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A novel AHI-1–BCR-ABL–DNM2 complex regulates
leukemic properties of primitive CML cells through enhanced
cellular endocytosis and ROS-mediated autophagy
X Liu1,2,5, K Rothe1,3,5, R Yen1,2, C Fruhstorfer1, T Maetzig1, M Chen1, DL Forrest2,4, RK Humphries1,2 and X Jiang1,2,3

Tyrosine kinase inhibitor (TKI) therapies induce clinical remission with remarkable effects on chronic myeloid leukemia (CML).
However, very few TKIs completely eradicate the leukemic clone and persistence of leukemic stem cells (LSCs) remains challenging,
warranting new, distinct targets for improved treatments. We demonstrated that the scaffold protein AHI-1 is highly deregulated in
LSCs and interacts with multiple proteins, including Dynamin-2 (DNM2), to mediate TKI-resistance of LSCs. We have now
demonstrated that the SH3 domain of AHI-1 and the proline rich domain of DNM2 are mainly responsible for this interaction. DNM2
expression was significantly increased in CML stem/progenitor cells; knockdown of DNM2 greatly impaired their survival and
sensitized them to TKI treatments. Importantly, a new AHI-1–BCR-ABL–DNM2 protein complex was uncovered, which regulates
leukemic properties of these cells through a unique mechanism of cellular endocytosis and ROS-mediated autophagy. Thus,
targeting this complex may facilitate eradication of LSCs for curative therapies.
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INTRODUCTION
Chronic myeloid leukemia (CML) is a clonal myeloproliferative
disorder that originates in hematopoietic stem cells and evolves
through three stages: chronic phase (CP), accelerated phase (AP)
and blast crisis (BC).1–5 CML and a subset of acute lymphoblastic
leukemia (ALL) are caused by a BCR-ABL fusion gene with
constitutively elevated tyrosine kinase (TK) activity that drives
CML/ALL pathogenesis.1–5 ABL-specific tyrosine kinase inhibitor
(TKI) monotherapies have been applied successfully in CP
patients.6–8 However, most patients harbor residual leukemic
cells, and disease usually recurs if TKI Imatinib (IM) treatment is
discontinued.9–11 One of the major challenges is the persistence of
leukemic stem cells (LSCs) with multiple unique properties that are
not well understood.12–17 Therefore, it is imperative to seek other
therapeutic targets in LSCs for curative therapies.
One candidate is Ahi-1 (Abelson helper integration site-1),

which was identified as a cooperative oncogene in a v-abl-
induced murine model.18 Human AHI-1 has an N-terminal coiled-
coil domain, a WD40-repeat domain and a SH3 domain, all
mediators of protein–protein interactions.18 Interestingly, AHI-1
expression is significantly elevated in CML LSCs and the AHI-1-
mediated protein complex containing BCR-ABL and JAK2 con-
tributes to the BCR-ABL transforming ability and TKI resistance of
primary CML stem/progenitor cells.19–21 We have further demon-
strated that the AHI-1 SH3 domain plays a critical role in mediating
TKI response/resistance in BCR-ABL+ cells and identified Dynamin-
2 (DNM2) as a new AHI-1 interacting protein.22

DNM2, a large GTPase, is involved in multiple cellular activities
such as endocytosis, actin cytoskeleton formation and micro-
tubule reorganization,23–26 and its deregulation has been

implicated in the oncogenesis of numerous malignancies.27–32

However, the biological relevance of DNM2 in CML pathogenesis
and drug resistance is unknown.
Here we demonstrate that the interaction between AHI-1 and

DNM2 is mainly ascribed to SH3-PRD recognition. DNM2 expres-
sion was significantly increased in leukemic stem/progenitor cells,
and DNM2 suppression reduced survival and enhanced TKI
sensitivity of BCR-ABL+ blast cells and TKI-insensitive stem/
progenitor cells. Importantly, a new AHI-1-mediated protein
complex containing BCR-ABL and DNM2 was identified, which is
strongly implicated in the deregulation of endocytosis, ROS
production and autophagy in leukemic stem/progenitor cells.

MATERIALS AND METHODS
Patients
Heparin-anticoagulated peripheral blood (PB) or bone marrow (BM) cells
from 28 CP CML patients, none previously treated with TKIs, were studied
(Supplementary Table 1). Subsequent IM responders and IM nonrespon-
ders were classified based on the European Leukemia Net guidelines
(Supplementary Table 1).6,33

Human cells
PB or BM cells were obtained from newly diagnosed patients and healthy
adult donors (ALLCELLS). Informed consent was obtained in accordance
with the Declaration of Helsinki, and the procedures used were approved
by the Research Ethics Board at the University of British Columbia.
Mononuclear cells were isolated using Lymphoprep (STEMCELL Technol-
ogies, Vancouver, BC, Canada) and CD34+ cells (485%) were enriched
immunomagnetically using the EasySep CD34 positive selection kit
(STEMCELL Technologies). Purity was verified by restaining isolated cells
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with an allophycocyanin-labeled (APC) anti-CD34 antibody (Thermo Fisher
Scientific, Waltham, MA, USA) and fluorescence-activated cell sorter analysis.

Cell cultures
BCR-ABL+ human cell lines were cultured in RPMI 1640 medium
supplemented with 10% fetal bovine serum (FBS, Life Technologies,
Carlsbad, CA, USA), 0.1 mg/ml streptomycin (Thermo Fisher Scientific),
100 U/l penicillin (Thermo Fisher Scientific) and 10− 4 M β-mercaptoethanol
(STEMCELL Technologies). Parental BaF3 cells, human 293T cells and
primary CD34+ cells were cultured as described previously.19

DNM2 constructs and lentiviral vectors
Full-length human DNM2 and DNM2 PRDΔ were cloned into the KA391
vector through AscI and PacI restriction sites. The pGFP-C-lenti vector
(OriGene), containing the non-targeting sequence or DNM2 shRNA
constructs, and the pRRL-PPT-SF-GFP-pre vector were used as templates

to amplify the U6 promoter-shRNAs and the SFFV promoter, respectively.
The two PCR products were then mixed and used as template for the third
overlapping PCR. The final PCR product was then cloned into the pRRL-
PPT-SF-GFP-pre vector using NdeI (NEB) and AgeI (NEB) restriction sites.
Additional details are available in Supplementary Methods.

Reagents
Imatinib, ponatinib and ABL001 were obtained from Selleckchem
(Houston, TX, USA). MitMAB was obtained from Abcam (Cambridge, UK).

Western blotting and co-immunoprecipitation
Detailed procedures were described previously.18,19,21 Briefly, for western
blotting, protein samples were separated in 8–15% SDS-PAGE, followed by
transfer to a polyvinylidene difluoride membrane (EMD Millipore, Sigma-
Aldrich Canada Co., Oakville, ON, Canada). The membrane was subsequently
incubated with specific antibodies. For co-immunoprecipitation (co-IP), cell
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Figure 1. The interaction between Ahi-1 and DNM2 depends on SH3-PRD recognition within endosomal compartments. (a) Schematic
representations of four Ahi-1 and DNM2 constructs, including HA-tagged full-length Ahi-1 (HA-Ahi-1), HA-tagged SH3 domain-deleted Ahi-1
(HA-SH3Δ), Myc-tagged full-length DNM2 (Myc-DNM2) and Myc-tagged proline rich domain-deleted DNM2 (Myc-PRDΔ). 293T cells co-
transfected with indicated constructs were stained with anti-HA (green) and anti-Myc (red) antibodies. DAPI was used to stain the nuclei.
Representative images are shown. (b, c) 293T cells co-transfected with indicated constructs were stained with anti-HA (green) and anti-EEA1
(red, b) or anti-LAMP-1 (red, c) antibodies. Images were acquired using a magnification of × 60 by confocal microscopy. The white scale bar
represents 5 μm.
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lysates were incubated overnight with a specific primary antibody at 4 °C,
and the immune complexes were incubated with protein A or protein G
bead flurry (Santa Cruz Biotechnology, Dallas, TX, USA) for 2 h at 4 °C on
the second day. Beads were then resuspended in SDS-loading buffer and
used for western blotting. Antibodies used are listed in Supplementary
Table 2.

293T cell transfection and immunostaining
For transfection, a mixture of DNA plasmids and polyethylenimine (PEI,
Polysciences Inc., Warrington, PA, USA) was added to 293T cells, followed
by incubation at 37 °C for 48 h. For immunostaining, cells that grew on
cover slips were fixed with 4% paraformaldehyde and permeabilized with
0.1% Triton-100 (Sigma-Aldrich Canada Co.) at room temperature. Cells
were then blocked with 3% BSA, followed by incubation with primary and
then secondary antibodies. Finally, the slides were mounted in Prolong
Gold antifade reagent (Life Technologies) with DAPI. Additional details are
available in Supplementary Methods.

RNA extraction and quantitative real-time PCR
Total RNA was extracted using TRIzol (Life Technologies) according to
manufacturer’s instructions.34 During RNA precipitation, glycogen (Life
Technologies) was used to visualize the RNA pellet. The RNA pellet was
then dissolved in RNAse-free water (Life Technologies). Quantitative real-
time PCR was performed as previously described.13 Additional details are
available in the Supplementary Methods.

Lentivirus production and infection
Lentiviral production of DNM2 shRNAs in 293T cells using pGFP-C-shLenti
and pRRL-PPT-SF-GFP-pre viral vectors and transduction of DNM2 shRNAs
into K562, BV173 and CD34+ CML cells are described in Supplementary
Methods.

Viability and apoptosis assays
Total viable cells were assessed on a Neubauer hemacytometer (Hausser
Scientific, Horsham, PA, USA) using the trypan blue (Life Technologies)
exclusion method. Apoptosis analysis was performed using an
Apoptosis Detection kit (Thermo Fisher Scientific). After being treated
with inhibitors for 24 or 48 h, the cells were pelleted and resuspended in
binding buffer with PI and APC-conjugated Annexin V at room
temperature for 15 min. Cells were analyzed using a FACS Calibur (BD
Bioscience, San Jose, CA, USA). Total apoptotic cell numbers were
calculated as the sum of ‘early’ apoptotic cells (Annexin V+ only) and
‘late’ apoptotic cells (Annexin V+/PI+).

Colony-forming cell and long-term culture-initiating cell assays
Detailed procedures were previously described.19,21,35 Briefly, for colony-
forming cell assays, 3000 primary CD34+ CML cells were mixed with 3 ml
MethoCult H4230 (STEMCELL Technologies) and growth factor cocktail in
the presence or absence of inhibitors. The colonies produced were
counted after 14 days incubation. For the long-term culture-initiating cell
assay, CD34+ CML cells were plated onto humanized feeders in Myelocult
H5100 medium (STEMCELL Technologies) containing 10− 6

M solu cortef
(STEMCELL Technologies) for 6 weeks. Half-medium change was
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Figure 2. Increased expression of DNM2 in CD34+ CML stem/progenitor cells and lentiviral-mediated knockdown of DNM2 in BCR–ABL+ cells
affects the JAK2/STAT5 pathway. (a) Quantitative real-time PCR analysis of the transcript levels of DNM2 in CD34+ cells purified from normal
bone marrow (NBM), IM responders (IM R) and IM nonresponders (IM NR). DNM2 transcript levels were normalized to the control gene β2M,
and bars represent the mean of data for each group. Comparison of the transcript levels of DNM2 in three subpopulations from IM NR (n= 8,
red) and IM R (n= 5, blue). (b) Western blot analysis of phosphorylation and protein expression levels of DNM2 and other proteins in DNM2
knockdown K562 cells (shDNM2A and shDNM2B) and BV173 cells (shDNM2A). The densitometry values of protein expression changes are
indicated as compared to SHC control.
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performed weekly. Inhibitors were added on the first day when the assays
were set up. After 6 weeks, 1 × 104 viable cells were plated for colony-
forming cell assays.

Transferrin uptake assay
Cells were kept on ice for 10 min to stop endocytosis, washed twice with a
HEPES-based buffer at pH 7.4 containing 20 mM glucose (Bdh Inc.,
Conestoga, PA, USA) and 1% BSA (referred to as wash buffer thereafter).
Subsequently, cells were incubated with the wash buffer containing
transferrin conjugates (Life Technologies) for 30 min at 37 oC, and then
kept on ice for 10 min to terminate the reaction. Cells were plated onto
poly-L-lysine-coated slides, followed by fixation with 4% paraformaldehyde
at room temperature. The slides were finally mounted in Prolong Gold
antifade reagent with DAPI. Slides were examined using a Nikon C1
confocal microscope (Nikon Canada Inc., Mississauga, ON, Canada) and
results obtained were quantified by ImageJ.

ROS staining
Cells were incubated with CellROX Reagent (Life Technologies) in complete
RPMI for 30 min at 37 oC, and plated onto poly-L-lysine-coated slides for
20 min. Fixation, mounting and image acquisition were performed as
described above for the transferrin uptake assay.

Statistical analysis
Results are shown as the mean± s.e.m. of values obtained in two to three
independent experiments. Differences between groups were assessed
using the two-tailed Student’s t-test for paired or unpaired samples, or by
ANOVA. A P-value o0.05 was considered significant.

RESULTS
Ahi-1/AHI-1 interacts with DNM2 through SH3-PRD recognition
within endosomal compartments
To dissect the interaction between Ahi-1/AHI-1 and DNM2, four
Ahi-1 and DNM2 constructs were generated, including HA-tagged
full-length or SH3 domain-deleted Ahi-1 and Myc-tagged full-
length or proline rich domain (PRD)-deleted DNM2 (Figure 1a, left).
Proximity ligation assays (PLA)36 read out by confocal microscopy
analysis, which detect protein interactions at a single-molecule
level, revealed strong fluorescent signals only in 293T cells co-
transfected with full-length Ahi-1 and DNM2, but not in cells co-
expressing Ahi-1 and DNM2 mutants, suggesting that the SH3-
PRD recognition is essential for the interaction between Ahi-1/
AHI-1 and DNM2 (Supplementary Figure 1). Confocal images
further showed that co-localization signals were observed in the
cytoplasm of cells with full-length Ahi-1 and DNM2, but barely
detectable in Ahi-1/DNM2 PRDΔ co-transfected cells (Figure 1a,
right). Ahi-1 SH3Δ localized to the nuclei, while full-length DNM2
or DNM2 PRDΔ was cytoplasmic, so no co-localization signals were
detected (Figure 1a, right). Thus, the binding between the AHI-1
SH3 domain and DNM2 PRD is critical for the interaction between
Ahi-1/AHI-1 and DNM2.
Observing the specific co-localization signals of Ahi-1 and

DNM2 in a ‘punctate’ pattern (Figure 1a), and given that DNM2 is a
major component in the endocytic pathway,37–40 we investigated
whether the interaction occurred in endosomal compartments.
293T cells co-expressing Ahi-1 and DNM2 mutants were co-
immunostained with anti-HA/anti-EEA1 (early endosomal marker)
antibodies or anti-HA/anti-LAMP1 (late endosomal marker)
antibodies,41 followed by co-localization analysis. In the full-
length Ahi-1/DNM2 cells, Ahi-1 co-localized with EEA1 or LAMP1 in
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Figure 3. Lentiviral-mediated knockdown of DNM2 impairs the survival of CD34+ CML stem/progenitor cells and sensitizes these cells to TKIs.
(a) Cell proliferation of control (SHC) or DNM2-knockdown CD34+ CML cells with or without 5 μM IM (left) and MitMAB (right). (b) Cell viability
(left) and apoptosis (right) assays in SHC or DNM2-knockdown CD34+ CML cells with or without 5 μM IM or 150 nM DA treatments. Values
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AHI-1–BCR-ABL–DNM2 complex regulates leukemic properties in CML
X Liu et al

2379

Leukemia (2017) 2376 – 2387



the cytoplasm; in contrast, the co-localization signals were
significantly disrupted in Ahi-1/DNM2 PRDΔ mutant cells
(Figures 1b and c). Co-localization signals were not detectable in
cells containing Ahi-1 SH3Δ mutant since it resided in the nucleus
(Figures 1b and c). These results indicate that Ahi-1’s interaction
with DNM2 occurs in endosomes.

Transcript levels of DNM2 are significantly increased in CD34+ CML
stem/progenitor cells
To determine whether DNM2 is involved in the pathogenesis of
CML, transcript levels of DNM2 were examined in CD34+ normal
and CML cells. Interestingly, DNM2 transcripts were significantly
increased in treatment-naive CD34+ cells from subsequent IM
responders (n= 11) and IM nonresponders (n= 14) compared to
CD34+ normal BM cells (n= 7, P= 0.013 and 0.037, Figure 2a). In
addition, DNM2 expression was significantly higher in CML stem-
enriched (lin−CD34+CD38−, n= 8) and progenitor cells (lin−CD34+

CD38+, n= 8) than mature cells (lin+CD34−, n= 7) from IM

nonresponders (P= 0.0012 and 0.0229, Figure 2a). Similar results
were observed from IM responders (n= 5), however the stem-
enriched fraction from IM nonresponders showed a modest
increase in DNM2 transcript levels compared to the same
population from IM responders (Figure 2a). These results
demonstrated relevance of DNM2 deregulation in primitive
CML cells.

Lentiviral-mediated knockdown of DNM2 expression strongly
disturbs survival, apoptosis, and the JAK2/STAT5 pathway in BCR-
ABL+ blast cells
To determine the biological significance of DNM2 in CML, lentiviral-
mediated DNM2 knockdown was performed in K562 and BV173
blast cells; DNM2 expression was reduced about 90 and 45% in
K562 cells with two constructs (shDNM2A and shDNM2B) and 65%
in BV173 cells with shDNM2A (Figure 2b). Transduced K562 cells
showed a significant decrease in viability (shDNM2A vs shDNM2B,
32% vs 79%) and increased apoptosis compared to cells transduced
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with a vector control (SHC), which correlated with the level of
DNM2 protein suppression (Supplementary Figures 2a and b).
These effects were enhanced upon IM treatment. Similarly, DNM2-
knockdown BV173 cells showed a significant growth disadvantage,
increased apoptosis and sensitization to TKIs (IM or dasatinib (DA))
compared to control cells (Supplementary Figures 2c and d). These
observations were supported by reduced viability (~50%) and
increased apoptosis in K562 and BV173 SHC cells treated with
MitMAB,42 a selective DNM2 inhibitor. MitMAB treatment in DNM2-
knockdown cells resulted in even greater biological consequences
(Supplementary Figure 2). Knockdown of DNM2 also led to reduced
phosphorylation of BCR-ABL, JAK2 and STAT5, which corresponded
to DNM2 suppression levels, but unaltered p-AKT and p-ERK, as
compared to SHC control cells (Figure 2b). Thus, genetic and
pharmacological suppression of DNM2 significantly impaired
survival of BCR-ABL+ blast cells and sensitized them to TKI
treatments, possibly through the DNM2/BCR-ABL-mediated JAK2/
STAT5 pathway.

Lentiviral-mediated knockdown of DNM2 expression significantly
impairs survival and increases TKI sensitivity of CML stem/
progenitor cells
To investigate the effects of DNM2 in primary CML stem/
progenitor cells, DNM2 expression was suppressed by 80–90%
using lentiviral-mediated knockdown in CD34+ cells from three IM
nonresponders (Supplementary Figure 3 and Supplementary
Table 1). Compared to SHC controls, DNM2-suppressed CD34+

CML cells showed significantly reduced proliferative potential with

or without IM (Po0.05, Figure 3a, left). DNM2 knockdown
decreased the viability of CD34+ CML cells (54%) compared to
SHC control cells, and the effects were further enhanced with IM
(32% vs 70%) or DA (38% vs 74%, Figure 3b, left). CD34+ CML cells
with DNM2 depletion also exhibited increased apoptosis, and
these effects were further enhanced with IM or DA (Figure 3b,
right). DNM2 suppression reduced the colony-forming ability of
CD34+ cells by 38% relative to SHC control cells, and the effects
were more prominent with IM or DA treatments (Figure 4a).
Importantly, long-term culture-initiating cell assays demonstrated
that DNM2 depletion also impaired the long-term colony growth
of LSCs (37%) relative to control cells, and further sensitized them
to IM (28% vs 49%) or DA (32% vs 55%, Figure 4b). MitMAB
treatments in CD34+ CML cells mimicked the biological con-
sequences of DNM2 knockdown (Figure 3a, right). Overall, DNM2
depletion had a detrimental effect on survival of TKI-insensitive
stem and progenitor cells.

Identification of a new AHI-1–BCR-ABL–DNM2 protein complex
and BCR-ABL phosphorylates DNM2 in BCR-ABL+ cells
Co-IP experiments revealed a complex between BCR-ABL and
DNM2 in K562 and K562 IM-resistant cells (K562 IMR) after
immunoprecipitation with an anti-DNM2 antibody (Figure 4c, left).
This interaction was confirmed in BCR-ABL-transduced BaF3 cells.
Strikingly, this interaction was enhanced in BCR-ABL-transduced
cells co-expressing full-length Ahi-1; in contrast, the interaction
was not observed in BCR-ABL/Ahi-1 SH3Δ co-transduced cells
(Figure 4c, middle). This was supported by the observation of
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with a pan-anti-p-Tyr antibody (4G10) or anti-DNM2 antibody. (c) Co-immunoprecipitation assays in BCR–ABL/Myc-DNM2 co-transfected
293T cells cultured with or without 5 μM IM for 24 h. Protein extracts were immunoprecipitated with anti-Myc antibody and then
immunoblotted with a pan-anti-p-Tyr antibody (4G10) or anti-Myc antibody. (d) Co-immunoprecipitation assays of UT7 BCR–ABL T315I (UT7 B/
A T315I) cells with or without ponatinib (20 nM) or ABL001 (4 μM) treatment for 24 h. All protein extracts were immunoprecipitated with an
anti-DNM2 antibody and immunoblotted with a pan-anti-p-Tyr antibody (4G10).

AHI-1–BCR-ABL–DNM2 complex regulates leukemic properties in CML
X Liu et al

2381

Leukemia (2017) 2376 – 2387



strong co-localization signals in 293T cells co-expressing full-
length HA-Ahi-1, BCR-ABL and Myc-DNM2, while the co-
localization between Ahi-1, BCR-ABL and DNM2 PRDΔ or between
Ahi-1 SH3Δ, BCR-ABL and DNM2/DNM2 PRDΔ was barely
detectable (Figure 4c, right). Co-IP experiments revealed that IM
treatment greatly reduced endogenous p-DNM2 levels in K562
and K562 IMR cells compared to the same cells without IM
treatment (490%, Figure 5a, left), suggesting that BCR-ABL
phosphorylated DNM2 in these cells. Furthermore, BCR-ABL-
transduced human UT7 cells also exhibited significantly reduced
DNM2 phosphorylation upon IM treatment, but in the same cells
transduced with a BCR-ABL–T315I mutant that prevents
TKI binding, IM treatment did not decrease, but rather enhanced
DNM2 phosphorylation (Figure 5a, right and Supplementary
Figure 4). Most interestingly, treatment of the BCR-ABL–T315I
mutant cells with ponatinib, a new TKI designed to specifically
target the BCR-ABL–T315I mutant, resulted in significantly reduced
phosphorylation of BCR-ABL and DNM2 (Figure 5d).43 The result
was further supported by treatment of these cells
with ABL001, which specifically binds to the myristoyl pocket of
the BCR-ABL protein and inhibits most BCR-ABL mutation forms,
including the T315I mutation.44 In addition, in BCR-ABL-negative
BaF3 cells, tyrosine phosphorylation of DNM2 was not altered,

with or without IM (Figure 5b). In 293T cells co-expressing
BCR-ABL and Myc-DNM2, IM also reduced p-DNM2 levels
(Figure 5c). These results provide strong evidence that AHI-1
bridges BCR-ABL and DNM2 together to form a protein complex,
‘AHI-1–BCR-ABL–DNM2 (ABD)’, which likely leads to aberrant
activation of DNM2 through tyrosine phosphorylation in primitive
CML cells.

The ABD complex enhances transferrin uptake in CML stem/
progenitor cells
To investigate whether the ABD complex deregulates endocytosis
in BCR-ABL+ blast cells and CML stem/progenitor cells, the
transferrin uptake assay, which assesses the efficiency of
endocytosis based on the amount of transferrin that accumulates
inside cells, was performed.45 Compared to BCR-ABL-transduced
BaF3 cells, cells co-expressing BCR-ABL and Ahi-1 exhibited
significantly increased transferrin uptake (3.3-fold,
Supplementary Figure 5a). However, the higher transferrin signals
were strongly diminished in BCR-ABL/Ahi-1 SH3Δ co-transduced
cells (1.8-fold). DNM2 knockdown significantly reduced transferrin
accumulation in K562 and BV173 cells (~40 and 60%,
Supplementary Figures 5b and 6a). Interestingly, IM-nonresponder
CD34+ cells with DNM2 knockdown also exhibited impaired
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patients treated with IM or MitMAB alone or in combination were stained with Alexa Fluor 647-conjugated transferrin and transferrin uptake
was determined by confocal microscopy. Intracellular transferrin signals were quantified and normalized to SHC control cells or untreated cells
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transferrin uptake (Figure 6a). Additive effects of IM in reducing
intracellular transferrin signals were further observed in DNM2-
knockdown BV173 or CD34+ CML cells (Supplementary Figure 6a
and Figure 6a). Similarly, MitMAB, alone or in combination with IM,
mimicked the results of DNM2 knockdown in CD34+ CML cells
obtained from the same IM-nonresponder patients (Figure 6b). It
was interesting to observe that CD34+ cells from IM responders
also showed reduced intracellular transferrin signals after MitMAB
and IM treatment (Supplementary Figure 6b). Thus, biological
manipulation of each component of the ABD complex directly
affects transferrin uptake, suggesting a new role for this complex
in modulating endocytosis in CML stem/progenitor cells.

The ABD complex increases ROS production in CML stem/
progenitor cells
We next examined whether the ABD complex contributes to ROS
overproduction in BCR-ABL+ blast cells and CD34+ CML cells.
Compared to BCR-ABL-transduced BaF3 cells, co-expression of full-
length Ahi-1 significantly increased ROS production (2.6-fold),
while increased ROS production was not observed in Ahi-1 SH3Δ

mutant cells (Supplementary Figure 7a). Knockdown of DNM2 in
K562 and BV173 cells significantly reduced ROS production
relative to SHC control (71 and 50% in K562 and 74% in BV173
cells, Supplementary Figures 7b and 8a). A reduction in ROS
production (~60%) was also observed in IM-nonresponder CD34+

cells with DNM2 suppression (Figure 7a). Interestingly, IM
treatment greatly attenuated ROS production in DNM2-
knockdown BV173 and CD34+ CML cells (91% and 80%,
respectively, Supplementary Figure 8a and Figure 7a). These
results were further supported by treatment with MitMAB, alone
or in combination with IM, in CD34+ CML cells obtained from the
same IM-nonresponder patients, as well as IM responders
(Figure 7b and Supplementary Figure 8b). These results suggest
that the ABD protein complex may contribute to excessive
generation of ROS in primitive CML cells.

The ABD complex deregulates the autophagy process in CML
stem/progenitor cells
Since DNM2 plays a direct role in autophagy regulation39,46,47 and
both endocytosis and ROS production can promote autophagy
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activation,48–51 we investigated the biological influences of the
ABD protein complex on autophagy. Protein levels of four key
autophagy proteins, including ULK-152 Beclin-1,53 LC3-I/LC3-II54,55

and p62,56 were assessed in CML cells. In BCR-ABL/Ahi-1-co-
transduced BaF3 cells, ULK-1, Beclin-1 and LC3-II were increased in
comparison to BCR-ABL-transduced and BCR-ABL/Ahi-1 SH3Δ-
cotransduced cells, while p62 was reduced (Supplementary
Figure 9), providing evidence of activated autophagy. Compared
to SHC controls, DNM2-knockdown K562 and BV173 cells both
exhibited decreased ULK-1, Beclin-1 and LC3-II, but increased p62,
suggesting decreased autophagy (Supplementary Figure 9). More
importantly, knockdown of DNM2 in IM-nonresponder CD34+ cells
(n= 3, Supplementary Table 1) resulted in reduced ULK-1, Beclin-1
and LC3-II, but accumulated p62 (~2-fold, Figure 8a). Similarly,
MitMAB treatment decreased autophagic flux in CD34+ CML stem/
progenitor cells from the same patient samples, as measured with
a specific Cyto-ID green detection assay, as previously reported35

(Supplementary Figure 10). Overall, these findings show a strong
correlation in endocytosis and ROS production with Ahi-1 and
DNM2 expression in BCR-ABL+ primitive cells.

DISCUSSION
Understanding the molecular action of the BCR-ABL oncoprotein
led to the development of small-molecule inhibitors for effective
treatment of early phase CML, but disease eradication, particularly
in AP and BC, will require new approaches. In this study, we
uncovered a protein complex that deregulates three essential
cellular activities—endocytosis, ROS production and autophagy—
in BCR-ABL+ blast cells and CML stem/progenitor cells, thereby
modulating the properties of LSCs and TKI resistance (Figure 8b).
Evidence indicates that deregulated DNM2 is involved in

development and progression of many types of malignancies. In
solid tumors, deregulation of DNM2 activity exhibits strong
associations with metastatic and invasive phenotypes.27,28,30,31 In
T-cell leukemias, defective DNM2 leads to inactivation of T cells, so
that the impaired immune surveillance fails to detect and
eliminate neoplastic formations.29,32 We have now demonstrated
an oncogenic role for DNM2 in CML by showing that DNM2 is
significantly upregulated in leukemic stem/progenitor cells, while
DNM2 knockdown in BCR-ABL+ blast cells and CD34+ IM-
nonresponder cells impairs survival and sensitizes these cells,
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including LSCs, as defined by long-term culture-initiating cell
assays, to TKI treatments. Moreover, similar phenotypes were
recapitulated in these cells upon DNM2 inhibitor treatment. These
results underscore the significance of DNM2 in maintaining the
functional capabilities of TKI-insensitive stem/progenitor cells and
contributing to TKI resistance. Further studies should test this
potential in animal models to investigate whether the concurrent
inhibition of DNM2 and BCR-ABL could be a more effective
approach to target the rare LSC population and prevent disease
progression, once more specific and suitable DNM2 inhibitors are
available for in vivo pre-clinical studies.
Mechanistically, one of the most important findings of this

study was the identification of the ABD protein complex, within
which BCR-ABL phosphorylates/activates DNM2. Strikingly, our
study demonstrated that AHI-1 recruits DNM2 to BCR-ABL through
its SH3 domain, by showing that the BCR-ABL–DNM2 interaction
was enhanced in Ahi-1/BCR-ABL-co-transduced cells compared to
BCR-ABL-transduced cells, and undetectable in BCR-ABL/Ahi-1
SH3Δ mutant cells (Figure 4c). Moreover, in four different cell line
model systems, IM treatment resulted in decreased levels of
p-DNM2, which was not observed in BCR-ABL-negative control
cells or in BCR-ABL T315I mutant cells (Figure 5). This eliminated
the possibility that other kinases targeted by IM were responsible
for DNM2 phosphorylation in BCR-ABL+ cells. Interestingly,
increased DNM2 phosphorylation was observed in BCR-ABL–
T315I mutant cells, possibly because IM treatment further
enhanced the kinase activity of BCR-ABL, leading to more DNM2
phosphorylation (Figure 5 and Supplementary Figure 4).57,58 This
hypothesis was further supported by the observation that DNM2
phosphorylation was strongly reduced in the BCR-ABL–T315I
mutant cells treated with new TKIs, ponatinib and ABL001,
designed to specifically target the BCR-ABL–T315I mutant
(Figure 5d).43,44 Interestingly, a recent study reported that DNM2
was indeed identified, via tandem affinity purifications and MS
analysis, as being part of the BCR-ABL protein network.59 Thus,
these findings highlight the functional importance of the ABD
complex in BCR-ABL signaling and mediation of TKI response/
resistance.
Strong evidence has implicated the deregulation of endocytosis

in cancer development and progression.60–62 However, to our
knowledge, changes in the endocytotic process have not been
linked to the pathogenesis of CML and drug resistance. This study
provides the first evidence that BCR-ABL+ blast cells and CML
stem/progenitor cells exhibit deregulated endocytosis, mediated
by the ABD protein complex. Opposite to overexpression of full-
length Ahi-1, DNM2 suppression in BCR-ABL+ cells and TKI-
insensitive stem/progenitor cells led to reduction in transferrin
uptake (Supplementary Figures 5 and 6 and Figure 6), which is
expected, given the role of DNM2 in regulation of endocytosis.
Notably, IM treatment inhibited transferrin uptake, suggesting that
the BCR-ABL kinase activity is also involved in endocytosis. One
possible mechanism is that BCR-ABL mediates DNM2 activation,
facilitated by AHI-1 (Figures 4 and 5).
It has been reported that BCR-ABL-mediated ROS overproduc-

tion causes genomic instability, leading to TKI resistance and
disease progression in cell line model systems.63–65 However,
specific molecular mechanisms that underpin this process are still
not clear. One potential mechanism for ROS overproduction is the
aberrant activation of NADPH oxidase (Nox),66,67 whose primary
function is to generate ROS. One study from Singleton et al.
demonstrated that in lung endothelial cells, DNM2, activated by
c-ABL phosphorylation under hypoxic conditions, promotes the
activation of Nox2, leading to ROS production.68 In this study, we
demonstrated that the ABD protein complex contributed to
enhanced ROS production in CML stem/progenitor cells, which
further explained previous observations that BCR-ABL+ cells or CML
LSCs are highly unstable and generate multiple mutations both
in vitro and in vivo, contributing to their insensitivity to TKIs.12,13,63

Thus, it is possible that highly expressed AHI-1 mediates the
complex formation, ensuring efficient activation of DNM2 by BCR-
ABL, thereby constantly promoting ROS generation.
Recent studies indicate that TKIs trigger the activation of

autophagy, which functions as a pro-survival mechanism for CML
cells to withstand TKI-induced cytotoxicity.69,70 In this study, we
hypothesized that the ABD protein complex regulates the
initiation of autophagy by directly enhancing DNM2 activity or
indirectly deregulating endocytosis and ROS production. Indeed,
we demonstrated that Ahi-1 overexpression and DNM2 suppres-
sion exhibited opposite effects on expression of key autophagy
regulators, which highly correlated with the changes observed in
endocytosis and ROS production (Figures 6–8). We recently
showed that the expression levels of key autophagy mediators,
including Beclin-1, are significantly increased in CML stem/
progenitor cells from IM-nonresponders as compared to normal
bone marrow cells or IM responders.35 Furthermore, it was
reported that basal autophagy was essential for BCR-ABL-
mediated leukemogenesis.71 Interestingly, it has also been
reported that IM-induced autophagy is associated with inhibition
of the BCR-ABL/PI3K/AKT/FOXO4/ATF5/mTOR pathway.72 It would
be interesting to further investigate if there is a potential link
between this critical pathway and the ABD complex in regulating
the autophagy process in CML. Nevertheless, this study suggests a
new mechanism for how primitive CML cells maintain relatively
higher basal level of autophagy compared to their normal
counterparts, as a pro-survival pathway.
In conclusion, this study provided new insights into a novel

mechanism causing deregulation of endocytosis, ROS production
and autophagy in primitive CML cells, and suggests that
dismantling the ABD protein complex by the dual inhibition of
DNM2 and BCR-ABL could simultaneously impair three leukemic
functions of LSCs and their progenitor cells, eventually leading to
their eradication.
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