Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter to the Editor
  • Published:

Gab2 is essential for Bcr-Abl-mediated leukemic transformation and hydronephrosis in a chronic myeloid leukemia mouse model

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

References

  1. Pendergast AM, Quilliam LA, Cripe LD, Bassing CH, Dai Z, Li N et al. BCR-ABL-induced oncogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor protein. Cell 1993; 75: 175–185.

    Article  CAS  Google Scholar 

  2. Wohrle FU, Daly RJ, Brummer T . Function, regulation and pathological roles of the Gab/DOS docking proteins. Cell Commun Signal 2009; 7: 22.

    Article  Google Scholar 

  3. Sattler M, Mohi MG, Pride YB, Quinnan LR, Malouf NA, Podar K et al. Critical role for Gab2 in transformation by BCR/ABL. Cancer Cell 2002; 1: 479–492.

    Article  CAS  Google Scholar 

  4. Gu S, Chan WW, Mohi G, Rosenbaum J, Sayad A, Lu Z et al. Distinct GAB2 signaling pathways are essential for myeloid and lymphoid transformation and leukemogenesis by BCR-ABL1. Blood 2016; 127: 1803–1813.

    Article  CAS  Google Scholar 

  5. Wohrle FU, Halbach S, Aumann K, Schwemmers S, Braun S, Auberger P et al. Gab2 signaling in chronic myeloid leukemia cells confers resistance to multiple Bcr-Abl inhibitors. Leukemia 2013; 27: 118–129.

    Article  CAS  Google Scholar 

  6. Halbach S, Rigbolt KT, Wohrle FU, Diedrich B, Gretzmeier C, Brummer T et al. Alterations of Gab2 signalling complexes in imatinib and dasatinib treated chronic myeloid leukaemia cells. Cell Commun Signal 2013; 11: 30.

    Article  CAS  Google Scholar 

  7. Halbach S, Hu Z, Gretzmeier C, Ellermann J, Wohrle FU, Dengjel J et al. Axitinib and sorafenib are potent in tyrosine kinase inhibitor resistant chronic myeloid leukemia cells. Cell Commun Signal 2016; 14: 6.

    Article  Google Scholar 

  8. Aumann K, Lassmann S, Schopflin A, May AM, Wohrle FU, Zeiser R et al. The immunohistochemical staining pattern of Gab2 correlates with distinct stages of chronic myeloid leukemia. Hum Pathol 2011; 42: 719–726.

    Article  CAS  Google Scholar 

  9. Koschmieder S, Gottgens B, Zhang P, Iwasaki-Arai J, Akashi K, Kutok JL et al. Inducible chronic phase of myeloid leukemia with expansion of hematopoietic stem cells in a transgenic model of BCR-ABL leukemogenesis. Blood 2005; 105: 324–334.

    Article  CAS  Google Scholar 

  10. Koschmieder S, Schemionek M . Mouse models as tools to understand and study BCR-ABL1 diseases. Am J Blood Res 2011; 1: 65–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Schemionek M, Elling C, Steidl U, Baumer N, Hamilton A, Spieker T et al. BCR-ABL enhances differentiation of long-term repopulating hematopoietic stem cells. Blood 2010; 115: 3185–3195.

    Article  CAS  Google Scholar 

  12. Nishida K, Wang L, Morii E, Park SJ, Narimatsu M, Itoh S et al. Requirement of Gab2 for mast cell development and KitL/c-Kit signaling. Blood 2002; 99: 1866–1869.

    Article  Google Scholar 

  13. Holyoake TL, Jiang X, Jorgensen HG, Graham S, Alcorn MJ, Laird C et al. Primitive quiescent leukemic cells from patients with chronic myeloid leukemia spontaneously initiate factor-independent growth in vitro in association with up-regulation of expression of interleukin-3. Blood 2001; 97: 720–728.

    Article  CAS  Google Scholar 

  14. Askmyr M, Agerstam H, Lilljebjorn H, Hansen N, Karlsson C, von Palffy S et al. Modeling chronic myeloid leukemia in immunodeficient mice reveals expansion of aberrant mast cells and accumulation of pre-B cells. Blood Cancer J 2014; 4: e269.

    Article  CAS  Google Scholar 

  15. Kometani K, Aoki M, Kawamata S, Shinozuka Y, Era T, Taniwaki M et al. Role of SPA-1 in phenotypes of chronic myelogenous leukemia induced by BCR-ABL-expressing hematopoietic progenitors in a mouse model. Cancer Res 2006; 66: 9967–9976.

    Article  CAS  Google Scholar 

  16. Bier D, Bartel M, Sies K, Halbach S, Higuchi Y, Haranosono Y et al. Small-molecule stabilization of the 14-3-3/Gab2 protein-protein interaction (PPI) interface. ChemMedChem 2015; 11: 911–918.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported in part by the Excellence Initiative of the German Research Foundation (GSC-4, Spemann Graduate School) and the José Carreras Leukämie Stiftung e.V. (project 13/12). RZ and TB are supported by the Deutsche Forschungsgemeinschaft via the Heisenberg-Program and the Centre for Biological Signalling Studies BIOSS (EXC 294).

Author contributions

All authors designed, analyzed and discussed experiments. SH, MK and FMU performed all mouse experiments. KA and JH conducted the histology analysis. SH wrote the manuscript together with SK, RZ, KA and TB. All authors reviewed and commented on the manuscript and accepted its final version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Brummer.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halbach, S., Köhler, M., Uhl, F. et al. Gab2 is essential for Bcr-Abl-mediated leukemic transformation and hydronephrosis in a chronic myeloid leukemia mouse model. Leukemia 30, 1942–1945 (2016). https://doi.org/10.1038/leu.2016.92

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2016.92

This article is cited by

Search

Quick links