DS, YX, L-FY, BF and Y-MW performed experiments and analyzed the data; C-YZ, A-HG and YZ designed research plan and wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A-H Gu or Y Zhou.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, CY., Yin, HM., Wang, H. et al. Transforming growth factor-β1 regulates the nascent hematopoietic stem cell niche by promoting gluconeogenesis. Leukemia 32, 479–491 (2018). https://doi.org/10.1038/leu.2017.198

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2017.198

This article is cited by

Search

Quick links