Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Multiple Myeloma, Gammopathies

Proteomic characterization of human multiple myeloma bone marrow extracellular matrix

Abstract

The extracellular matrix (ECM) is a major component of the tumor microenvironment, contributing to the regulation of cell survival, proliferation, differentiation and metastasis. In multiple myeloma (MM), interactions between MM cells and the bone marrow (BM) microenvironment, including the BM ECM, are critical to the pathogenesis of the disease and the development of drug resistance. Nevertheless, composition of the ECM in MM and its role in supporting MM pathogenesis has not been reported. We have applied a novel proteomic-based strategy and defined the BM ECM composition in patients with monoclonal gammopathy of undetermined significance (MGUS), newly diagnosed and relapsed MM compared with healthy donor-derived BM ECM. In this study, we show that the tumor ECM is remodeled at the mRNA and protein levels in MGUS and MM to allow development of a permissive microenvironment. We further demonstrate that two ECM-affiliated proteins, ANXA2 and LGALS1, are more abundant in MM and high expression is associated with a decreased overall survival. This study points to the importance of ECM remodeling in MM and provides a novel proteomic pipeline for interrogating the role of the ECM in cancers with BM tropism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Kyle RA, Rajkumar SV . Multiple myeloma. N Engl J Med 2004; 351: 1860–1873.

    Article  CAS  PubMed  Google Scholar 

  2. Ghobrial IM . Myeloma as a model for the process of metastasis: implications for therapy. Blood 2012; 120: 20–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fowler JA, Mundy GR, Lwin ST, Edwards CM . Bone marrow stromal cells create a permissive microenvironment for myeloma development: a new stromal role for Wnt inhibitor Dkk1. Cancer Res 2012; 72: 2183–2189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Manier S, Sacco A, Leleu X, Ghobrial IM, Roccaro AM . Bone marrow microenvironment in multiple myeloma progression. J Biomed Biotechnol 2012; 2012: 157496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kawano Y, Moschetta M, Manier S, Glavey S, Gorgun GT, Roccaro AM et al. Targeting the bone marrow microenvironment in multiple myeloma. Immunol Rev 2015; 263: 160–172.

    Article  PubMed  Google Scholar 

  6. Kumar SK, Rajkumar SV, Dispenzieri A, Lacy MQ, Hayman SR, Buadi FK et al. Improved survival in multiple myeloma and the impact of novel therapies. Blood 2008; 111: 2516–2520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vincent T, Mechti N . Extracellular matrix in bone marrow can mediate drug resistance in myeloma. Leuk Lymphoma 2005; 46: 803–811.

    Article  CAS  PubMed  Google Scholar 

  8. Naba A, Clauser KR, Hoersch S, Liu H, Carr SA, Hynes RO . The matrisome: in silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Mol Cell Proteomics 2012; 11: M111 014647.

    Article  PubMed  Google Scholar 

  9. Hynes RO . The extracellular matrix: not just pretty fibrils. Science 2009; 326: 1216–1219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schwartz MA . Integrins and extracellular matrix in mechanotransduction. Cold Spring Harb Perspect Biol 2010; 2: a005066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Naba A, Clauser KR, Whittaker CA, Carr SA, Tanabe KK, Hynes RO . Extracellular matrix signatures of human primary metastatic colon cancers and their metastases to liver. BMC Cancer 2014; 14: 518.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bergamaschi A, Tagliabue E, Sorlie T, Naume B, Triulzi T, Orlandi R et al. Extracellular matrix signature identifies breast cancer subgroups with different clinical outcome. J Pathol 2008; 214: 357–367.

    Article  CAS  PubMed  Google Scholar 

  13. Iozzo RV . Matrix proteoglycans: from molecular design to cellular function. Annu Rev Biochem 1998; 67: 609–652.

    Article  CAS  PubMed  Google Scholar 

  14. Ramaswamy S, Ross KN, Lander ES, Golub TR . A molecular signature of metastasis in primary solid tumors. Nat Genet 2003; 33: 49–54.

    Article  CAS  PubMed  Google Scholar 

  15. Hynes RO, Naba A . Overview of the matrisome—an inventory of extracellular matrix constituents and functions. Cold Spring Harb Perspect Biol 2012; 4: a004903.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Naba A, Clauser KR, Lamar JM, Carr SA, Hynes RO . Extracellular matrix signatures of human mammary carcinoma identify novel metastasis promoters. Elife 2014; 3: e01308.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Talmadge JE, Fidler IJ . AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Res 2010; 70: 5649–5669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fidler IJ . The biology of cancer metastasis. Semin Cancer Biol 2011; 21: 71.

    Article  PubMed  Google Scholar 

  19. Valastyan S, Weinberg RA . Tumor metastasis: molecular insights and evolving paradigms. Cell 2011; 147: 275–292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Naba A, Clauser KR, Hynes RO . Enrichment of extracellular matrix proteins from tissues and digestion into peptides for mass spectrometry analysis. J Vis Exp 2015, e53057; doi:10.3791/53057.

  21. Naba A, Clauser KR, Ding H, Whittaker CA, Carr SA, Hynes RO . The extracellular matrix: tools and insights for the 'omics' era. Matrix Biol 2016; 49: 10–24.

    Article  CAS  PubMed  Google Scholar 

  22. Chng WJ, Kumar S, Vanwier S, Ahmann G, Price-Troska T, Henderson K et al. Molecular dissection of hyperdiploid multiple myeloma by gene expression profiling. Cancer Res 2007; 67: 2982–2989.

    Article  CAS  PubMed  Google Scholar 

  23. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 2012; 483: 603–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhan F, Huang Y, Colla S, Stewart JP, Hanamura I, Gupta S et al. The molecular classification of multiple myeloma. Blood 2006; 108: 2020–2028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102: 15545–15550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gutierrez NC, Sarasquete ME, Misiewicz-Krzeminska I, Delgado M, De Las Rivas J, Ticona FV et al. Deregulation of microRNA expression in the different genetic subtypes of multiple myeloma and correlation with gene expression profiling. Leukemia 2010; 24: 629–637.

    Article  CAS  PubMed  Google Scholar 

  27. Mulligan G, Mitsiades C, Bryant B, Zhan F, Chng WJ, Roels S et al. Gene expression profiling and correlation with outcome in clinical trials of the proteasome inhibitor bortezomib. Blood 2007; 109: 3177–3188.

    Article  CAS  PubMed  Google Scholar 

  28. Hanamura I, Huang Y, Zhan F, Barlogie B, Shaughnessy J . Prognostic value of cyclin D2 mRNA expression in newly diagnosed multiple myeloma treated with high-dose chemotherapy and tandem autologous stem cell transplantations. Leukemia 2006; 20: 1288–1290.

    Article  CAS  PubMed  Google Scholar 

  29. Slany A, Haudek-Prinz V, Meshcheryakova A, Bileck A, Lamm W, Zielinski C et al. Extracellular matrix remodeling by bone marrow fibroblast-like cells correlates with disease progression in multiple myeloma. J Proteome Res 2014; 13: 844–854.

    Article  CAS  PubMed  Google Scholar 

  30. Lu P, Weaver VM, Werb Z . The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol 2012; 196: 395–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bhowmick NA, Neilson EG, Moses HL . Stromal fibroblasts in cancer initiation and progression. Nature 2004; 432: 332–337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 2005; 121: 335–348.

    Article  CAS  PubMed  Google Scholar 

  33. Storti P, Marchica V, Airoldi I, Donofrio G, Fiorini E, Ferri V et al. Galectin-1 suppression delineates a new strategy to inhibit myeloma-induced angiogenesis and tumoral growth in vivo. Leukemia 2016; 30: 2351–2363.

    Article  CAS  PubMed  Google Scholar 

  34. An G, Acharya C, Feng X, Wen K, Zhong M, Zhang L et al. Osteoclasts promote immune suppressive microenvironment in multiple myeloma: therapeutic implication. Blood 2016; 128: 1590–1603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Seckinger A, Meissner T, Moreaux J, Depeweg D, Hillengass J, Hose K et al. Clinical and prognostic role of annexin A2 in multiple myeloma. Blood 2012; 120: 1087–1094.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NIH R01 CA181683-01A, R01 CA205954-01 and the Leukemia and Lymphoma Society to IMG, by the Health Research Board, Ireland, NSAFP, of which SVG is a recipient, and in part by the Howard Hughes Medical Institute, of which ROH is an investigator.

Author contributions

SVG, AN, SM, JP, ROH and IMG designed research. SVG, AN, SM, MRR, MM, YM, AS and JMA performed research. AR, MG and AP contributed clinical samples to this study. SVG, AN, SM, ST, JP, JMA, AMR and KC analyzed data. SVG, AN, SM, MEO’D, ROH and IMG wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R O Hynes or I M Ghobrial.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glavey, S., Naba, A., Manier, S. et al. Proteomic characterization of human multiple myeloma bone marrow extracellular matrix. Leukemia 31, 2426–2434 (2017). https://doi.org/10.1038/leu.2017.102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2017.102

This article is cited by

Search

Quick links