Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Animal Models

GPR56 contributes to the development of acute myeloid leukemia in mice

Abstract

The G protein-coupled receptor 56 (GPR56) was identified as part of the molecular signature of functionally validated leukemic stem cells isolated from patients with acute myeloid leukemia (AML). This report now demonstrates particularly high expression of GPR56 in patients with mutant NPM1 and FLT3-length mutation and association of high GPR56 expression with inferior prognosis in a large patient cohort treated in two independent multicenter phase III trials. Functional relevance of GPR56 expression was validated in mice, in which co-expression of Gpr56 significantly accelerated HOXA9-induced leukemogenesis and vice versa knockdown of Gpr56 delayed onset of HOXA9/MEIS1-induced AML. Overexpression of Gpr56 grossly changed the molecular phenotype of Hoxa9-transduced cells affecting pathways involved in G protein-coupled receptors (GPRCs) and associated intracellular signaling. Blockage of surface GPR56 by an anti-GPR56 antibody successfully impaired engraftment of primary human AML cells. In summary, these data demonstrate that high expression of GPR56 is able to contribute to AML development and characterize the GPR56 as a potential novel target for antibody-mediated antileukemic strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Bonnet D, Dick JE . Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3: 730–737.

    Article  CAS  Google Scholar 

  2. Hope KJ, Jin L, Dick JE . Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol 2004; 5: 738–743.

    Article  CAS  Google Scholar 

  3. Jordan CT . Targeting myeloid leukemia stem cells. Sci Transl Med 2010; 2: 31ps21.

    Article  Google Scholar 

  4. Felipe Rico J, Hassane DC, Guzman ML . Acute myelogenous leukemia stem cells: from bench to bedside. Cancer Lett 2013; 338: 4–9.

    Article  CAS  Google Scholar 

  5. Misaghian N, Ligresti G, Steelman LS, Bertrand FE, Basecke J, Libra M et al. Targeting the leukemic stem cell: the Holy Grail of leukemia therapy. Leukemia 2009; 23: 25–42.

    Article  CAS  Google Scholar 

  6. Eppert K, Takenaka K, Lechman ER, Waldron L, Nilsson B, van Galen P et al. Stem cell gene expression programs influence clinical outcome in human leukemia. Nat Med 2011; 17: 1086–1093.

    Article  CAS  Google Scholar 

  7. Luo R, Jeong SJ, Jin Z, Strokes N, Li S, Piao X . G protein-coupled receptor 56 and collagen III, a receptor-ligand pair, regulates cortical development and lamination. Proc Natl Acad Sci USA 2011; 108: 12925–12930.

    Article  CAS  Google Scholar 

  8. Schepers K, Pietras EM, Reynaud D, Flach J, Binnewies M, Garg T et al. Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-reinforcing leukemic niche. Cell Stem Cell 2013; 13: 285–299.

    Article  CAS  Google Scholar 

  9. Ishikawa F, Yoshida S, Saito Y, Hijikata A, Kitamura H, Tanaka S et al. Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nat Biotechnol 2007; 25: 1315–1321.

    Article  CAS  Google Scholar 

  10. Van Etten RA . New insights into the normal and leukemic stem cell niche: a timely review. Cytometry B Clin Cytom 2013; 84: 5–6.

    Article  Google Scholar 

  11. Lane SW, Scadden DT, Gilliland DG . The leukemic stem cell niche: current concepts and therapeutic opportunities. Blood 2009; 114: 1150–1157.

    Article  CAS  Google Scholar 

  12. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR et al. Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br J Haematol 1976; 33: 451–458.

    Article  CAS  Google Scholar 

  13. Harris NL, Jaffe ES, Diebold J, Flandrin G, Muller-Hermelink HK, Vardiman J et al. The World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues. Report of the Clinical Advisory Committee meeting, Airlie House, Virginia, November, 1997. Ann Oncol 1999; 10: 1419–1432.

    Article  CAS  Google Scholar 

  14. Therneau TM, Grambsch PM. Modeling Survival Data: Extending the Cox Model. Springer, New York, NY, USA, 2000.

  15. Therneau T. A Package for Survival Analysis in S., version 2.38, 2015. http://CRANR-projectorg/package=survival>2015.

  16. Stadler CR, Vegi N, Mulaw MA, Edmaier KE, Rawat VP, Dolnik A et al. The leukemogenicity of HOXA9 depends on alternative splicing. Leukemia 2014; 28: 1838–1843.

    Article  CAS  Google Scholar 

  17. Moritz T, Dutt P, Xiao X, Carstanjen D, Vik T, Hanenberg H et al. Fibronectin improves transduction of reconstituting hematopoietic stem cells by retroviral vectors: evidence of direct viral binding to chymotryptic carboxy-terminal fragments. Blood 1996; 88: 855–862.

    CAS  PubMed  Google Scholar 

  18. Rawat VP, Cusan M, Deshpande A, Hiddemann W, Quintanilla-Martinez L, Humphries RK et al. Ectopic expression of the homeobox gene Cdx2 is the transforming event in a mouse model of t(12;13)(p13;q12) acute myeloid leukemia. Proc Natl Acad Sci USA 2004; 101: 817–822.

    Article  CAS  Google Scholar 

  19. Rao TN, Marks-Bluth J, Sullivan J, Gupta MK, Chandrakanthan V, Fitch SR et al. High-level Gpr56 expression is dispensable for the maintenance and function of hematopoietic stem and progenitor cells in mice. Stem Cell Res 2015; 14: 307–322.

    Article  CAS  Google Scholar 

  20. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 2010; 28: 511–515.

    Article  CAS  Google Scholar 

  21. Trapnell C, Schatz MC . Optimizing data intensive GPGPU computations for DNA sequence alignment. Parallel Comput 2009; 35: 429–440.

    Article  Google Scholar 

  22. Team RC . R. A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria, 2013.

    Google Scholar 

  23. Seita J, Sahoo D, Rossi DJ, Bhattacharya D, Serwold T, Inlay MA et al. Gene expression commons: an open platform for absolute gene expression profiling. PLoS One 2012; 7: e40321.

    Article  CAS  Google Scholar 

  24. Kogan SC, Ward JM, Anver MR, Berman JJ, Brayton C, Cardiff RD et al. Bethesda proposals for classification of nonlymphoid hematopoietic neoplasms in mice. Blood 2002; 100: 238–245.

    Article  CAS  Google Scholar 

  25. Geiger H, True JM, Grimes B, Carroll EJ, Fleischman RA, Van Zant G . Analysis of the hematopoietic potential of muscle-derived cells in mice. Blood 2002; 100: 721–723.

    Article  CAS  Google Scholar 

  26. Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R et al. PANTHER: a library of protein families and subfamilies indexed by function. Genome Res 2003; 13: 2129–2141.

    Article  CAS  Google Scholar 

  27. Bergsagel PL, Timblin CR, Kozak CA, Kuehl WM . Sequence and expression of murine cDNAs encoding Xlr3a and Xlr3b, defining a new X-linked lymphocyte-regulated Xlr gene subfamily. Gene 1994; 150: 345–350.

    Article  CAS  Google Scholar 

  28. Kustikova OS, Schwarzer A, Stahlhut M, Brugman MH, Neumann T, Yang M et al. Activation of Evi1 inhibits cell cycle progression and differentiation of hematopoietic progenitor cells. Leukemia 2013; 27: 1127–1138.

    Article  CAS  Google Scholar 

  29. Tsukita S, Yamazaki Y, Katsuno T, Tamura A . Tight junction-based epithelial microenvironment and cell proliferation. Oncogene 2008; 27: 6930–6938.

    Article  CAS  Google Scholar 

  30. Meech R, Edelman DB, Jones FS, Makarenkova HP . The homeobox transcription factor Barx2 regulates chondrogenesis during limb development. Development 2005; 132: 2135–2146.

    Article  CAS  Google Scholar 

  31. Fredriksson R, Lagerstrom MC, Lundin LG, Schioth HB . The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 2003; 63: 1256–1272.

    Article  CAS  Google Scholar 

  32. Bai Y, Du L, Shen L, Zhang Y, Zhang L . GPR56 is highly expressed in neural stem cells but downregulated during differentiation. Neuroreport 2009; 20: 918–922.

    Article  CAS  Google Scholar 

  33. Solaimani Kartalaei P, Yamada-Inagawa T, Vink CS, de Pater E, van der Linden R, Marks-Bluth J et al. Whole-transcriptome analysis of endothelial to hematopoietic stem cell transition reveals a requirement for Gpr56 in HSC generation. J Exp Med 2015; 212: 93–106.

    Article  Google Scholar 

  34. Saito Y, Kaneda K, Suekane A, Ichihara E, Nakahata S, Yamakawa N et al. Maintenance of the hematopoietic stem cell pool in bone marrow niches by EVI1-regulated GPR56. Leukemia 2013; 27: 1637–1649.

    Article  CAS  Google Scholar 

  35. Little KD, Hemler ME, Stipp CS . Dynamic regulation of a GPCR-tetraspanin-G protein complex on intact cells: central role of CD81 in facilitating GPR56-Galpha q/11 association. Mol Biol Cell 2004; 15: 2375–2387.

    Article  CAS  Google Scholar 

  36. Iguchi T, Sakata K, Yoshizaki K, Tago K, Mizuno N, Itoh H . Orphan G protein-coupled receptor GPR56 regulates neural progenitor cell migration via a G alpha 12/13 and Rho pathway. J Biol Chem 2008; 283: 14469–14478.

    Article  CAS  Google Scholar 

  37. Shashidhar S, Lorente G, Nagavarapu U, Nelson A, Kuo J, Cummins J et al. GPR56 is a GPCR that is overexpressed in gliomas and functions in tumor cell adhesion. Oncogene 2005; 24: 1673–1682.

    Article  CAS  Google Scholar 

  38. Ke N, Sundaram R, Liu G, Chionis J, Fan W, Rogers C et al. Orphan G protein-coupled receptor GPR56 plays a role in cell transformation and tumorigenesis involving the cell adhesion pathway. Mol Cancer Ther 2007; 6: 1840–1850.

    Article  CAS  Google Scholar 

  39. Network CGAR. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 2013; 368: 22.

    Article  Google Scholar 

  40. Frohling S, Schlenk RF, Kayser S, Morhardt M, Benner A, Dohner K et al. Cytogenetics and age are major determinants of outcome in intensively treated acute myeloid leukemia patients older than 60 years: results from AMLSG trial AML HD98-B. Blood 2006; 108: 3280–3288.

    Article  CAS  Google Scholar 

  41. Schlenk RF, Frohling S, Hartmann F, Fischer JT, Glasmacher A, Del Valle F et al. Intensive consolidation versus oral maintenance therapy in patients 61 years or older with acute myeloid leukemia in first remission: results of second randomization of the AML HD98-B treatment trial. Leukemia 2006; 20: 748–750.

    Article  CAS  Google Scholar 

  42. Buchner T, Schlenk RF, Schaich M, Dohner K, Krahl R, Krauter J et al. Acute myeloid leukemia (AML): different treatment strategies versus a common standard arm—combined prospective analysis by the German AML Intergroup. J Clin Oncol 2012; 30: 3604–3610.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Core Facility FACS, Ulm University and the team of the animal facility at Ulm University. The work was supported by Research Training Group CEMMA funded by the DFG (to NK) and the Z1 project of the SFB 1074 funded by the DFG (to CB).

Author contributions

DD, NK, AM, MM, SI, MH, LB, KD and HD provided patient samples and analyzed data. MF and CB designed the research, analyzed the data and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Buske.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daria, D., Kirsten, N., Muranyi, A. et al. GPR56 contributes to the development of acute myeloid leukemia in mice. Leukemia 30, 1734–1741 (2016). https://doi.org/10.1038/leu.2016.76

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2016.76

This article is cited by

Search

Quick links