Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Molecular targets for therapy

BET inhibition represses miR17-92 to drive BIM-initiated apoptosis of normal and transformed hematopoietic cells

Abstract

The BET (bromodomain and extraterminal domain) bromodomain-containing proteins, such as BRD4, are highly promising targets for treating lymphoid and myeloid malignancies. They act to modulate the expression of multiple genes that control diverse cellular processes including proliferation, survival and differentiation that are consequentially disrupted by small-molecule BET bromodomain inhibitors such as JQ1. By assessing the impact of these inhibitors on normal mouse hematopoietic cells or their transformed counterparts, we establish definitively that their cytotoxic action in vitro and in vivo relies predominantly on the activation of BAX/BAK-dependent mitochondrial (intrinsic) apoptosis. In large part, this is triggered by marked upregulation of the BH3-only protein BIM when the BET inhibitors suppress miR-17-92, a key post-transcriptional repressor of BIM expression. Thus, our study strongly suggests that mutations that permit the evasion of apoptosis (for example, BCL2 overexpression, BIM inactivation) are likely to blunt the activity of the BET bromodomain inhibitors and should be anticipated when therapy resistance develops. Strikingly, we also found that certain normal hematopoietic cells, especially those of lymphoid origin, are as prone to apoptosis induced by the BET inhibitors as their transformed counterparts, indicating that their susceptibility to BET inhibitors did not arise from oncogenic transformation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Zuber J, Shi J, Wang E, Rappaport AR, Herrmann H, Sison EA et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 2011; 478: 524–528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dawson MA, Prinjha RK, Dittmann A, Giotopoulos G, Bantscheff M, Chan WI et al. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature 2011; 478: 529–533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mertz JA, Conery AR, Bryant BM, Sandy P, Balasubramanian S, Mele DA et al. Targeting MYC dependence in cancer by inhibiting BET bromodomains. Proc Natl Acad Sci USA 2011; 108: 16669–16674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacobs HM et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 2011; 146: 904–917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Herrmann H, Blatt K, Shi J, Gleixner KV, Cerny-Reiterer S, Mullauer L et al. Small-molecule inhibition of BRD4 as a new potent approach to eliminate leukemic stem- and progenitor cells in acute myeloid leukemia AML. Oncotarget 2012; 3: 1588–1599.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ott CJ, Kopp N, Bird L, Paranal RM, Qi J, Bowman T et al. BET bromodomain inhibition targets both c-Myc and IL7R in high-risk acute lymphoblastic leukemia. Blood 2012; 120: 2843–2852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Roderick JE, Tesell J, Shultz LD, Brehm MA, Greiner DL, Harris MH et al. c-Myc inhibition prevents leukemia initiation in mice and impairs the growth of relapsed and induction failure pediatric T-ALL cells. Blood 2014; 123: 1040–1050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Trabucco SE, Gerstein RM, Evens AM, Bradner JE, Shultz LD, Greiner DL et al. Inhibition of bromodomain proteins for the treatment of human diffuse large B-cell lymphoma. Clin Cancer Res 2015; 21: 113–122.

    Article  CAS  PubMed  Google Scholar 

  9. French CA, Miyoshi I, Kubonishi I, Grier HE, Perez-Atayde AR, Fletcher JA . BRD4-NUT fusion oncogene: a novel mechanism in aggressive carcinoma. Cancer Res 2003; 63: 304–307.

    CAS  PubMed  Google Scholar 

  10. Shi J, Vakoc CR . The mechanisms behind the therapeutic activity of BET bromodomain inhibition. Mol Cell 2014; 54: 728–736.

    Article  CAS  PubMed  Google Scholar 

  11. Filippakopoulos P, Picaud S, Mangos M, Keates T, Lambert JP, Barsyte-Lovejoy D et al. Histone recognition and large-scale structural analysis of the human bromodomain family. Cell 2012; 149: 214–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Belkina AC, Denis GV . BET domain co-regulators in obesity, inflammation and cancer. Nat Rev Cancer 2012; 12: 465–477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Filippakopoulos P, Qi J, Picaud S, Shen Y, Smith WB, Fedorov O et al. Selective inhibition of BET bromodomains. Nature 2010; 468: 1067–1073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Huang B, Yang XD, Zhou MM, Ozato K, Chen LF . Brd4 coactivates transcriptional activation of NF-kappaB via specific binding to acetylated RelA. Mol Cell Biol 2009; 29: 1375–1387.

    Article  CAS  PubMed  Google Scholar 

  15. Willis S, Day CL, Hinds MG, Huang DCS . The Bcl-2-regulated apoptotic pathway. J Cell Sci 2003; 116: 4053–4056.

    Article  CAS  PubMed  Google Scholar 

  16. Youle RJ, Strasser A . The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 2008; 9: 47–59.

    Article  CAS  PubMed  Google Scholar 

  17. Johnstone RW, Ruefli AA, Lowe SW . Apoptosis: a link between cancer genetics and chemotherapy. Cell 2002; 108: 153–164.

    Article  CAS  PubMed  Google Scholar 

  18. Shangary S, Johnson DE . Recent advances in the development of anticancer agents targeting cell death inhibitors in the Bcl-2 protein family. Leukemia 2003; 17: 1470–1481.

    Article  CAS  PubMed  Google Scholar 

  19. Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG . Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 2013; 13: 714–726.

    Article  CAS  PubMed  Google Scholar 

  20. Juin P, Geneste O, Gautier F, Depil S, Campone M . Decoding and unlocking the BCL-2 dependency of cancer cells. Nat Rev Cancer 2013; 13: 455–465.

    Article  CAS  PubMed  Google Scholar 

  21. Puthalakath H, Strasser A . Keeping killers on a tight leash: transcriptional and post-translational control of the pro-apoptotic activity of BH3-only proteins. Cell Death Differ 2002; 9: 505–512.

    Article  CAS  PubMed  Google Scholar 

  22. Czabotar PE, Lessene G, Strasser A, Adams JM . Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol 2014; 15: 49–63.

    Article  CAS  PubMed  Google Scholar 

  23. Lindsten T, Ross AJ, King A, Zong W, Rathmell JC, Shiels HA et al. The combined functions of proapoptotic Bcl-2 family members Bak and Bax are essential for normal development of multiple tissues. Mol Cell 2000; 6: 1389–1399.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Koralov SB, Muljo SA, Galler GR, Krek A, Chakraborty T, Kanellopoulou C et al. Dicer ablation affects antibody diversity and cell survival in the B lymphocyte lineage. Cell 2008; 132: 860–874.

    Article  CAS  PubMed  Google Scholar 

  25. Ventura A, Young AG, Winslow MM, Lintault L, Meissner A, Erkeland SJ et al. Targeted deletion reveals essential and overlapping functions of the mIR-17~92 family of miRNA clusters. Cell 2008; 132: 875–886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mogilyansky E, Rigoutsos I . The miR-17/92 cluster: a comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease. Cell Death Differ 2013; 20: 1603–1614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Glaser S, Lee EF, Trounson E, Bouillet P, Wei A, Fairlie WD et al. Anti-apoptotic Mcl-1 is essential for the development and sustained growth of acute myeloid leukemia. Genes Dev 2012; 26: 120–125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kelly GL, Grabow S, Glaser S, Fitzsimmons L, Aubrey BJ, Okamoto T et al. Targeting of MCL-1 kills MYC-driven mouse and human lymphoma cells even when they bear mutations in p53. Genes Dev 2013; 28: 58–70.

    Article  Google Scholar 

  29. Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 2008; 451: 141–146.

    Article  CAS  PubMed  Google Scholar 

  30. Bouillet P, Robati M, Bath ML, Strasser A . Polycystic kidney disease prevented by transgenic RNA interference. Cell Death Differ 2005; 12: 831–833.

    Article  CAS  PubMed  Google Scholar 

  31. Glaser S, Metcalf D, Wu L, Hart AH, DiRago L, Mifsud S et al. Enforced expression of the homeobox gene Mixl1 impairs hematopoietic differentiation and results in acute myeloid leukemia. Proc Natl Acad Sci USA 2006; 103: 16460–16465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Michalak EM, Jansen ES, Happo L, Cragg MS, Tai L, Smyth GK et al. Puma and to a lesser extent Noxa are suppressors of Myc-induced lymphomagenesis. Cell Death Differ 2009; 16: 684–696.

    Article  CAS  PubMed  Google Scholar 

  33. Aubrey BJ, Kelly GL, Kueh AJ, Brennan MS, O'Connor L, Milla L et al. An inducible lentiviral guide RNA platform enables the identification of tumor-essential genes and tumor-promoting mutations in vivo. Cell Rep 2015; 10: 1422–1432.

    Article  CAS  PubMed  Google Scholar 

  34. Ogilvy S, Metcalf D, Print CG, Bath ML, Harris AW, Adams JM . Constitutive Bcl-2 expression throughout the hematopoietic compartment affects multiple lineages and enhances progenitor cell survival. Proc Natl Acad Sci USA 1999; 96: 14943–14948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bouillet P, Metcalf D, Huang DC, Tarlinton DM, Kay TW, Kontgen F et al. Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science 1999; 286: 1735–1738.

    Article  CAS  PubMed  Google Scholar 

  36. Kaufmann T, Tai L, Ekert PG, Huang DCS, Norris F, Lindemann RK et al. The BH3-only protein bid is dispensable for DNA darnage- and replicative stress-induced apoptosis or cell-cycle arrest. Cell 2007; 129: 423–433.

    Article  CAS  PubMed  Google Scholar 

  37. Jacks T, Remington L, Williams BO, Schmitt EM, Halachmi S, Bronson RT et al. Tumor spectrum analysis in p53-mutant mice. Curr Biol 1994; 4: 1–7.

    Article  CAS  PubMed  Google Scholar 

  38. Adams JM, Harris AW, Pinkert CA, Corcoran LM, Alexander WS, Cory S et al. The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature 1985; 318: 533–538.

    Article  CAS  PubMed  Google Scholar 

  39. Merino D, Khaw SL, Glaser SP, Anderson DJ, Belmont LD, Wong C et al. Bcl-2, Bcl-x(L), and Bcl-w are not equivalent targets of ABT-737 and navitoclax (ABT-263) in lymphoid and leukemic cells. Blood 2012; 119: 5807–5816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Khaw SL, Merino D, Anderson MA, Glaser SP, Bouillet P, Roberts AW et al. Both leukaemic and normal peripheral B lymphoid cells are highly sensitive to the selective pharmacological inhibition of prosurvival Bcl-2 with ABT-199. Leukemia 2014; 28: 1207–1215.

    Article  CAS  PubMed  Google Scholar 

  41. Shi J, Wang E, Milazzo JP, Wang Z, Kinney JB, Vakoc CR . Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains. Nat Biotechnol 2015; 33: 661–667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mason KD, Vandenberg CJ, Scott CL, Wei AH, Cory S, Huang DC et al. In vivo efficacy of the Bcl-2 antagonist ABT-737 against aggressive Myc-driven lymphomas. Proc Natl Acad Sci USA 2008; 105: 17961–17966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Happo L, Cragg MS, Phipson B, Haga JM, Jansen ES, Herold MJ et al. Maximal killing of lymphoma cells by DNA-damage inducing therapy requires not only the p53 targets Puma and Noxa but also Bim. Blood 2010; 116: 5256–5267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Langdon WY, Harris AW, Cory S, Adams JM . The c-myc oncogene perturbs B lymphocyte development in E-mu-myc transgenic mice. Cell 1986; 47: 11–18.

    Article  CAS  PubMed  Google Scholar 

  45. Strasser A, Harris AW, Huang DCS, Krammer PH, Cory S . Bcl-2 and Fas/APO-1 regulate distinct pathways to lymphocyte apoptosis. EMBO J 1995; 14: 6136–6147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Harris AW, Pinkert CA, Crawford M, Langdon WY, Brinster RL, Adams JM . The E mu-myc transgenic mouse. A model for high-incidence spontaneous lymphoma and leukemia of early B cells. J Exp Med 1988; 167: 353–371.

    Article  CAS  PubMed  Google Scholar 

  47. Bhadury J, Nilsson LM, Muralidharan SV, Green LC, Li Z, Gesner EM et al. BET and HDAC inhibitors induce similar genes and biological effects and synergize to kill in Myc-induced murine lymphoma. Proc Natl Acad Sci USA 2014; 111: E2721–E2730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Vousden KH, Lu X . Live or let die: the cell's response to p53. Nat Rev Cancer 2002; 2: 594–604.

    Article  CAS  PubMed  Google Scholar 

  49. Salvesen GS, Dixit VM . Caspases: intracellular signaling by proteolysis. Cell 1997; 91: 443–446.

    Article  CAS  PubMed  Google Scholar 

  50. Liu W, Ma Q, Wong K, Li W, Ohgi K, Zhang J et al. Brd4 and JMJD6-associated anti-pause enhancers in regulation of transcriptional pause release. Cell 2013; 155: 1581–1595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Loven J, Hoke HA, Lin CY, Lau A, Orlando DA, Vakoc CR et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 2013; 153: 320–334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bandopadhayay P, Bergthold G, Nguyen B, Schubert S, Gholamin S, Tang Y et al. BET bromodomain inhibition of MYC-amplified medulloblastoma. Clin Cancer Res 2014; 20: 912–925.

    Article  CAS  PubMed  Google Scholar 

  53. Patel AJ, Liao CP, Chen Z, Liu C, Wang Y, Le LQ . BET bromodomain inhibition triggers apoptosis of NF1-associated malignant peripheral nerve sheath tumors through Bim induction. Cell Rep 2014; 6: 81–92.

    Article  CAS  PubMed  Google Scholar 

  54. Barski A, Jothi R, Cuddapah S, Cui K, Roh TY, Schones DE et al. Chromatin poises miRNA- and protein-coding genes for expression. Genome Res 2009; 19: 1742–1751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. O'Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT . c-Myc-regulated microRNAs modulate E2F1 expression. Nature 2005; 435: 839–843.

    Article  CAS  PubMed  Google Scholar 

  56. van Haaften G, Agami R . Tumorigenicity of the miR-17-92 cluster distilled. Genes Dev 2010; 24: 1–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Beroukhim R, Mermel C, Porter D, Wei G, Raychaudhuri S, Donovan J et al. The landscape of somatic copy-number alteration across human cancers. Nature 2010; 463: 899–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mestre-Escorihuela C, Rubio-Moscardo F, Richter JA, Siebert R, Climent J, Fresquet V et al. Homozygous deletions localize novel tumor suppressor genes in B-cell lymphomas. Blood 2007; 109: 271–280.

    Article  CAS  PubMed  Google Scholar 

  59. Bolden JE, Tasdemir N, Dow LE, van Es JH, Wilkinson JE, Zhao Z et al. Inducible in vivo silencing of Brd4 identifies potential toxicities of sustained BET protein inhibition. Cell Rep 2014; 8: 1919–1929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank JM Adams, X Bu, S Cory, M Dawson, J Feutrill and A Wilks for discussions and suggestions; JM Adams, P Bouillet, L Coultas and S Cory for gifts of reagents and mouse strains; H Ierino and C Riffkin for technical assistance; S Oliver for animal husbandry; E Tsui for histology; and Catalyst Therapeutics and SYN|thesis Med Chem for provision of compounds. This work was supported by scholarships, fellowships and grants from the Australian National Health and Medical Research Council (Research Fellowships to AWR, WSA and DCSH; Australia Fellowship to AS; Project Grant 1051235 to SPG; Program Grants 1016701 and 1016647; Independent Research Institutes Infrastructure Support Scheme Grant 9000220), the Cancer Council Victoria (grants-in-aid to SPG, AWR and DCSH), the Leukemia and Lymphoma Society (SCOR Grant 7001-13 to AS, AWR and DCSH), the China Scholarship Council (to YY), the Australian Cancer Research Foundation and a Victorian State Government Operational Infrastructure Support (OIS) Grant.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D C S Huang or S P Glaser.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Z., Sharp, P., Yao, Y. et al. BET inhibition represses miR17-92 to drive BIM-initiated apoptosis of normal and transformed hematopoietic cells. Leukemia 30, 1531–1541 (2016). https://doi.org/10.1038/leu.2016.52

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2016.52

This article is cited by

Search

Quick links