Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Multiple Myeloma, Gammopathies

KDM6B modulates MAPK pathway mediating multiple myeloma cell growth and survival

Abstract

Recent studies have delineated cancer-type-specific roles of histone 3 lysine 27 (H3K27) demethylase KDM6B/JMJD3 depending on its H3K27 demethylase activity. Here we show that KDM6B is expressed in multiple myeloma (MM) cells; and that shRNA-mediated knockdown and CRISPR-mediated knockout of KDM6B abrogate MM cell growth and survival. Tumor necrosis factor-α or bone marrow stromal cell culture supernatants induce KDM6B, which is blocked by IKKβ inhibitor MLN120B, suggesting that KDM6B is regulated by NF-κB signaling in MM cells. RNA-seq and subsequent ChIP-qPCR analyses reveal that KDM6B is recruited to the loci of genes encoding components of MAPK signaling pathway including ELK1 and FOS, and upregulates expression of these genes without affecting H3K27 methylation level. Overexpression of catalytically inactive KDM6B activates expression of MAPK pathway-related genes, confirming its function independent of demethylase activity. We further demonstrate that downstream targets of KDM6B, ELK1 and FOS, confer MM cell growth. Our study therefore delineates KDM6B function that links NF-κB and MAPK signaling pathway mediating MM cell growth and survival, and validates KDM6B as a novel therapeutic target in MM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Hideshima T, Anderson KC . Molecular mechanisms of novel therapeutic approaches for multiple myeloma. Nat Rev Cancer 2002; 2: 927–937.

    Article  CAS  PubMed  Google Scholar 

  2. Hideshima T, Mitsiades C, Tonon G, Richardson PG, Anderson KC . Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nat Rev Cancer 2007; 7: 585–598.

    Article  CAS  PubMed  Google Scholar 

  3. Manier S, Salem KZ, Park J, Landau DA, Getz G, Ghobrial IM . Genomic complexity of multiple myeloma and its clinical implications. Nat Rev Clin Oncol 2016; 14: 100–113.

    Article  PubMed  Google Scholar 

  4. Lohr JG, Stojanov P, Carter SL, Cruz-Gordillo P, Lawrence MS, Auclair D et al. Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy. Cancer Cell 2014; 25: 91–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bolli N, Avet-Loiseau H, Wedge DC, Van Loo P, Alexandrov LB, Martincorena I et al. Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nat Commun 2014; 5: 2997.

    Article  PubMed  Google Scholar 

  6. Walker BA, Boyle EM, Wardell CP, Murison A, Begum DB, Dahir NM et al. Mutational spectrum, copy number changes, and outcome: results of a sequencing study of patients with newly diagnosed myeloma. J Clin Oncol 2015; 33: 3911–3920.

    Article  CAS  PubMed  Google Scholar 

  7. De Santa F, Totaro MG, Prosperini E, Notarbartolo S, Testa G, Natoli G . The histone H3 lysine-27 demethylase Jmjd3 links inflammation to inhibition of polycomb-mediated gene silencing. Cell 2007; 130: 1083–1094.

    Article  CAS  PubMed  Google Scholar 

  8. Agger K, Cloos PA, Christensen J, Pasini D, Rose S, Rappsilber J et al. UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature 2007; 449: 731–734.

    Article  CAS  PubMed  Google Scholar 

  9. Lan F, Bayliss PE, Rinn JL, Whetstine JR, Wang JK, Chen S et al. A histone H3 lysine 27 demethylase regulates animal posterior development. Nature 2007; 449: 689–694.

    Article  CAS  PubMed  Google Scholar 

  10. Agger K, Cloos PA, Rudkjaer L, Williams K, Andersen G, Christensen J et al. The H3K27me3 demethylase JMJD3 contributes to the activation of the INK4A-ARF locus in response to oncogene- and stress-induced senescence. Genes Dev 2009; 23: 1171–1176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Barradas M, Anderton E, Acosta JC, Li S, Banito A, Rodriguez-Niedenfuhr M et al. Histone demethylase JMJD3 contributes to epigenetic control of INK4a/ARF by oncogenic RAS. Genes Dev 2009; 23: 1177–1182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jepsen K, Solum D, Zhou T, McEvilly RJ, Kim HJ, Glass CK et al. SMRT-mediated repression of an H3K27 demethylase in progression from neural stem cell to neuron. Nature 2007; 450: 415–419.

    Article  CAS  PubMed  Google Scholar 

  13. Sen GL, Webster DE, Barragan DI, Chang HY, Khavari PA . Control of differentiation in a self-renewing mammalian tissue by the histone demethylase JMJD3. Genes Dev 2008; 22: 1865–1870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ntziachristos P, Tsirigos A, Welstead GG, Trimarchi T, Bakogianni S, Xu L et al. Contrasting roles of histone 3 lysine 27 demethylases in acute lymphoblastic leukaemia. Nature 2014; 514: 513–517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hashizume R, Andor N, Ihara Y, Lerner R, Gan H, Chen X et al. Pharmacologic inhibition of histone demethylation as a therapy for pediatric brainstem glioma. Nat Med 2014; 20: 1394–1396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Park WY, Hong BJ, Lee J, Choi C, Kim MY . H3K27 demethylase JMJD3 employs the NF-kappaB and BMP signaling pathways to modulate the tumor microenvironment and promote melanoma progression and metastasis. Cancer Res 2016; 76: 161–170.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang Y, Shen L, Stupack DG, Bai N, Xun J, Ren G et al. JMJD3 promotes survival of diffuse large B-cell lymphoma subtypes via distinct mechanisms. Oncotarget 2016; 7: 29387–29399.

    PubMed  PubMed Central  Google Scholar 

  18. Svotelis A, Bianco S, Madore J, Huppe G, Nordell-Markovits A, Mes-Masson AM et al. H3K27 demethylation by JMJD3 at a poised enhancer of anti-apoptotic gene BCL2 determines ERalpha ligand dependency. EMBO J 2011; 30: 3947–3961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wei Y, Chen R, Dimicoli S, Bueso-Ramos C, Neuberg D, Pierce S et al. Global H3K4me3 genome mapping reveals alterations of innate immunity signaling and overexpression of JMJD3 in human myelodysplastic syndrome CD34+ cells. Leukemia 2013; 27: 2177–2186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shah N, Asch RJ, Lysholm AS, Lebien TW . Enhancement of stress-induced apoptosis in B-lineage cells by caspase-9 inhibitor. Blood 2004; 104: 2873–2878.

    Article  CAS  PubMed  Google Scholar 

  21. Annunziata CM, Davis RE, Demchenko Y, Bellamy W, Gabrea A, Zhan F et al. Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 2007; 12: 115–130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Keats JJ, Fonseca R, Chesi M, Schop R, Baker A, Chng WJ et al. Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer Cell 2007; 12: 131–144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Huang, da W, Sherman BT, Lempicki RA . Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009; 4: 44–57.

    Article  CAS  Google Scholar 

  24. Huang, da W, Sherman BT, Lempicki RA . Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 2009; 37: 1–13.

    Article  Google Scholar 

  25. De Santa F, Narang V, Yap ZH, Tusi BK, Burgold T, Austenaa L et al. Jmjd3 contributes to the control of gene expression in LPS-activated macrophages. EMBO J 2009; 28: 3341–3352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Miller SA, Mohn SE, Weinmann AS . Jmjd3 and UTX play a demethylase-independent role in chromatin remodeling to regulate T-box family member-dependent gene expression. Mol Cell 2010; 40: 594–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhao W, Li Q, Ayers S, Gu Y, Shi Z, Zhu Q et al. Jmjd3 inhibits reprogramming by upregulating expression of INK4a/Arf and targeting PHF20 for ubiquitination. Cell 2013; 152: 1037–1050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shaffer AL, Emre NC, Lamy L, Ngo VN, Wright G, Xiao W et al. IRF4 addiction in multiple myeloma. Nature 2008; 454: 226–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ohguchi H, Hideshima T, Bhasin MK, Gorgun GT, Santo L, Cea M et al. The KDM3A-KLF2-IRF4 axis maintains myeloma cell survival. Nat Commun 2016; 7: 10258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Deshaies RJ . Protein degradation: Prime time for PROTACs. Nature Chem Biol 2015; 11: 634–635.

    Article  CAS  Google Scholar 

  31. Lu J, Qian Y, Altieri M, Dong H, Wang J, Raina K et al. Hijacking the E3 Ubiquitin Ligase Cereblon to Efficiently Target BRD4. Chem Biol 2015; 22: 755–763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Winter GE, Buckley DL, Paulk J, Roberts JM, Souza A, Dhe-Paganon S et al. DRUG DEVELOPMENT. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science 2015; 348: 1376–1381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zengerle M, Chan KH, Ciulli A . Selective small molecule induced degradation of the BET bromodomain protein BRD4. ACS Chem Biol 2015; 10: 1770–1777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bondeson DP, Mares A, Smith IE, Ko E, Campos S, Miah AH et al. Catalytic in vivo protein knockdown by small-molecule PROTACs. Nat Chem Biol 2015; 11: 611–617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr John Quackenbush and members of the Center for Cancer Computational Biology, Dana-Farber Cancer Institute for assistance with RNA-seq analysis. This research was supported by NIH grants SPORE P50-CA100707 (KCA), P01-CA078378 (KCA), R01-CA050947 (KCA) and R01-CA178264 (T Hideshima and KCA). KCA is an American Cancer Society Clinical Research Professor.

Author contributions

HO designed and performed experiments, analyzed the data and wrote the manuscript; T Harada, MS and SK analyzed the data; Y-TT and PGR provided clinical samples. T Hideshima and KCA analyzed the data and edited the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K C Anderson.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohguchi, H., Harada, T., Sagawa, M. et al. KDM6B modulates MAPK pathway mediating multiple myeloma cell growth and survival. Leukemia 31, 2661–2669 (2017). https://doi.org/10.1038/leu.2017.141

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2017.141

This article is cited by

Search

Quick links