Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic lymphocytic leukemia

Targeting antigen-independent proliferation in chronic lymphocytic leukemia through differential kinase inhibition

Abstract

The clinical success of B-cell receptor (BCR) signaling pathway inhibitors in chronic lymphocytic leukemia (CLL) is attributed to inhibition of adhesion in and migration towards the lymph node. Proliferation of CLL cells is restricted to this protective niche, but the underlying mechanism(s) is/are not known. Treatment with BCR pathway inhibitors results in rapid reductions of total clone size, while CLL cell survival is not affected, which points towards inhibition of proliferation. In vitro, BCR stimulation does not induce proliferation of CLL, but triggering via Toll-like receptor, tumor necrosis factor or cytokine receptors does. Here, we investigated the effects of clinically applied inhibitors that target BCR signaling, in the context of proliferation triggered either via CD40L/IL-21 or after CpG stimulation. CD40L/IL-21-induced proliferation could be inhibited by idelalisib and ibrutinib. We demonstrate this was due to blockade of CD40L-induced ERK-signaling. Targeting JAKs, but not SYK, blocked CD40L/IL-21-induced proliferation. In contrast, PI3K, BTK as well as SYK inhibition prevented CpG-induced proliferation. Knockdown experiments showed that CD40L/IL-21 did not co-opt upstream BCR components such as CD79A, in contrast to CpG-induced proliferation. Our data indicate that currently applied BTK/PI3K inhibitors target antigen-independent proliferation in CLL, and suggest that targeting of JAK and/or SYK might be clinically useful.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Tromp JM, Tonino SH, Elias JA, Jaspers A, Luijks DM, Kater AP et al. Dichotomy in NF-κB signaling and chemoresistance in immunoglobulin variable heavy-chain-mutated versus unmutated CLL cells upon CD40/TLR9 triggering. Oncogene 2010; 29: 5071–5082.

    Article  CAS  PubMed  Google Scholar 

  2. Herishanu Y, Perez-Galan P, Liu D, Biancotto A, Pittaluga S, Vire B et al. The lymph node microenvironment promotes B-cell receptor signaling, NF-kappaB activation, and tumor proliferation in chronic lymphocytic leukemia. Blood 2011; 117: 563–574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. De Silva NS, Klein U . Dynamics of B cells in germinal centres. Nat Rev Immunol 2015; 15: 137–148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Guo A, Lu P, Galanina N, Nabhan C, Smith SM, Coleman M et al. Heightened BTK-dependent cell proliferation in unmutated chronic lymphocytic leukemia confers increased sensitivity to ibrutinib. Oncotarget 2015; 7: 4598–4610.

    PubMed Central  Google Scholar 

  5. Pascutti MF, Jak M, Tromp JM, Derks IA, Remmerswaal EB, Thijssen R et al. IL-21 and CD40L signals from autologous T cells can induce antigen-independent proliferation of CLL cells. Blood 2013; 122: 3010–3019.

    Article  CAS  PubMed  Google Scholar 

  6. Mongini PK, Gupta R, Boyle E, Nieto J, Lee H, Stein J et al. TLR-9 and IL-15 synergy promotes the in vitro clonal expansion of chronic lymphocytic leukemia B cells. J Immunol 2015; 195: 901–923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Duhren-von Minden M, Ubelhart R, Schneider D, Wossning T, Bach MP, Buchner M et al. Chronic lymphocytic leukaemia is driven by antigen-independent cell-autonomous signalling. Nature 2012; 489: 309–312.

    Article  PubMed  Google Scholar 

  8. Byrd JC, Furman RR, Coutre SE, Flinn IW, Burger JA, Blum KA et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med 2013; 369: 32–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brown JR, Byrd JC, Coutre SE, Benson DM, Flinn IW, Wagner-Johnston ND et al. Idelalisib, an inhibitor of phosphatidylinositol 3-kinase p110delta, for relapsed/refractory chronic lymphocytic leukemia. Blood 2014; 123: 3390–3397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. de Rooij MF, Kuil A, Geest CR, Eldering E, Chang BY, Buggy JJ et al. The clinically active BTK inhibitor PCI-32765 targets B-cell receptor- and chemokine-controlled adhesion and migration in chronic lymphocytic leukemia. Blood 2012; 119: 2590–2594.

    Article  CAS  PubMed  Google Scholar 

  11. de Rooij MF, Kuil A, Kater AP, Kersten MJ, Pals ST, Spaargaren M . Ibrutinib and idelalisib synergistically target BCR-controlled adhesion in MCL and CLL: a rationale for combination therapy. Blood 2015; 125: 2306–2309.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Herman SE, Niemann CU, Farooqui M, Jones J, Mustafa RZ, Lipsky A et al. Ibrutinib-induced lymphocytosis in patients with chronic lymphocytic leukemia: correlative analyses from a phase II study. Leukemia 2014; 28: 2188–2196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Herman SE, Mustafa RZ, Gyamfi JA, Pittaluga S, Chang S, Chang B et al. Ibrutinib inhibits BCR and NF-kappaB signaling and reduces tumor proliferation in tissue-resident cells of patients with CLL. Blood 2014; 123: 3286–3295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Burger JA, Li KW, Keating MJ, Sivina M, Amer AM, Garg N et al. Leukemia cell proliferation and death in chronic lymphocytic leukemia patients on therapy with the BTK inhibitor ibrutinib. JCI Insight 2017; 2: e89904.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Thijssen R, Ter Burg J, van Bochove GG, de Rooij MF, Kuil A, Jansen MH et al. The pan phosphoinositide 3-kinase/mammalian target of rapamycin inhibitor SAR245409 (voxtalisib/XL765) blocks survival, adhesion and proliferation of primary chronic lymphocytic leukemia cells. Leukemia 2016; 30: 337–345.

    Article  CAS  PubMed  Google Scholar 

  16. Ghia P, Strola G, Granziero L, Geuna M, Guida G, Sallusto F et al. Chronic lymphocytic leukemia B cells are endowed with the capacity to attract CD4+, CD40L+ T cells by producing CCL22. Eur J Immunol 2002; 32: 1403–1413.

    Article  CAS  PubMed  Google Scholar 

  17. Wagner M, Oelsner M, Moore A, Gotte F, Kuhn PH, Haferlach T et al. Integration of innate into adaptive immune responses in ZAP-70-positive chronic lymphocytic leukemia. Blood 2016; 127: 436–448.

    Article  CAS  PubMed  Google Scholar 

  18. Smit LA, Hallaert DY, Spijker R, de Goeij B, Jaspers A, Kater AP et al. Differential Noxa/Mcl-1 balance in peripheral versus lymph node chronic lymphocytic leukemia cells correlates with survival capacity. Blood 2007; 109: 1660–1668.

    Article  CAS  PubMed  Google Scholar 

  19. Herman SE, Gordon AL, Hertlein E, Ramanunni A, Zhang X, Jaglowski S et al. Bruton tyrosine kinase represents a promising therapeutic target for treatment of chronic lymphocytic leukemia and is effectively targeted by PCI-32765. Blood 2011; 117: 6287–6296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Purroy N, Abrisqueta P, Carabia J, Carpio C, Palacio C, Bosch F et al. Co-culture of primary CLL cells with bone marrow mesenchymal cells, CD40 ligand and CpG ODN promotes proliferation of chemoresistant CLL cells phenotypically comparable to those proliferating in vivo. Oncotarget 2015; 6: 7632–7643.

    Article  PubMed  Google Scholar 

  21. Decker T, Schneller F, Sparwasser T, Tretter T, Lipford GB, Wagner H et al. Immunostimulatory CpG-oligonucleotides cause proliferation, cytokine production, and an immunogenic phenotype in chronic lymphocytic leukemia B cells. Blood 2000; 95: 999–1006.

    CAS  PubMed  Google Scholar 

  22. Xu L, Hunter ZR, Yang G, Zhou Y, Cao Y, Liu X et al. MYD88 L265P in Waldenstrom macroglobulinemia, immunoglobulin M monoclonal gammopathy, and other B-cell lymphoproliferative disorders using conventional and quantitative allele-specific polymerase chain reaction. Blood 2013; 121: 2051–2058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang G, Zhou Y, Liu X, Xu L, Cao Y, Manning RJ et al. A mutation in MYD88 (L265P) supports the survival of lymphoplasmacytic cells by activation of Bruton tyrosine kinase in Waldenstrom macroglobulinemia. Blood 2013; 122: 1222–1232.

    Article  CAS  PubMed  Google Scholar 

  24. Jahrsdorfer B, Blackwell SE, Wooldridge JE, Huang J, Andreski MW, Jacobus LS et al. B-chronic lymphocytic leukemia cells and other B cells can produce granzyme B and gain cytotoxic potential after interleukin-21-based activation. Blood 2006; 108: 2712–2719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Honigberg LA, Smith AM, Sirisawad M, Verner E, Loury D, Chang B et al. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc Natl Acad Sci USA 2010; 107: 13075–13080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hanissian SH, Geha RS . Jak3 is associated with CD40 and is critical for CD40 induction of gene expression in B cells. Immunity 1997; 6: 379–387.

    Article  CAS  PubMed  Google Scholar 

  27. Quintas-Cardama A, Vaddi K, Liu P, Manshouri T, Li J, Scherle PA et al. Preclinical characterization of the selective JAK1/2 inhibitor INCB018424: therapeutic implications for the treatment of myeloproliferative neoplasms. Blood 2010; 115: 3109–3117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li YY, Baccam M, Waters SB, Pessin JE, Bishop GA, Koretzky GA . CD40 ligation results in protein kinase C-independent activation of ERK and JNK in resting murine splenic B cells. J Immunol 1996; 157: 1440–1447.

    CAS  PubMed  Google Scholar 

  29. Scuto A, Krejci P, Popplewell L, Wu J, Wang Y, Kujawski M et al. The novel JAK inhibitor AZD1480 blocks STAT3 and FGFR3 signaling, resulting in suppression of human myeloma cell growth and survival. Leukemia 2011; 25: 538–550.

    Article  CAS  PubMed  Google Scholar 

  30. Dey A, She H, Kim L, Boruch A, Guris DL, Carlberg K et al. Colony-stimulating factor-1 receptor utilizes multiple signaling pathways to induce cyclin D2 expression. Mol Biol Cell 2000; 11: 3835–3848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sanchez M, Misulovin Z, Burkhardt AL, Mahajan S, Costa T, Franke R et al. Signal transduction by immunoglobulin is mediated through Ig alpha and Ig beta. J Exp Med 1993; 178: 1049–1055.

    Article  CAS  PubMed  Google Scholar 

  32. Vuillier F, Dumas G, Magnac C, Prevost MC, Lalanne AI, Oppezzo P et al. Lower levels of surface B-cell-receptor expression in chronic lymphocytic leukemia are associated with glycosylation and folding defects of the mu and CD79a chains. Blood 2005; 105: 2933–2940.

    Article  CAS  PubMed  Google Scholar 

  33. Brouns GS, de Vries E, Borst J . Assembly and intracellular transport of the human B cell antigen receptor complex. Int Immunol 1995; 7: 359–368.

    Article  CAS  PubMed  Google Scholar 

  34. Brunner C, Avots A, Kreth HW, Serfling E, Schuster V . Bruton's tyrosine kinase is activated upon CD40 stimulation in human B lymphocytes. Immunobiology 2002; 206: 432–440.

    Article  CAS  PubMed  Google Scholar 

  35. Chen SS, Chang BY, Chang S, Tong T, Ham S, Sherry BA et al. BTK inhibition results in impaired CXCR4 chemokine receptor surface expression, signaling and function in chronic lymphocytic leukemia. Leukemia 2015.

  36. Yoon K, Jung EJ, Lee SR, Kim J, Choi Y, Lee SY . TRAF6 deficiency promotes TNF-induced cell death through inactivation of GSK3beta. Cell Death Differ 2008; 15: 730–738.

    Article  CAS  PubMed  Google Scholar 

  37. Deregibus MC, Buttiglieri S, Russo S, Bussolati B, Camussi G . CD40-dependent activation of phosphatidylinositol 3-kinase/Akt pathway mediates endothelial cell survival and In vitro angiogenesis. J Biol Chem 2003; 278: 18008–18014.

    Article  CAS  PubMed  Google Scholar 

  38. Wiestner A . BCR pathway inhibition as therapy for chronic lymphocytic leukemia and lymphoplasmacytic lymphoma. Hematology 2014; 2014: 125–134.

    Article  PubMed  Google Scholar 

  39. Chang BY, Francesco M, De Rooij MF, Magadala P, Steggerda SM, Huang MM et al. Egress of CD19(+)CD5(+) cells into peripheral blood following treatment with the Bruton tyrosine kinase inhibitor ibrutinib in mantle cell lymphoma patients. Blood 2013; 122: 2412–2424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Aguilar-Hernandez MM, Blunt MD, Dobson R, Yeomans A, Thirdborough S, Larrayoz M et al. IL-4 enhances expression and function of surface IgM in CLL cells. Blood 2016; 127: 3015–3025.

    Article  CAS  PubMed  Google Scholar 

  41. Paul JT, Henson ES, Mai S, Mushinski FJ, Cheang M, Gibson SB et al. Cyclin D expression in chronic lymphocytic leukemia. Leuk Lymphoma 2005; 46: 1275–1285.

    Article  CAS  PubMed  Google Scholar 

  42. Igawa T, Sato Y, Takata K, Fushimi S, Tamura M, Nakamura N et al. Cyclin D2 is overexpressed in proliferation centers of chronic lymphocytic leukemia/small lymphocytic lymphoma. Cancer Sci 2011; 102: 2103–2107.

    Article  CAS  PubMed  Google Scholar 

  43. Kato JY, Matsuoka M, Strom DK, Sherr CJ . Regulation of cyclin D-dependent kinase 4 (cdk4) by cdk4-activating kinase. Mol Cell Biol 1994; 14: 2713–2721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chiron D, Di Liberto M, Martin P, Huang X, Sharman J, Blecua P et al. Cell-cycle reprogramming for PI3K inhibition overrides a relapse-specific C481S BTK mutation revealed by longitudinal functional genomics in mantle cell lymphoma. Cancer Discov 2014; 4: 1022–1035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the CLL patients for their blood donations and collaboration in this study. This work was supported by a grant from the Dutch Cancer Foundation (number UVA 2011-5097) to APK.

Author contributions

ES and RT designed, performed and interpreted experiments. ES analyzed the results and prepared the figures. ES, EE and APK wrote the paper. RT contributed to writing. EE and APK supervised this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Eldering.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slinger, E., Thijssen, R., Kater, A. et al. Targeting antigen-independent proliferation in chronic lymphocytic leukemia through differential kinase inhibition. Leukemia 31, 2601–2607 (2017). https://doi.org/10.1038/leu.2017.129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2017.129

This article is cited by

Search

Quick links