Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Molecular targets for therapy

Therapeutic effects of CSF1R-blocking antibodies in multiple myeloma

Abstract

Our previous studies showed that macrophages (MФs), especially myeloma-associated MФs (MAMs), induce chemoresistance in human myeloma. Here we explored the potential of targeting MФs, by using colony-stimulating factor 1 receptor (CSF1R)-blocking mAbs, to treat myeloma. Our results showed that CSF1R blockade specifically inhibited the differentiation, proliferation and survival of murine M2 MФs and MAMs, and repolarized MAMs towards M1-like MФs in vitro. CSF1R blockade alone inhibited myeloma growth in vivo, by partially depleting MAMs, polarizing MAMs to the M1 phenotype, and inducing a tumor-specific cytotoxic CD4+ T-cell response. Similarly, genetically depleting MФs in myeloma-bearing MMDTR mice retarded myeloma growth in vivo. Furthermore, the combination of CSF1R blockade and chemotherapy such as bortezomib or melphalan displayed an additive therapeutic efficacy against established myeloma. Finally, a fully human CSF1R blocking mAb, similar to its murine counterpart, was able to inhibit the differentiation, proliferation and survival of human MФs. Thus, this study provides the first direct in vivo evidence that MΦs and MAMs are indeed important for myeloma development and progression. Our results also suggest that targeting MAMs by CSF1R blocking mAbs may be promising methods to (re)sensitize myeloma cells to chemotherapy and promote anti-myeloma immune responses in patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Hideshima T, Mitsiades C, Tonon G, Richardson PG, Anderson KC . Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nat Rev Cancer 2007; 7: 585–598.

    Article  CAS  Google Scholar 

  2. Podar K, Chauhan D, Anderson KC . Bone marrow microenvironment and the identification of new targets for myeloma therapy. Leukemia 2009; 23: 10–24.

    Article  CAS  Google Scholar 

  3. Gordon S, Taylor PR . Monocyte and macrophage heterogeneity. Nat Rev Immunol 2005; 5: 953–964.

    Article  CAS  Google Scholar 

  4. Wynn TA, Chawla A, Pollard JW . Macrophage biology in development, homeostasis and disease. Nature 2013; 496: 445–455.

    Article  CAS  Google Scholar 

  5. Biswas SK, Mantovani A . Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 2010; 11: 889–896.

    Article  CAS  Google Scholar 

  6. Gordon S, Martinez FO . Alternative activation of macrophages: mechanism and functions. Immunity 2010; 32: 593–604.

    Article  CAS  Google Scholar 

  7. Kurahara H, Shinchi H, Mataki Y, Maemura K, Noma H, Kubo F et al. Significance of M2-polarized tumor-associated macrophage in pancreatic cancer. J Surg Res 2011; 167: e211–e219.

    Article  Google Scholar 

  8. Colegio OR, Chu NQ, Szabo AL, Chu T, Rhebergen AM, Jairam V et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 2014; 513: 559–563.

    Article  CAS  Google Scholar 

  9. Hao NB, Lu MH, Fan YH, Cao YL, Zhang ZR, Yang SM . Macrophages in tumor microenvironments and the progression of tumors. Clin Dev Immunol 2012; 2012: 948098.

    Article  Google Scholar 

  10. Williams CB, Yeh ES, Soloff AC . Tumor-associated macrophages: unwitting accomplices in breast cancer malignancy. NPJ Breast Cancer 2016; 2: 15025.

    Article  Google Scholar 

  11. Zheng Y, Cai Z, Wang S, Zhang X, Qian J, Hong S et al. Macrophages are an abundant component of myeloma microenvironment and protect myeloma cells from chemotherapy drug-induced apoptosis. Blood 2009; 114: 3625–3628.

    Article  CAS  Google Scholar 

  12. Zheng Y, Yang J, Qian J, Qiu P, Hanabuchi S, Lu Y et al. PSGL-1/selectin and ICAM-1/CD18 interactions are involved in macrophage-induced drug resistance in myeloma. Leukemia 2013; 27: 702–710.

    Article  CAS  Google Scholar 

  13. Priceman SJ, Sung JL, Shaposhnik Z, Burton JB, Torres-Collado AX, Moughon DL et al. Targeting distinct tumor-infiltrating myeloid cells by inhibiting CSF-1 receptor: combating tumor evasion of antiangiogenic therapy. Blood 2010; 115: 1461–1471.

    Article  CAS  Google Scholar 

  14. Zhu Y, Knolhoff BL, Meyer MA, Nywening TM, West BL, Luo J et al. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer res 2014; 74: 5057–5069.

    Article  CAS  Google Scholar 

  15. Aharinejad S, Paulus P, Sioud M, Hofmann M, Zins K, Schafer R et al. Colony-stimulating factor-1 blockade by antisense oligonucleotides and small interfering RNAs suppresses growth of human mammary tumor xenografts in mice. Cancer Res 2004; 64: 5378–5384.

    Article  CAS  Google Scholar 

  16. Mantovani A, Allavena P . The interaction of anticancer therapies with tumor-associated macrophages. J Exp Med 2015; 212: 435–445.

    Article  CAS  Google Scholar 

  17. Pollard JW . Trophic macrophages in development and disease. Nat Rev Immunol 2009; 9: 259–270.

    Article  CAS  Google Scholar 

  18. Pyonteck SM, Akkari L, Schuhmacher AJ, Bowman RL, Sevenich L, Quail DF et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med 2013; 19: 1264–1272.

    Article  CAS  Google Scholar 

  19. Ries CH, Cannarile MA, Hoves S, Benz J, Wartha K, Runza V et al. Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell 2014; 25: 846–859.

    Article  CAS  Google Scholar 

  20. Yamashiro S, Takeya M, Nishi T, Kuratsu J, Yoshimura T, Ushio Y et al. Tumor-derived monocyte chemoattractant protein-1 induces intratumoral infiltration of monocyte-derived macrophage subpopulation in transplanted rat tumors. Am j Pathol 1994; 145: 856–867.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Davis MJ, Tsang TM, Qiu Y, Dayrit JK, Freij JB, Huffnagle GB et al. Macrophage M1/M2 polarization dynamically adapts to changes in cytokine microenvironments in Cryptococcus neoformans infection. MBio 2013; 4: e00264–00213.

    Article  CAS  Google Scholar 

  22. Zhang X, Edwards JP, Mosser DM . Dynamic and transient remodeling of the macrophage IL-10 promoter during transcription. J Immunol 2006; 177: 1282–1288.

    Article  CAS  Google Scholar 

  23. Yue Y, Huang W, Liang J, Guo J, Ji J, Yao Y et al. IL4I1 Is a novel regulator of M2 macrophage polarization that can inhibit T cell activation via L-tryptophan and arginine depletion and IL-10 production. PLoS One 2015; 10: e0142979.

    Article  Google Scholar 

  24. Van Overmeire E, Stijlemans B, Heymann F, Keirsse J, Morias Y, Elkrim Y et al. M-CSF and GM-CSF receptor signaling differentially regulate monocyte maturation and macrophage polarization in the tumor microenvironment. Cancer Res 2016; 76: 35–42.

    Article  CAS  Google Scholar 

  25. Edwards JP, Zhang X, Frauwirth KA, Mosser DM . Biochemical and functional characterization of three activated macrophage populations. J Leukoc Biol 2006; 80: 1298–1307.

    Article  CAS  Google Scholar 

  26. Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 2014; 41: 14–20.

    Article  CAS  Google Scholar 

  27. Martinez FO, Gordon S . The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 2014; 6: 13.

    Article  Google Scholar 

  28. Martinez FO, Helming L, Milde R, Varin A, Melgert BN, Draijer C et al. Genetic programs expressed in resting and IL-4 alternatively activated mouse and human macrophages: similarities and differences. Blood 2013; 121: e57–e69.

    Article  CAS  Google Scholar 

  29. Cassol E, Cassetta L, Rizzi C, Alfano M, Poli G . M1 and M2a polarization of human monocyte-derived macrophages inhibits HIV-1 replication by distinct mechanisms. J Immunol 2009; 182: 6237–6246.

    Article  CAS  Google Scholar 

  30. Jablonski KA, Amici SA, Webb LM, Ruiz-Rosado Jde D, Popovich PG, Partida-Sanchez S et al. Novel markers to delineate murine M1 and M2 macrophages. PLoS One 2015; 10: e0145342.

    Article  Google Scholar 

  31. Martinez FO, Gordon S, Locati M, Mantovani A . Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol 2006; 177: 7303–7311.

    Article  CAS  Google Scholar 

  32. Roy S, Schmeier S, Arner E, Alam T, Parihar SP, Ozturk M et al. Redefining the transcriptional regulatory dynamics of classically and alternatively activated macrophages by deepCAGE transcriptomics. Nucleic Acids Res 2015; 43: 6969–6982.

    Article  CAS  Google Scholar 

  33. Lo TH, Tseng KY, Tsao WS, Yang CY, Hsieh SL, Chiu AW et al. TREM-1 regulates macrophage polarization in ureteral obstruction. Kidney Int 2014; 86: 1174–1186.

    Article  CAS  Google Scholar 

  34. Xu H, Zhu J, Smith S, Foldi J, Zhao B, Chung AY et al. Notch-RBP-J signaling regulates the transcription factor IRF8 to promote inflammatory macrophage polarization. Nat immunol 2012; 13: 642–650.

    Article  CAS  Google Scholar 

  35. Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM . M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 2000; 164: 6166–6173.

    Article  CAS  Google Scholar 

  36. Stewart DA, Yang Y, Makowski L, Troester MA . Basal-like breast cancer cells induce phenotypic and genomic changes in macrophages. Mol Cancer Res 2012; 10: 727–738.

    Article  CAS  Google Scholar 

  37. Schreiber HA, Loschko J, Karssemeijer RA, Escolano A, Meredith MM, Mucida D et al. Intestinal monocytes and macrophages are required for T cell polarization in response to Citrobacter rodentium. J exp med 2013; 210: 2025–2039.

    Article  CAS  Google Scholar 

  38. Robinson JH, Delvig AA . Diversity in MHC class II antigen presentation. Immunology 2002; 105: 252–262.

    Article  CAS  Google Scholar 

  39. ten Broeke T, Wubbolts R, Stoorvogel W . MHC class II antigen presentation by dendritic cells regulated through endosomal sorting. Cold Spring Harb Perspect Biol 2013; 5: a016873.

    Article  Google Scholar 

  40. Neefjes J, Jongsma ML, Paul P, Bakke O . Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat rev Immunol 2011; 11: 823–836.

    Article  CAS  Google Scholar 

  41. San Miguel JF, Gonzalez M, Gascon A, Moro MJ, Hernandez JM, Ortega F et al. Lymphoid subsets and prognostic factors in multiple myeloma. Cooperative Group for the Study of Monoclonal Gammopathies. Br j haematol 1992; 80: 305–309.

    Article  CAS  Google Scholar 

  42. Raitakari M, Brown RD, Sze D, Yuen E, Barrow L, Nelson M et al. T-cell expansions in patients with multiple myeloma have a phenotype of cytotoxic T cells. Br j haematol 2000; 110: 203–209.

    Article  CAS  Google Scholar 

  43. Koike M, Sekigawa I, Okada M, Matsumoto M, Iida N, Hashimoto H et al. Relationship between CD4(+)/CD8(+) T cell ratio and T cell activation in multiple myeloma: reference to IL-16. Leukemia res 2002; 26: 705–711.

    Article  CAS  Google Scholar 

  44. Yi Q, Dabadghao S, Osterborg A, Bergenbrant S, Holm G . Myeloma bone marrow plasma cells: evidence for their capacity as antigen-presenting cells. Blood 1997; 90: 1960–1967.

    CAS  PubMed  Google Scholar 

  45. Tveita A, Fauskanger M, Bogen B, Werner Haabeth OA . Tumor-specific CD4+T cells eradicate myeloma cells genetically deficient in MHC class II display. Oncotarget 2016; 7: 67175–67182.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Cancer Institute (R01 CA163881, CA200539, CA211073 and CA214811), the Leukemia and Lymphoma Society (6469-15) and the Multiple Myeloma Research Foundation (to QY); and the National Natural Science Foundation of China (81372536 to SW, 81372545 to CZ). We thank Cassandra Talerico, PhD, Department of Cancer Biology, Cleveland Clinic, for helpful editorial suggestions. This work used the PerkinElmer IVIS Spectrum CT In Vivo Imager that was purchased with funding from National Institutes of Health SIG grant 1S10OD018205-01A1.

Author contributions

QY, QW and SW initiated the work; SW, QW and QY wrote the manuscript; QW, YL, RL and YJ performed majority of the experiments; YZ, JQ and EB performed some experiments; JH and CZ provided critical suggestions to this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S Wang or Q Yi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Lu, Y., Li, R. et al. Therapeutic effects of CSF1R-blocking antibodies in multiple myeloma. Leukemia 32, 176–183 (2018). https://doi.org/10.1038/leu.2017.193

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2017.193

This article is cited by

Search

Quick links